分享:
分享到微信朋友圈
X
临床研究
多参数MRI在原发性乳腺癌不同分子亚型中的诊断价值研究
郑璇 李艳翠 彭如臣

Cite this article as: ZHENG X, LI Y C, PENG R C. The value of muti-parametric MRI in different molecular subtypes of primary breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(5): 104-109.本文引用格式:郑璇, 李艳翠, 彭如臣. 多参数MRI在原发性乳腺癌不同分子亚型中的诊断价值研究[J]. 磁共振成像, 2023, 14(5): 104-109. DOI:10.12015/issn.1674-8034.2023.05.019.


[摘要] 目的 探讨多参数磁共振成像(multi-parametric magnetic resonance imaging, mpMRI)在原发性乳腺癌不同分子亚型中的诊断价值。材料与方法 回顾性分析经病理证实的137例原发性乳腺癌患者的术前mpMRI检查。比较各型乳腺癌在年龄、绝经状态、MRI形态学特征、扩散加权成像(diffusion-weighted imaging, DWI)和表观扩散系数(apparent diffusion coefficient, ADC)值及时间-信号强度曲线(time-signal intensity curve, TIC)之间的差异。结果 137例乳腺癌中,Luminal A型38例,Luminal B型75例,人表皮生长因子受体2(human epidermal growth factor receptor-2, HER-2)过表达型10例,三阴性14例。四种分子亚型中,肿块的直径、形状、边缘、强化方式、最大层面ADC值及最小平均ADC值差异有统计学意义(P=0.011、0.010、0.003、0.006、0.017、0.008),其中三阴性乳腺癌肿块多体积较大、呈类圆形、边缘光滑、增强扫描呈环形强化,Luminal A型及Luminal B型边缘多呈毛刺状,且最大层面ADC值低于HER-2过表达型和三阴性组,HER-2过表达型患者肿块的ADC值较其他分子亚型肿块的ADC值高。不同分子亚型乳腺癌肿块的边缘、T2WI信号、T1WI信号、坏死囊变、强化程度及TIC类型差异无统计学意义(P>0.05)。结论 不同分子亚型乳腺癌肿块的mpMRI表现有一定区别,有助于术前无创性预测分子亚型,特别是三阴性乳腺癌的区分。
[Abstract] Objective To explore the value of muti-parametric magnetic resonance imaging (mpMRI) in different molecular subtypes of primary breast cancer.Materials and Methods MRI data of 137 patients with primary breast cancer confirmed by pathology were analyzed retrospectively. To compare the differences among different types of breast cancer in age, menopause status, MRI morphological characteristics, diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) value and time-signal intensity curve (TIC).Results Among 137 cases of breast cancer, including 38 cases of Luminal A breast cancer, 75 cases of Luminal B breast cancer, 10 cases of human epidermal growth factor receptor-2 (HER-2) overexpression breast cancer and 14 cases of triple-negative breast cancer. Among the four molecular subtypes, there were statistically significant differences in the diameter, shape, edge, enhancement mode, maximum ADC value and minimum ADC value of the tumor (P=0.011, 0.010, 0.003, 0.006, 0.017, 0.008, respectively). Among them, the triple-negative breast cancer tumors were large in volume, round in shape, smooth in edge, and ring enhancement. The edges of Luminal A and Luminal B are mostly spicule shaped and the ADC value is lower than the other two groups. The ADC value of HER-2 overexpression type patients' masses is higher than that of other molecular subtypes of masses. There was no significant difference in the margin, T2WI signal, T1WI signal, necrotic cystic change, enhancement degree and TIC curve type of different molecular subtypes of breast cancer (P>0.05).Conclusions The mpMRI features of different molecular subtypes of breast cancer masses are different, which is helpful for non-invasive prediction of molecular subtypes before surgery, especially for the differentiation of triple negative breast cancer.
[关键词] 乳腺癌;分子亚型;磁共振成像;多参数磁共振成像;扩散加权成像;表观扩散系数
[Keywords] breast cancer;molecular subtypes;magnetic resonance imaging;multi-parametric magnetic resonance imaging;diffusion weighted imaging;apparent diffusion coefficient

郑璇    李艳翠    彭如臣 *  

首都医科大学附属北京潞河医院医学影像科,北京 101149

通信作者:彭如臣,E-mail:pengruchen@ccmu.edu.cn

作者贡献声明:彭如臣指导设计本研究的方案,对稿件重要内容进行了修改,获得潞河医院学科建设与科研发展专项研究基金项目资助;郑璇起草和撰写稿件,收集、统计及分析本研究的数据结果;李艳翠帮助收集、分析本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 潞河医院学科建设与科研发展专项研究 KJ2021CX008-04
收稿日期:2023-02-21
接受日期:2023-04-28
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.05.019
本文引用格式:郑璇, 李艳翠, 彭如臣. 多参数MRI在原发性乳腺癌不同分子亚型中的诊断价值研究[J]. 磁共振成像, 2023, 14(5): 104-109. DOI:10.12015/issn.1674-8034.2023.05.019.

