分享:
分享到微信朋友圈
X
临床研究
动态对比增强MRI联合扩散峰度成像对预测三阴性乳腺癌的诊断价值
刘诗晗 邵硕 魏坤杰 赵晓萌 吴建伟 郑宁

Cite this article as: LIU S H, SHAO S, WEI K J, et al. Diagnostic value of DCE-MRI combined with DKI in predicting the triple negative breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(5): 110-115.本文引用格式:刘诗晗, 邵硕, 魏坤杰, 等. 动态对比增强MRI联合扩散峰度成像对预测三阴性乳腺癌的诊断价值[J]. 磁共振成像, 2023, 14(5): 110-115. DOI:10.12015/issn.1674-8034.2023.05.020.


[摘要] 目的 探讨动态对比增强MRI(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)半定量分析联合扩散峰度成像(diffusion kurtosis imaging, DKI)对三阴性乳腺癌(triple-negative breast cancer, TNBC)的诊断价值。材料与方法 回顾性分析2018年11月至2022年7月济宁市第一人民医院经手术病理证实的乳腺癌患者资料138例,包括TNBC 39例和非TNBC 99例,所有患者术前均行DCE-MRI及DKI检查。分析DCE-MRI半定量参数[峰值强化率(percentage of peak enhancement, Epeak)、初始强化率(initial enhancement rate, IER)、最大强化斜率(maximum slope, Slopemax)、达峰时间(time to peak, TTP)、信号增强比(signal enhancement ratio, SER)、流入速率(Wash-in)、流出速率(Wash-out)]和DKI参数[平均峰度系数(mean kurtosis, MK)、平均扩散系数(mean diffusion, MD)]。采用独立样本t检验或Mann-Whitney U检验比较TNBC组与非TNBC组DCE-MRI半定量参数、DKI参数的差异,对差异具有统计学意义的参数使用logistic回归建立联合预测模型,使用受试者工作特征曲线及曲线下面积(area under the curve, AUC)分析各参数和联合预测模型的诊断效能。结果 TNBC组Wash-out、Slopemax、SER值高于非TNBC组(P<0.05);TNBC组TTP、MK值低于非TNBC组(P<0.05)。IER、Epeak、Wash-in、MD值在两组间的差异无统计学意义(P>0.05)。联合模型(Wash-out、Slopemax、TTP、SER、MK)诊断TNBC的敏感度为85.9%,特异度为92.3%,AUC为0.928,高于五者单独诊断的AUC(0.768、0.815、0.785、0.781、0.769),差异具有统计学意义(P<0.01)。结论 Wash-out、Slopemax、TTP、SER和MK是预测TNBC的重要参数,联合DCE-MRI与DKI可进一步提高TNBC的预测诊断效能。
[Abstract] Objective To explore dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) semi-quantitative analysis combined with diffusion kurtosis imaging (DKI) in diagnosis of triple negative breast cancer (TNBC).Materials and Methods The medical record datas of 138 patients with breast cancer in Jining First People's Hospital from November 2018 to July 2022 were retrospectively analyzed. The patients were divided into 39 cases of TNBC and 99 cases of non-TNBC according to pathological results. All patients underwent DCE-MRI and DKI examination. Analysis of DCE MRI semi-quantitative parameters [percentage of peak enhancement (Epeak), initial enhancement rate (IER), maximum slope (Slopemax), time to peak (TTP), signal enhancement ratio (SER), Wash-in, Wash-out] and DKI parameters [mean diffusion (MD), mean kurtosis (MK)]. The differences of DCE-MRI semi-quantitative parameters and DKI parameters between TNBC group and non-TNBC group were compared by t-test or Mann-Whitney U test. Receiver operating characteristic and area under the curve (AUC) was used to analyze the diagnostic efficacy of each parameter and the combined prediction model.Results The Wash-out, Slopemax and SER values of TNBC group were higher than those of non-TNBC group (P<0.05). The TTP and MK values of TNBC group were lower than those of non-TNBC group (P<0.05). There were no significant differences in IER, Epeak, Wash-in and MD between TNBC and non-TNBC groups (P>0.05). The sensitivity, specificity and AUC of the combined model (Wash-out, Slopemax, TTP, SER and MK) were 85.9%, 92.3% and 0.928 respectively, which were higher than the AUC of the five individual models (0.768, 0.815, 0.785, 0.781 and 0.769). The difference was statistically significant (P<0.01).Conclusions Wash-out, Slopemax, TTP, SER and MK parameters are important parameters for predicting TNBC, and combining DCE-MRI and DKI can further improve the predictive diagnostic efficiency of TNBC.
[关键词] 三阴性乳腺癌;乳腺癌;半定量;动态增强扫描;扩散峰度成像;磁共振成像
[Keywords] triple negative breast cancer;breast cancer;semi-quantitative;dynamic enhanced scanning;diffusion kurtosis imaging;magnetic resonance imaging