0 前言

       乳腺癌是全球女性最常见的恶性肿瘤之一,发病率约47.8/105 [1, 2],且有逐年上升的趋势。乳腺癌具有高度异质性,目前临床主要依靠手术及穿刺活检的免疫组化结果来进行分子分型,主要分为Luminal A、Luminal B型、人表皮生长因子受体2(human epidermal growth factor receptor-2, HER-2)过表达型及三阴性四种分子亚型[3, 4],不同分子亚型的肿瘤生物学行为、治疗及预后均有不同,而这些手段均为有创性,因此寻求一个无创性检查来判断分子分型就显得尤为重要。研究表明MRI检查在乳腺癌诊断及疗效判断方面具有重大作用,近年来的研究多集中于扩散加权成像(diffusion-weighted imaging, DWI)及动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)在乳腺癌中的应用,关于乳腺癌不同分子亚型的多参数MRI(multi-parametric MRI, mpMRI)表现研究较少[5, 6, 7, 8]。本研究旨在探讨乳腺癌不同分子亚型的MRI表现的差异性,以期寻找到一种无创性术前预测分子分型的方法。

1 材料与方法

1.1 一般资料

       回顾性分析2016年4月至2022年6月在本院行乳腺MRI检查的乳腺癌的患者资料。纳入标准:(1)MRI检查前未行手术、化疗、放疗及其他药物治疗;(2)MRI检查后经手术或穿刺活检病理证实为乳腺癌的患者,并取得完整的病理资料和免疫组化结果。排除标准:(1)MRI图像质量差者;(2)病灶太小(<5 mm)无法测量ADC值及绘制时间-信号强度曲线(time-signal intensity curve, TIC)者。所有受检者均自愿接受乳腺MRI检查并签署MRI检查知情同意书。本研究符合《赫尔辛基宣言》,且已经过本院伦理委员会批准,免除受试者知情同意,批准文号:2021-LHKY-121-01。

1.2 MRI检查方法

       采用西门子3.0 T Skyra MRI仪,8通道乳腺专用相控阵表面线圈完成MRI扫描。受检者取俯卧位,双乳自然悬垂。横断面T2WI脂肪抑制序列扫描参数:FOV 340 mm×340 mm,层厚4 mm,TR 4000 ms,TE 54 ms,翻转角230°;横断面T1WI-3D-tra序列扫描参数:TR 6 ms,TE 2.5 ms,层厚1 mm,激励次数1;DWI采用resolve-diff-tra序列,扫描参数:TR 6400 ms,TE 55 ms,层厚5 mm,层间隔1 mm,b=50、1000 s/mm2;DCE-MRI采用T1WI-fl3d-tra序列,扫描参数:TR 4.5 ms,TE 1.7 ms,层厚1 mm,注射对比剂前扫描1个时相,然后保持体位不变,注射后行连续无间断扫描7个时相,单时相采集时间约1 min,对比剂使用钆布醇注射液,经手背静脉或肘静脉,注射速率1.5 mL/s,注射剂量0.1 mL/kg。

1.3 图像处理及分析

       由2名分别从事影像工作20年和19年的放射科副主任医师和主治医师分别对病灶平扫的信号及增强后的形状、边缘、强化方式、强化程度进行记录,有争议则共同协商解决。将所有图像原始数据上传至西门子工作站,由1名具有7年经验的住院医师在b=0、1000 s/mm2的DWI图像上测量ADC值,共两次测量,且测量时间间隔大于2个月,最后取两次测量结果的平均值作为该患者的ADC值。肿瘤ROI的选择采用如下两种方法:(1)最大层面ADC值法,参照平扫及增强MRI图像,在b=0 s/mm²图像上选择病变最大层面,沿肿瘤实性区域边缘(略小于病灶)逐层手工绘制不规则形ROI,避开肿瘤内部囊变、坏死区,并记录其值;(2)最小平均ADC值法,参考平扫及增强MRI图像,在b=0 s/mm2图像上选取大小约为30 mm²的ROI放置于病变平均ADC值最小处(DWI图像上信号最高处,ADC图信号最低处),并记录其ADC值。在病灶实性强化明显区域绘制ROI,自动生成TIC。TIC类型[9, 10, 11]:Ⅰ型流入型、Ⅱ型平台型或Ⅲ型流出型。详见图1

图1  女,34岁,三阴性乳腺癌。T2WI压脂横断面(1A)可见左乳明显高信号肿块,圆形,边缘较光滑,DWI(1B)边缘呈高信号,对应ADC(1C)减低,测得最大层面ADC值约1.097×10-3 mm2/s(b=1000 s/mm2),最小平均ADC值约0.9×10-3 mm2/s(b=1000 s/mm2),增强扫描(1D)呈环形强化,TIC(1E)呈Ⅲ型。
图2  女,61岁,Luminal A型乳腺癌。T2WI压脂横断面(2A)可见左乳明显高信号肿块,不规则形,边缘毛刺状,DWI(2B)整体呈高信号,对应ADC(2C)减低,测得ADC值约1.064×10-3 mm2/s(b=1000 s/mm2),最小平均ADC值约0.962×10-3 mm2/s(b=1000 s/mm2),增强扫描(2D)呈明显均匀强化,TIC(2E)呈Ⅲ型。DWI:扩散加权成像;ADC:表观扩散系数;TIC:时间-信号强度曲线。
Fig. 1  Female, 34 years old, three negative breast cancer. T2WI-SP (1A) shows an high signal mass in the left breast, round, smooth edge, DWI (1B) shows high signal on the edge, corresponding to the decrease of ADC (1C), and the measured maximum ADC value is about 1.097×10-3 mm2/s (b=1000 s/mm2), with a minimum ADC value of approximately 0.9×10-3 mm2/s (b=1000 s/mm2), after contrast (1D) it shows circular enhancement, TIC curve (1E) shows type Ⅲ.
Fig. 2  Female, 61 years old, Luminal type A breast cancer. T2WI-SP (2A) shows an obvious high signal mass in the left breast, which is irregular, with spiculate edges. DWI (2B) is high signal as a whole, corresponding to the decrease of ADC (2C), and the measured ADC value is about 1.064×10-3 mm2/s (b=1000 s/mm2), with a minimum ADC value of approximately 0.962×10-3 mm2/s (b=1000 s/mm2), after contrast (2D) it shows obvious uniform enhancement, TIC curve (2E) shows type Ⅲ. DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; TIC: time-signal intensity curve.

1.4 病理分析

       所有患者均经手术或穿刺病理证实,得到肿瘤的雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)、HER-2状态和增殖指数(Ki-67)的表达情况。其中ER和PR的阳性肿瘤细胞核≥1%为阳性,<1%为阴性;HER-2阴性和1+判定为HER-2阴性,3+为HER-2阳性,对2+者进一步行荧光原位杂交法检测,基因扩增者定义为HER-2阳性,反之为阴性;高倍镜下恶性肿瘤细胞染色阳性占背景水平百分比≥20%表现为Ki-67高表达,<20%为低表达。根据2017年St.Gallen乳腺癌国际会议专家共识标准[12],将乳腺癌分为四种亚型,其中Luminal A型:ER和(或)PR阳性,且HER-2阴性及Ki-67≤14%;Luminal B型:包括HER-2阴性型(ER/PR阳性,且HER-2阴性、Ki-67>14%)和HER-2阳性型(ER/PR阳性,且HER-2阳性、Ki-67任何水平);HER-2过表达型:ER和PR阴性、HER-2阳性、Ki-67任何水平;三阴性型:ER、PR、HER-2均阴性,Ki-67任何水平。

1.5 统计学分析

       所有数据应用SPSS 23.0及MedCalc统计软件进行处理。采用方差分析和卡方检验比较不同分子亚型患者年龄、性别是否存在组间差异;采用卡方检验评估乳腺癌肿块一般MRI信号特点及TIC类型之间的差异。对两次ADC值测量结果进行一致性检验,ICC值≤0.5表示一致性较差,0.5<ICC值≤0.75表示一致性中等,0.75<ICC值≤0.9表示一致性较好,ICC值>0.9表示一致性极好,采用单因素方差分析比较不同分子亚型肿瘤间的ADC值的差异,两两比较采用最小显著性差异法(LSD-t)。采用MedCalc软件比较最大层面ADC值和最小平均ADC值预判分子亚型的AUC值。P<0.05为差异具有统计学意义。

2 结果

2.1 不同分子亚型乳腺癌患者的基本情况

       137例原发性乳腺癌患者均为女性,年龄21~75(51.31±11.09)岁,其中,Luminal A型38例(27.7%),Luminal B型75例(54.7%),HER-2过表达型10例(7.3%),三阴性14例(10.2%)。不同分子亚型乳腺癌患者,在组织学类型、平均年龄、绝经状态方面差异无统计学意义(P均>0.05),详见表1

表1  137例原发性乳腺癌的组织学类型、平均年龄及绝经状态
Tab. 1  Histological type, mean age and menopausal status of 137 cases of primary breast cancer