刘诗晗 1   邵硕 2   魏坤杰 1   赵晓萌 1   吴建伟 1   郑宁 2*  

1 济宁医学院临床医学院,济宁 272013

2 济宁市第一人民医院磁共振室,济宁 272000

通信作者:郑宁,E-mail:zhengning_369@163.com

作者贡献声明:郑宁设计本研究的方案,对稿件重要内容进行了修改;刘诗晗起草和撰写稿件,获取、分析或解释本研究的数据;邵硕、魏坤杰、赵晓萌、吴建伟获取、分析或解释本研究的数据,对稿件重要内容进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2022-11-11
接受日期:2023-04-28
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.05.020
本文引用格式:刘诗晗, 邵硕, 魏坤杰, 等. 动态对比增强MRI联合扩散峰度成像对预测三阴性乳腺癌的诊断价值[J]. 磁共振成像, 2023, 14(5): 110-115. DOI:10.12015/issn.1674-8034.2023.05.020.

0 前言

       乳腺癌是女性最为常见的恶性肿瘤类型,不同的病理分子亚型对应不同的治疗方案及预后。三阴性乳腺癌(triple-negative breast cancer, TNBC)是指雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)和人类表皮生长因子2(human epidermal growth factor receptor-2, HER-2)均不表达的乳腺癌亚型,约占所有乳腺癌病例的15%~20%,通常被认为是乳腺癌中最严重的亚型[1]。以往多项研究[2, 3, 4]表明,乳腺癌在分子水平上具有高度的异质性,导致不同分子亚型的治疗反应和预后存在巨大差异。TNBC对化疗较敏感,而常规内分泌治疗和靶向治疗不能使患者受益,因此在早期运用影像手段准确诊断TNBC至关重要[5, 6]。MRI不受组织密度、纤维结构的复杂性或乳腺X线检查中重叠结构的影响,越来越多地用于乳腺癌的风险分级、治疗方案的选择和术后监测[7, 8, 9]。其中,动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)可以提供高空间分辨率,提供肿瘤解剖学信息和血流动力学信息,是乳腺癌中广泛应用的成像技术[10, 11]。扩散峰度成像(diffusion kurtosis imaging, DKI)是基于组织内水的非高斯分布的功能成像技术,比常规扩散加权成像(diffusion weighted imaging, DWI)更能了解组织结构的微观复杂性[12, 13]。联合DCE-MRI与DKI能够获取更多的TNBC功能学信息,同时能够更真实地提供肿瘤的定量信息。因此,本研究通过分析DCE-MRI半定量参数与DKI各参数值在TNBC与非TNBC中的差异,并探讨其联合模型对TNBC的鉴别诊断价值,以提高TNBC的MRI诊断效能,有利于临床中早期个性化治疗方案的制订,有效改善患者预后。

1 材料与方法

1.1 一般资料

       回顾性分析2018年11月至2022年7月在济宁市第一人民医院行乳腺MRI检查并经手术或病理诊断为乳腺癌的患者资料。纳入标准:(1)所有患者图像均在同一台MR扫描仪上获得,且采用相同的成像参数;(2)所有患者检查前未行任何治疗或有创检查措施,如手术、穿刺、放化疗等;(3)术后经病理学检查诊断为乳腺癌,且均行免疫组化分析。排除标准:(1)图像质量不佳,如囊变、坏死严重,或存在各种原因导致的伪影,影响观察者;(2)患者临床、病理信息不完整;(3)病灶最大径<1 cm,无法准确勾画病灶的感兴趣区(region of interest, ROI)。本研究遵守《赫尔辛基宣言》,得到济宁市第一人民医院伦理委员会批准,免除受试者知情同意,批准文号:2022伦审研第(109)号。

1.2 检查方法

       采用荷兰Philips Ingenia 3.0 T全数字MR扫描仪,俯卧位于乳腺专用线圈,双乳垂于两线圈孔中心位置。MRI常规平扫序列扫描序列与参数:T1WI序列[TR 609 ms,TE 8 ms,矩阵352×422,层厚4 mm,激励次数(number of excitation, NEX)1,成像时间110 s]及T2WI序列(TR 4918 ms,TE 80 ms,矩阵352×327,层厚4 mm,NEX 2,成像时间138 s)。DCE-MRI注射对比剂钆喷酸葡胺注射液(北京北陆药业股份有限公司,中国),注射速率2.5 mL/s,注射剂量0.2 mmoL/kg,扫描参数如下:TR 3.9 ms,TE 1.97 ms,矩阵280×338,层厚2.4 mm,NEX 1,每期扫描时间57 s,共采集9个期相。DKI序列扫描参数:TR 6223 ms,TE 97 ms,矩阵100×112,层厚4 mm,NEX 1,b值包括0、500、1000、1500、2000、2500 s/mm2,成像时间540 s。

1.3 图像分析与处理

       由两名分别具有2年和15年乳腺影像诊断经验的住院医师、副主任医师在未知病理结果的情况下独立进行分析测量,达成一致意见。将DKI序列图像传至Philips Intellispace Portal(ISP)工作站,采用高级扩散分析工具,生成平均峰度系数(mean kurtosis, MK)和平均扩散系数(mean diffusion, MD)伪彩图,选取病灶显示最大层面并避开囊变、坏死、出血区,勾画ROI,得到MK和MD值并重复测量3次取平均值。DCE-MRI图像的处理采用Philips ISP工作站T1 Perfusion功能进行半定量参数分析,可得到半定量参数伪彩图,在病灶强化最明显位置勾画ROI,可得到对应的流出速率(Wash-out)、初始强化率(initial enhancement rate, IER)、峰值强化率(percentage of peak enhancement, Epeak)、最大强化斜率(maximum slope, Slopemax)、达峰时间(time to peak, TTP)、信号增强比(signal enhancement ratio, SER),选取3个ROI进行测量取平均值。通过一名医师2周前后对同一病灶的勾画,来评估观察者内部的可重复性;通过两名医师对同一病灶的勾画以评估观察者间的可重复性。

1.4 病理结果

       根据中国抗癌协会乳腺癌诊治指南与规范(2021年版)[14],乳腺癌可分为4型:(1)Luminal A型,HER-2阴性,ER/PR阳性,Ki-67<20%。(2)Luminal B型,HER-2阳性,ER/PR阳性,任何状态的Ki-67;或HER-2阴性,ER/PR阳性,Ki-67≥20%。(3)HER-2过表达型,HER-2阳性,ER、PR阴性。(4)TNBC,ER、PR和HER-2均为阴性。非TNBC组包括Luminal A型、Luminal B型及HER-2过表达型。

1.5 统计学分析

       使用SPSS 26.0统计学软件进行统计分析,P<0.05表示差异具有统计学意义。计数资料采用χ2检验,计量资料运用Kolmogorov-Smirnov检验、Shapiro-Wilk检验、Levene检验来判断其正态性与方差齐性,正态分布的资料以(x¯±s)表示,偏态分布的资料以中位数(上下四分位数)表示。采用两独立样本t检验(正态分布且方差齐)或Mann-Whitney U秩和检验(偏态分布或方差不齐)比较TNBC组与非TNBC组DCE-MRI、DKI参数的差异。通过受试者工作特征(receiver operating characteristic, ROC)曲线计算曲线下面积(area under the curve, AUC),根据最大约登指数(约登指数=敏感度+特异度-1)确定对应参数的敏感度和特异度,评价各参数的诊断效能。联合参数采用logistic评估,并使用DeLong检验比较AUC的差异性。采用Pearson相关性分析SER值与TNBC肿瘤直径大小的相关性。采用组内相关系数(intra-class correlation coeficient, ICC)检验评价不同研究者对同一组试验结果进行诊断的可重复性(图12)。