2.2 不同分子亚型乳腺癌肿块的一般MRI特征

       不同分子亚型的乳腺癌肿块的直径差异具有统计学意义(χ2=16.679,P=0.011),其中三阴性乳腺癌肿块直径2<d≤5 cm的比例高于其他三组;不同分子亚型肿块的形状差异具有统计学意义,三阴性乳腺癌肿块表现为类圆形的比例较其他三型高(χ2=6.307,P=0.043);在肿块边缘方面,不同亚型差异具有统计学意义(χ2=16.866,P=0.010),Luminal A型及Luminal B型边缘多呈毛刺状,三阴性乳腺癌边缘多较光滑;在肿块的强化方式方面,四种分子亚型差异具有统计学意义(χ2=17.999,P=0.006),三阴性乳腺癌肿块呈环形强化的比例较其他三种类型高。不同分子亚型乳腺癌肿块的侧别、T2WI信号、T1WI信号、坏死囊变及强化程度差异无统计学意义(P均>0.05),详见表2

表2  四种分子亚型乳腺癌一般MRI特征的比较
Tab. 2  Comparison of general MRI features of four molecular subtypes of breast cancer

2.3 不同分子亚型乳腺癌肿块的ADC值比较

       两次测量所得ADC值一致性较好(最大层面ADC值ICC=0.767,P<0.001;最小平均ADC值ICC=0.785,P<0.001),四种不同分子亚型的乳腺癌肿块的最大层面ADC值和最小平均ADC值差异有统计学意义(P<0.05,表3);HER-2过表达型患者肿块的最大层面ADC值及最小平均ADC值均较其他分子亚型肿块的ADC值略高(F=6.939,P=0.009;F=6.012,P=0.015),Luminal A型和Luminal B型肿瘤的最大层面ADC值低于其他两组(F=5.633,P=0.019),差异有统计学意义,最小平均ADC值差异无统计学意义(P>0.05);但两种ROI的选择方法所得ADC值预判不同乳腺癌肿块分子亚型的能力无显著差异(P>0.05)。

表3  四种分子亚型乳腺癌ADC值的比较
Tab. 3  Comparison of ADC values of four molecular subtypes of breast cancer

2.4 不同分子亚型乳腺癌肿块的TIC类型比较

       不同分子亚型乳腺癌肿块的TIC类型差异无统计学意义(P>0.05),均以Ⅲ型流出型为主;三阴性乳腺癌的Ⅲ型占比高于Lumianl A型、Lumianl B型及HER-2过表达型,但差异无统计学意义(χ2=3.563,P=0.736),详见表4

表4  四种分子亚型乳腺癌TIC类型的比较
Tab. 4  Comparison of TIC curve types of four molecular subtypes of breast cancer

3 讨论

       乳腺癌为女性最常见的恶性肿瘤,发病率呈日渐上升趋势,且乳腺癌为一种高度异质性肿瘤,研究发现[13]不同分子分型乳腺癌预后及治疗方式不同,因此早期判断不同的分子分型有利于临床个体化精准治疗,MRI是乳腺病变常用的无创性检查方式,目前关于各个分子亚型乳腺癌的mpMRI表现研究较少,本研究通过探讨不同分子亚型乳腺癌的MRI表现,发现不同分子亚型肿块的常规MRI特征及DWI-MRI表现均有差异性,有助于术前无创性预测分子亚型,特别是三阴性乳腺癌的区分,来辅助临床治疗。

3.1 常规MRI在原发性乳腺癌分子分型中的作用

       本研究显示,不同分子亚型乳腺癌患者,在发病年龄、绝经状态方面无明显差异,与既往研究一致[14]。本研究发现三阴性乳腺癌肿块范围多较大,形态多表现为类圆形,增强扫描后呈环形强化较多,与既往研究[15, 16, 17]相符,肿块较大可能是肿瘤侵袭性较高,且ER阴性肿瘤细胞增殖速度较快所致[18];三阴性乳腺癌肿块呈类圆形的比例高于其他三组,既往研究[16]表明可能是因为肿瘤的圆度和ER的表达呈负相关,而与Ki-67指数为正相关;增强扫描后表现为环形强化较多,DERAKHSHAN等[19]和KANG等[20]认为是肿瘤中央易发生纤维变形和坏死,瘢痕形成也较多,JEH等[21]认为是肿瘤边缘与内部的微血管密度比值增大所致。

       本研究发现,Luminal A型、Luminal B型及HER-2过表达型肿块以分叶状、不规则形多见,且边缘不光滑,部分呈毛刺状,增强扫描后多呈不均匀强化,本研究中>70%的Luminal A 型及Luminal B型肿块边缘呈毛刺状,比例高于HER-2过表达型,这与既往研究相符,LAMB等[22]研究显示,毛刺征与ER/PR基因的表达有相关性,边缘呈毛刺状的肿瘤ER/PR阳性表达较边缘光滑的肿瘤高。本研究中约90%的HER-2过表达型病例为浸润性癌,与既往研究相差较多,MCANDREW等[23]和WANG等[24]研究显示导管原位癌中HER-2的扩增和过表达率高于浸润性导管癌,分析原因可能是样本构成不同,本研究中HER-2过表达型样本量较少,占比较低,待增加样本量后进一步研究。