图1  女,49岁,左乳浸润性导管癌,三阴性乳腺癌(TNBC)。1A:时间-信号强度曲线(TIC)示病变为Ⅲ型曲线;1B~1D:动态对比增强MRI(DCE-MRI)半定量参数伪彩图示达峰时间(TTP)=128 s、流入速率(Wash-in)=16.13 s-1、流出速率(Wash-out)=2.39 s-1;1E~1F:扩散峰度成像(DKI)伪彩图示平均扩散系数(MD)=1.55×10-3 mm2/s、平均峰度系数(MK)=0.73。
Fig. 1  A 49-year-old female with left invasive ductal carcinoma, triple-negative breast cancer (TNBC). 1A: Time intensity curve (TIC) of the lesion is type-Ⅲ curve. 1B-1F: The time to peak (TTP) value is 128 s, the Wash-in value is 16.13 s-1, the Wash-out value is 2.39 s-1, 1E-1F: The diffusion kurtosis imaging (DKI) pseudo-color map shows the mean diffusion (MD) value is 1.55×10-3 mm2/s, the mean kurtosis (MK) value is 0.73.
图2  女,52岁,右乳浸润性导管癌,Luminal A型。2A:时间-信号强度曲线(TIC)示病变为Ⅲ型曲线;2B~2D:动态对比增强MRI(DCE-MRI)半定量参数伪彩图示达峰时间(TTP)=147 s、流入速率(Wash-in)=18.29 s-1、流出速率(Wash-out)=1.44 s-1;2E~2F:扩散峰度成像(DKI)伪彩图示平均扩散系数(MD)=1.28×10-3 mm2/s、平均峰度系数(MK)=0.92。
Fig. 2  A 52-year-old female with right invasive ductal carcinoma, Luminal A. 2A: Time intensity curve (TIC) of the lesion is type-Ⅲ curve. 2B-2F: The time to peak (TTP) value is 147 s, the Wash-in value is 18.29 s-1, the Wash-out value is 1.44 s-1. 2E-2F: diffusion kurtosis imaging (DKI) pseudo-color map shows mean diffusion (MD) value is 1.28×10-3 mm2/s, the mean kurtosis (MK) value is 0.92.

2 结果

2.1 入组患者资料

       共收集乳腺癌患者资料138例,其中TNBC 39例,年龄32~70岁,中位年龄48岁;非TNBC 99例,年龄29~75岁,中位年龄47岁。TNBC、非TNBC组间的年龄、平均直径和时间-信号强度曲线(time intensity curve, TIC)类型的差异均无统计学意义(P>0.05)(表1)。

表1  TNBC组与非TNBC组的临床资料比较
Tab. 1  Comparison of clinical data between TNBC group and non-TNBC group

2.2 测量一致性

       使用ICC一致性检验,DCE-MRI、DKI多参数的测量具有较好的可重复性(表2)。

表2  DCE-MRI半定量、DKI参数的ICC检验
Tab. 2  ICC test of DCE-MRI semi-quantitative parameters and DKI parameters

2.3 TNBC、非TNBC组间的DCE-MRI、DKI各参数比较

       TNBC与非TNBC组间Wash-out、Slopemax、TTP、SER、MK值差异均有统计学意义,IER、Epeak、流入速率(Wash-in)、MD值差异无统计学意义。与非TNBC组相比,TNBC组的Wash-out、Slopemax、SER值较高,TTP、MK值较低(P<0.05)(表3)。

表3  DCE-MRI半定量参数和DKI参数比较
Tab. 3  Comparison of DCE-MRI semi-quantitative parameters and DKI parameters

2.4 DCE-MRI半定量参数及DKI参数对TNBC的诊断效能

       将上述具有统计学差异的参数绘制ROC曲线并计算AUC,结果显示Wash-out、Slopemax、TTP、SER、MK的AUC分别为0.768、0.815、0.785、0.781、0.769(表4图3)。

图3  流出速率(Wash-out)、最大强化斜率(Slopemax)、达峰时间(TTP)、信号增强比(SER)及其联合对三阴性乳腺癌(TNBC)的诊断价值。
图4  动态对比增强MRI(DCE-MEI)半定量、扩散峰度成像(DKI)以及联合对三阴性乳腺癌(TNBC)的诊断价值。ROC:受试者工作特征。
Fig. 3  Diagnostic value of Wash-out, Slopemax, time to peak (TTP), signal enhancement ratio (SER) parameters and their combination for triple-negative breast cancer (TNBC).
Fig. 4  Diagnostic value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) semi-quantitative parameter, diffusion kurtosis imaging (DKI) parameter and combined model for triple-negative breast cance (TNBC). ROC: receiver operating characteristic.
表4  Wash-out、Slopemax、TTP、SER、MK对TNBC的诊断价值
Tab. 4  Diagnostic value of Wash-out, Slopemax, TTP, SER parameters for TNBC

2.5 DCE-MRI各参数联合及联合模型(DCE-MRI+DKI)对TNBC的诊断效能

       将DCE-MRI各半定量参数联合后诊断TNBC的敏感度、特异度、AUC分别为78.8%、82.1%、0.878,联合模型(DCE-MRI+DKI)诊断TNBC的敏感度、特异度、AUC分别为85.9%、92.3%、0.928。DeLong检验结果显示,各单独参数对TNBC的诊断效能差异无统计学意义,联合模型(DCE-MRI+DKI)的诊断效能较各单独参数均有提高(P<0.05)(表56,图4)。

表5  DCE-MRI与联合模型(DCE-MRI+DKI)对TNBC的诊断价值
Tab. 5  Diagnostic value of DCE-MRI and combined model for TNBC
表6  DeLong检验结果
Tab. 6  Results of the DeLong test

3 讨论

       本研究通过比较联合模型(DCE-MRI+DKI)对TNBC的诊断效能,探讨其在临床的应用价值,结果显示Wash-out、Slopemax、TTP、SER和MK为预测TNBC的重要参数。同时,将上述参数联合后的敏感度、特异度、AUC较各单一参数均有提高。可见联合使用DCE-MRI与DKI能够更为全面、准确地鉴别诊断TNBC,有利于临床医生个性化治疗方案的制订及改善患者预后。

3.1 DCE-MRI对预测TNBC的诊断价值

       TIC可用于乳腺癌的诊断和疗效评估,其分为三型:Ⅰ型曲线(流入型)常提示良性病变;Ⅱ型曲线(平台型)在良、恶性病变中均可见;Ⅲ型曲线(流出型)常提示为恶性病变[15, 16]。本研究结果显示,TNBC与非TNBC的TIC类型均以Ⅲ型为主,差异不具有统计学意义,这与刘佳妮等[17]研究结果一致,目前国内外对于TNBC的TIC类型尚未达成一致,但多数研究者认为TNBC的TIC类型与非TNBC差异不具有统计学意义。唐梦晓等[18]通过对比分析27例TNBC与65例非TNBC发现,两者的TIC均以Ⅱ型为主,差异不具有统计学意义,与胡静等[19]研究结果相符。本研究分析结果的差异性可能是由于纳入的TNBC病例数较少,导致样本的选取有一定偏差。根据TIC曲线可计算出DCE-MRI半定量参数,包括Wash-out、Slopemax、TTP、SER、IER、Epeak、Wash-in。相比MRI形态学特征,DCE-MRI半定量参数能够更好地反映病变内微血管密度,并与预后因素及免疫组化亚型密切相关,在乳腺疾病的诊疗中发挥着越来越重要的作用[20]。TTP被认为与血管生成有关,较低的TTP值即达到峰值的相对速度增加,本研究结果显示TNBC的TTP较非TNBC低(P<0.01),与YANG等[21]研究结果一致。这可能与TNBC具有更高水平的血管内皮生长因子,使肿瘤内微血管密度更高、血管管径更粗,从而对比剂交换增多、速度加快有关[22]。同时本研究还发现,与非TNBC相比,TNBC的SER值较高(P<0.01)。尽管GIGLI等[23]表示TNBC较大的肿瘤大小可能是其SER值较高的原因,但在本研究中并未发现TNBC病变大小与SER值之间具有相关性(P=0.266)。本研究还发现TNBC的Slopemax值略低于非TNBC(P<0.01),Slopemax代表增强后信号强度达到峰值的速度斜率,更高的Slopemax值说明了TNBC具有更快的达峰时间和更高的峰值信号强度。另外,综合相关文献发现,TNBC具有较高的血管通透性及较高的血流量,导致其代谢灌注比高于非TNBC,对比剂在病灶血管内停留时间短,表现为“快进快出”现象[24],这可能是TNBC的Wash-out值高于非TNBC的原因所在。