3.2 DWI-MRI在原发性乳腺癌分子分型中的作用

       本研究中,HER-2过表达型肿瘤最大层面ADC值及最小平均ADC值均高于其他三组,差异有统计学意义(P<0.01),分析原因可能是HER-2基因的扩增和高表达所致,因其在细胞生成过程中,细胞增殖活跃,肿瘤新生血管生成增加,但肿瘤血管壁不完整,通透性较高,水分子扩散度增加,所以ADC值较高,结果与既往研究[25, 26]一致。本研究中三阴性乳腺癌肿瘤的肿瘤最大层面ADC值及最小平均ADC值低于HER-2过表达型,高于Luminal A型及B型,差异无统计学意义(P>0.05),结果与既往研究[27]一致。本研究发现,Luminal A型和Luminal B型肿瘤的最大层面ADC值低于其他两组,差异有统计学意义(P<0.01),与既往研究一致,LEITHNER等[28]和MARIC等[29]研究显示ER、PR阳性表达可以抑制肿瘤血管生成从而导致肿瘤灌注下降,使得分子扩散相对受限,导致ADC值降低。SHIN等[30]研究发现ER、PR阳性表达的肿瘤细胞密度较高,分子扩散受限,ADC值较低;其中Luminal A型平均ADC值较Luminal B型高,差异没有统计学意义(P>0.01),按照分型标准,Ki-67≤14%为Luminal A,Ki-67>14%为Luminal B型。多项研究[31, 32, 33]表明Ki-67指数可以反映肿瘤细胞的增殖活性,且两者呈正相关,Luminal B型肿瘤Ki-67指数较A型高,肿瘤增殖率也较A型高,DWI图像表现为稍高信号,ADC值稍低,与本文研究结果一致。本研究采用了两种ROI测量法,并将这两种不同ROI所获得的ADC值进行了比较,发现两种方法对鉴别乳腺癌的不同分子亚型的能力没有差异。但是最小值法不同观察者之间变异度大,可重复性较差,而最大层面法不同观察者之间差异较小,可重复性较高。

3.3 DCE-MRI在原发性乳腺癌分子分型中的作用

       本研究结果显示,TIC类型与乳腺癌不同分子亚型之间差异无统计学意义(P>0.05),均以平台型及流出型居多,这与既往研究相一致[34, 35],但也有研究[36]表明Luminal A型乳腺癌表达为Ⅲ型曲线最少,且HER-2过表达型为Ⅲ型曲线最多,分析原因可能是样本构成不同,这一问题尚需研究进一步探讨。

3.4 本研究的局限性

       本文尚存在一定的局限性:首先,样本量仍较少,且各分子亚型病例分布不均匀,统计结果可能与实际存在偏差,待增加样本量后进一步研究;其次,本研究为回顾性研究,部分结果为诊断医师的主观判读,可能会造成研究结果存在一定偏倚。