3.2 DKI对预测TNBC的诊断价值

       根据DKI模型计算得到MK和MD。MK描述了水分子的非高斯分布偏差,并对组织的异质性更为敏感,MD是经过非高斯分布偏差校正后的扩散系数[25, 26, 27]。本研究显示TNBC的MK值较非TNBC低(P<0.01),MD值差异不具有统计学意义,与KANG等[28]研究结果相符。参考国内外文献可知,TNBC的高血管密度克服了与高细胞密度相关的非高斯分布,因此TNBC组具有更低的MK值[29]。而李婷等[30]研究通过使用7个b值进行DKI拟合,结果显示MK值在TNBC与非TNBC组间的差异不具有统计学意义。本研究认为目前有关DKI研究结果的不一致性,可能是受不同b值选择的影响导致。

3.3 DCE-MRI联合DKI对预测TNBC的诊断价值

       本研究将DCE-MRI半定量参数与MK值进行多参数的联合诊断,AUC达0.928,敏感度、特异度分别达85.9%、92.3%,较单一参数提高了对TNBC的诊断效能(P<0.05),可降低因单一检查方法导致的漏诊和误诊的发生率。且DCE-MRI联合DKI的AUC优于DCE-MRI联合DWI的AUC,具备更加优秀的诊断效能,有着更高的临床推广价值[31]

3.4 本研究的局限性

       本研究也具有局限性:第一,纳入的患者数量相对较少,未来将在更大样本量的基础上进行深入研究。第二,只进行了半定量分析,更倾向于乳腺实质的高空间分辨率,而不是高时间分辨率。第三,ROI的选择具有一定主观性,本研究简单地计算了ROI中各参数的平均值,这可能不足以充分反映肿瘤的异质性。而另一种处理方法是提取病变的全体积,并分析每个参数图的直方图和纹理特征,这将是我们今后研究的重点。

4 结论

       综上所述,DCE-MRI联合DKI可以反映肿瘤的异质性和微灌注状态,为预测病理分型提供可靠的证据。Wash-out、Slopemax、TTP、SER和MK均可有效鉴别TNBC,联合DCE-MRI半定量参数及DKI参数对预测TNBC具有更高的诊断价值。