4 结论

       本研究结果显示,不同分子亚型的乳腺癌的MRI表现有一定差异。综合肿块的大小、形状、边缘、强化方式及ADC值有助于帮助预测分子分型。肿块较大,且表现为圆形、边缘光滑、环形强化有利于三阴性乳腺癌的诊断;Luminal A型、Luminal B型及HER-2过表达型多表现为不规则形且边缘呈毛刺状,其中HER-2过表达型ADC值最高,Luminal A型及Luminal B型ADC值较低。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660">10.3322/caac.21660">10.3322/caac.21660.
[2]
张雷, 杨丽凤, 焦雄. 基于特征融合的集成模型分类乳腺癌分子亚型的研究[J]. 磁共振成像, 2023, 14(3): 58-64. DOI: 10.12015/issn.1674-8034.2023.03.011">10.12015/issn.1674-8034.2023.03.011">10.12015/issn.1674-8034.2023.03.011.
ZHANG L, YANG L F, JIAO X. An integrated model based on feature fusion for classifying molecular subtypes of breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(3): 58-64. DOI: 10.12015/issn.1674-8034.2023.03.011">10.12015/issn.1674-8034.2023.03.011">10.12015/issn.1674-8034.2023.03.011.
[3]
GOLDHIRSCH A, WINER E P, COATES A S, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol, 2013, 24(9): 2206-2223. DOI: 10.1093/annonc/mdt303">10.1093/annonc/mdt303">10.1093/annonc/mdt303.
[4]
汪玲, 潘华锋, 李琰. 不同分子分型乳腺癌临床病理特征及预后分期分析[J]. 临床外科杂志, 2019, 27(3): 231-234. DOI: 10.3969/j.issn.1005-6483.2019.03.017">10.3969/j.issn.1005-6483.2019.03.017">10.3969/j.issn.1005-6483.2019.03.017.
WANG L, PAN H F, LI Y. Analysis of staging and clinicopathological characteristics of different molecular subtypes with prognostic staging[J]. J Clin Surg, 2019, 27(3): 231-234. DOI: 10.3969/j.issn.1005-6483.2019.03.017">10.3969/j.issn.1005-6483.2019.03.017">10.3969/j.issn.1005-6483.2019.03.017.
[5]
CHEN H, LI W, WAN C, et al. Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers[J/OL]. Front Oncol, 2022, 12: 942943 [2023-02-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389013/. DOI: 10.3389/fonc.2022.942943">10.3389/fonc.2022.942943">10.3389/fonc.2022.942943.
[6]
连鹏, 张秋芳, 王利. 动态对比增强磁共振成像及扩散加权成像在乳腺癌术前诊断中的应用[J]. 实用放射学杂志, 2019, 35(10): 1599-1602. DOI: 10.3969/j.issn.1002-1671.2019.10.011">10.3969/j.issn.1002-1671.2019.10.011">10.3969/j.issn.1002-1671.2019.10.011.
LIAN P, ZHANG Q F, WANG L. Application of DCEGMRI and DWI in the preoperative diagnosis of breast cancer[J]. J Pract Radiol, 2019, 35(10): 1599-1602. DOI: 10.3969/j.issn.1002-1671.2019.10.011">10.3969/j.issn.1002-1671.2019.10.011">10.3969/j.issn.1002-1671.2019.10.011.
[7]
ZHANG M, HORVAT J V, BERNARD-DAVILA B, et al. Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy[J]. J Magn Reson Imaging, 2019, 49(3): 864-874. DOI: 10.1002/jmri.26285">10.1002/jmri.26285">10.1002/jmri.26285.
[8]
DAIMIEL NARANJO I, GULLO R LO, SACCARELLI C, et al. Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: comparison with dynamic contrast-enhanced and multiparametric MRI[J]. Eur Radiol, 2021, 31(1): 356-367. DOI: 10.1007/s00330-020-07094-z">10.1007/s00330-020-07094-z">10.1007/s00330-020-07094-z.
[9]
MONTEMEZZI S, CAMERA L, GIRI M G, et al. Is there a correlation between 3T multiparametric MRI and molecular subtypes of breast cancer?[J]. Eur J Radiol, 2018, 108: 120-127. DOI: 10.1016/j.ejrad.2018.09.024">10.1016/j.ejrad.2018.09.024">10.1016/j.ejrad.2018.09.024.
[10]
王智宝, 周志强, 王哲, 等. 3.0T MRI动态增强扫描联合MB-DWI在乳腺癌诊断中的临床价值研究[J]. 中国CT和MRI杂志, 2022, 20(5): 123-125. DOI: 10.3969/j.issn.1672-5131.2022.05.040">10.3969/j.issn.1672-5131.2022.05.040">10.3969/j.issn.1672-5131.2022.05.040.
WANG Z B, ZHOU Z Q, WANG Z, et al. The clinical value of 3.0T MRI dynamic enhanced scan combined with MB-DWI in the diagnosis of breast cancer[J]. Chin J CT MRI, 2022, 20(5): 123-125. DOI: 10.3969/j.issn.1672-5131.2022.05.040">10.3969/j.issn.1672-5131.2022.05.040">10.3969/j.issn.1672-5131.2022.05.040.
[11]
李桢, 李梦露, 程流泉. DCE-TIC曲线与DWI-ADC值联合应用对乳腺良、恶性病变的鉴别诊断价值[J]. 中国医学影像学杂志, 2019, 27(9): 654-658. DOI: 10.3969/j.issn.1005-5185.2019.09.005">10.3969/j.issn.1005-5185.2019.09.005">10.3969/j.issn.1005-5185.2019.09.005.
LI Z, LI M L, CHENG L Q. DCE-TIC combined with DWI-ADC in the differential diagnosis of benign and malignant breast lesions[J]. Chin J Med Imaging, 2019, 27(9): 654-658. DOI: 10.3969/j.issn.1005-5185.2019.09.005">10.3969/j.issn.1005-5185.2019.09.005">10.3969/j.issn.1005-5185.2019.09.005.
[12]
CURIGLIANO G, BURSTEIN H J, WINER E P, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017[J/OL]. Ann Oncol, 2019, 30(7): 1181 [2023-02-15]. https://www.annalsofoncology.org/article/S0923-7534(19)31226-8/fulltext. DOI: 10.1093/annonc/mdy537">10.1093/annonc/mdy537">10.1093/annonc/mdy537.
[13]
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013.
Breast Cancer Professional Committee of Chinese Anti Cancer Association. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013.
[14]
连臻强, 何洁华, 王曦, 等. 乳腺癌不同分子亚型的临床特点和生存分析[J]. 中华乳腺病杂志(电子版), 2009, 3(2): 5-9. DOI: 10.3969/j.issn.1674-0807.2009.02.003">10.3969/j.issn.1674-0807.2009.02.003">10.3969/j.issn.1674-0807.2009.02.003.
LIAN Z Q, HE J H, WANG X, et al. Clinical features and survival analysis of molecular subtyping of breast cancer[J]. Chin J Breast Dis Electron Version, 2009, 3(2): 5-9. DOI: 10.3969/j.issn.1674-0807.2009.02.003">10.3969/j.issn.1674-0807.2009.02.003">10.3969/j.issn.1674-0807.2009.02.003.
[15]
SZEP M, PINTICAN R, BIANCA B C, et al. Multiparametric MRI features of breast cancer molecular subtypes[J/OL]. Medicina (Kaunas), 2022, 58(12): 1716 [2023-02-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785392/. DOI: 10.3390/medicina58121716">10.3390/medicina58121716">10.3390/medicina58121716.
[16]
MATSUMOTO M, YAMAGUCHI R, MORITA M, et al. 6. relationships between histomorphology, imaging findings and subtypes in breast cancer[J]. Nihon Hoshasen Gijutsu Gakkai Zasshi, 2022, 78(10): 1224-1229. DOI: 10.6009/jjrt.2022-2091">10.6009/jjrt.2022-2091">10.6009/jjrt.2022-2091.
[17]
KAZAMA T, TAKAHARA T, HASHIMOTO J. Breast cancer subtypes and quantitative magnetic resonance imaging: a systemic review[J/OL]. Life (Basel), 2022, 12(4): 490 [2023-02-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028183/. DOI: 10.3390/life12040490">10.3390/life12040490">10.3390/life12040490.
[18]
GALATI F, RIZZO V, MOFFA G, et al. Radiologic-pathologic correlation in breast cancer: do MRI biomarkers correlate with pathologic features and molecular subtypes?[J/OL]. Eur Radiol Exp, 2022, 6(1): 39 [2023-02-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357588/. DOI: 10.1186/s41747-022-00289-7">10.1186/s41747-022-00289-7">10.1186/s41747-022-00289-7.
[19]
DERAKHSHAN F, REIS-FILHO J S. Pathogenesis of triple-negative breast cancer[J]. Annu Rev Pathol, 2022, 17: 181-204. DOI: 10.1146/annurev-pathol-042420-093238">10.1146/annurev-pathol-042420-093238">10.1146/annurev-pathol-042420-093238.
[20]
KANG S P, MARTEL M, HARRIS L N. Triple negative breast cancer: current understanding of biology and treatment options[J]. Curr Opin Obstet Gynecol, 2008, 20(1): 40-46. DOI: 10.1097/GCO.0b013e3282f40de9">10.1097/GCO.0b013e3282f40de9">10.1097/GCO.0b013e3282f40de9.
[21]
JEH S K, KIM S H, KIM H S, et al. Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma[J]. J Magn Reson Imaging, 2011, 33(1): 102-109. DOI: 10.1002/jmri.22400">10.1002/jmri.22400">10.1002/jmri.22400.
[22]
LAMB P M, PERRY N M, VINNICOMBE S J, et al. Correlation between ultrasound characteristics, mammographic findings and histological grade in patients with invasive ductal carcinoma of the breast[J]. Clin Radiol, 2000, 55(1): 40-44. DOI: 10.1053/crad.1999.0333">10.1053/crad.1999.0333">10.1053/crad.1999.0333.
[23]
MCANDREW N P. Updates on targeting human epidermal growth factor receptor 2-positive breast cancer: what's to know in 2021[J]. Curr Opin Obstet Gynecol, 2022, 34(1): 41-45. DOI: 10.1097/GCO.0000000000000762">10.1097/GCO.0000000000000762">10.1097/GCO.0000000000000762.
[24]
WANG X Y, HU Q, FANG M Y, et al. The correlation between HER-2 expression and the CEUS and ARFI characteristics of breast cancer[J/OL]. PLoS One, 2017, 12(6): e0178692 [2023-02-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453558/pdf/pone.0178692.pdf. DOI: 10.1371/journal.pone.0178692.
[25]
KIM E J, KIM S H, PARK G E, et al. Histogram analysis of apparent diffusion coefficient at 3.0t: correlation with prognostic factors and subtypes of invasive ductal carcinoma[J]. J Magn Reson Imaging, 2015, 42(6): 1666-1678. DOI: 10.1002/jmri.24934">10.1002/jmri.24934">10.1002/jmri.24934.
[26]
MORADI B, GITY M, ETESAM F, et al. Correlation of apparent diffusion coefficient values and peritumoral edema with pathologic biomarkers in patients with breast cancer[J]. Clin Imaging, 2020, 68: 242-248. DOI: 10.1016/j.clinimag.2020.08.020">10.1016/j.clinimag.2020.08.020">10.1016/j.clinimag.2020.08.020.
[27]
董测测, 许茜. 肿瘤相关扩散加权成像模型在乳腺癌预后因素预测中的研究进展[J]. 国际医学放射学杂志, 2023, 46(1): 60-65. DOI: 10.19300/j.2023.Z20034">10.19300/j.2023.Z20034">10.19300/j.2023.Z20034.
DONG C C, XU Q. Research progress of tumor-related diffusion-weighted imaging models in the prediction of prognostic factors of breast cancer[J]. Int J Med Radiol, 2023, 46(1): 60-65. DOI: 10.19300/j.2023.Z20034">10.19300/j.2023.Z20034">10.19300/j.2023.Z20034.
[28]
LEITHNER D, BERNARD-DAVILA B, MARTINEZ D F, et al. Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes[J]. Mol Imaging Biol, 2020, 22(2): 453-461. DOI: 10.1007/s11307-019-01383-w">10.1007/s11307-019-01383-w">10.1007/s11307-019-01383-w.
[29]
MARIC J, BOBAN J, IVKOVIC-KAPICL T, et al. Differentiation of breast lesions and distinguishing their histological subtypes using diffusion-weighted imaging and ADC values[J/OL]. Front Oncol, 2020, 10: 332 [2023-02-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083136/. DOI: 10.3389/fonc.2020.00332">10.3389/fonc.2020.00332">10.3389/fonc.2020.00332.
[30]
SHIN H J, KIM S H, LEE H J, et al. Tumor apparent diffusion coefficient as an imaging biomarker to predict tumor aggressiveness in patients with estrogen-receptor-positive breast cancer[J]. NMR Biomed, 2016, 29(8): 1070-1078. DOI: 10.1002/nbm.3571">10.1002/nbm.3571">10.1002/nbm.3571.
[31]
SOLIMAN N A, YUSSIF S M. Ki-67 as a prognostic marker according to breast cancer molecular subtype[J]. Cancer Biol Med, 2016, 13(4): 496-504. DOI: 10.20892/j.issn.2095-3941.2016.0066">10.20892/j.issn.2095-3941.2016.0066">10.20892/j.issn.2095-3941.2016.0066.
[32]
SUROV A, CLAUSER P, CHANG Y W, et al. Can diffusion-weighted imaging predict tumor grade and expression of Ki-67 in breast cancer? A multicenter analysis[J/OL]. Breast Cancer Res, 2018, 20(1): 58 [2023-02-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011203/. DOI: 10.1186/s13058-018-0991-1">10.1186/s13058-018-0991-1">10.1186/s13058-018-0991-1.
[33]
MOLINARI C, CLAUSER P, GIROMETTI R, et al. MR mammography using diffusion-weighted imaging in evaluating breast cancer: a correlation with proliferation index[J]. Radiol Med, 2015, 120(10): 911-918. DOI: 10.1007/s11547-015-0527-z">10.1007/s11547-015-0527-z">10.1007/s11547-015-0527-z.
[34]
SUNG J S, JOCHELSON M S, BRENNAN S, et al. MR imaging features of triple-negative breast cancers[J]. Breast J, 2013, 19(6): 643-649. DOI: 10.1111/tbj.12182">10.1111/tbj.12182">10.1111/tbj.12182.
[35]
NAVARRO VILAR L, ALANDETE GERMÁN S P, MEDINA GARCÍA R, et al. MR imaging findings in molecular subtypes of breast cancer according to BIRADS system[J]. Breast J, 2017, 23(4): 421-428. DOI: 10.1111/tbj.12756">10.1111/tbj.12756">10.1111/tbj.12756.
[36]
WANG C Y, WEI W, SANTIAGO L, et al. Can imaging kinetic parameters of dynamic contrast-enhanced magnetic resonance imaging be valuable in predicting clinicopathological prognostic factors of invasive breast cancer?[J]. Acta Radiol, 2018, 59(7): 813-821. DOI: 10.1177/0284185117740746">10.1177/0284185117740746">10.1177/0284185117740746.

上一篇 基于Kaiser评分的乳腺MRI肿块诊断预测模型的构建与验证
下一篇 动态对比增强MRI联合扩散峰度成像对预测三阴性乳腺癌的诊断价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2