[1]
JOHANSSON A L V, TREWIN C B, FREDRIKSSON I, et al. In modern times, how important are breast cancer stage, grade and receptor subtype for survival: a population-based cohort study[J/OL]. Breast Cancer Res, 2021, 23(1): 17 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852363. DOI: 10.1186/s13058-021-01393-z">10.1186/s13058-021-01393-z">10.1186/s13058-021-01393-z.
[2]
YANG S X, POLLEY E C. Systemic treatment and radiotherapy, breast cancer subtypes, and survival after long-term clinical follow-up[J]. Breast Cancer Res Treat, 2019, 175(2): 287-295. DOI: 10.1007/s10549-019-05142-x">10.1007/s10549-019-05142-x">10.1007/s10549-019-05142-x.
[3]
CHEN H, MIN Y, XIANG K, et al. DCE-MRI performance in triple negative breast cancers: comparison with non-triple negative breast cancers[J]. Curr Med Imaging, 2022, 18(9): 970-976. DOI: 10.2174/1573405618666220225090944">10.2174/1573405618666220225090944">10.2174/1573405618666220225090944.
[4]
DASS S A, TAN K L, RAJAN R S, et al. Triple negative breast cancer: a review of present and future diagnostic modalities[J/OL]. Medicina (Kaunas), 2021, 57(1): 62 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826673. DOI: 10.3390/medicina57010062">10.3390/medicina57010062">10.3390/medicina57010062.
[5]
YIN L, DUAN J J, BIAN X W, et al. Triple-negative breast cancer molecular subtyping and treatment progress[J/OL]. Breast Cancer Res, 2020, 22(1): 61 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285581. DOI: 10.1186/s13058-020-01296-5">10.1186/s13058-020-01296-5">10.1186/s13058-020-01296-5.
[6]
YANG Z L, LI Y, ZHAN C A, et al. Evaluation of suspicious breast lesions with diffusion kurtosis MR imaging and connection with prognostic factors[J/OL]. Eur J Radiol, 2021, 145: 110014 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/34749223. DOI: 10.1016/j.ejrad.2021.110014">10.1016/j.ejrad.2021.110014">10.1016/j.ejrad.2021.110014.
[7]
TAŞKIN F, POLAT Y, ERDOĞDU İ H, et al. Problem-solving breast MRI: useful or a source of new problems?[J]. Diagn Interv Radiol, 2018, 24(5): 255-261. DOI: 10.5152/dir.2018.17504">10.5152/dir.2018.17504">10.5152/dir.2018.17504.
[8]
HUANG Y, LIN Y, HU W, et al. Diffusion kurtosis at 3.0T as an in vivo imaging marker for breast cancer characterization: correlation with prognostic factors[J]. J Magn Reson Imaging, 2019, 49(3): 845-856. DOI: 10.1002/jmri.26249">10.1002/jmri.26249">10.1002/jmri.26249.
[9]
BORTHAKUR A, WEINSTEIN S P, SCHNALL M D, et al. Comparison of study activity times for "full" versus "fast MRI" for breast cancer screening[J]. J Am Coll Radiol, 2019, 16(8): 1046-1051. DOI: 10.1016/j.jacr.2019.01.004">10.1016/j.jacr.2019.01.004">10.1016/j.jacr.2019.01.004.
[10]
XIE T W, ZHAO Q F, FU C X, et al. Improved value of whole-lesion histogram analysis on DCE parametric maps for diagnosing small breast cancer (≤ 1 cm)[J]. Eur Radiol, 2022, 32(3): 1634-1643. DOI: 10.1007/s00330-021-08244-7">10.1007/s00330-021-08244-7">10.1007/s00330-021-08244-7.
[11]
王明甫, 徐玮, 秦涛. MRI定量及半定量参数对乳腺良恶性肿瘤的鉴别及与乳腺癌生物学指标的相关性分析[J]. 磁共振成像, 2020, 11(12): 1174-1177. DOI: 10.12015/issn.1674-8034.2020.12.021">10.12015/issn.1674-8034.2020.12.021">10.12015/issn.1674-8034.2020.12.021.
WANG M F, XU W, QIN T. The differential diagnosis of benign and malignant breast tumors with MRI quantitative and semi-quantitative parameters and the correlation analysis with biological indicators of breast cancer[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1174-1177. DOI: 10.12015/issn.1674-8034.2020.12.021">10.12015/issn.1674-8034.2020.12.021">10.12015/issn.1674-8034.2020.12.021.
[12]
WANG W W, ZHANG X D, ZHU L M, et al. Prediction of prognostic factors and genotypes in patients with breast cancer using multiple mathematical models of MR diffusion imaging[J/OL]. Front Oncol, 2022, 12: 825264 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841854. DOI: 10.3389/fonc.2022.825264">10.3389/fonc.2022.825264">10.3389/fonc.2022.825264.
[13]
IIMA M, KATAOKA M, KANAO S, et al. Intravoxel incoherent motion and quantitative non-Gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions[J]. Radiology, 2018, 287(2): 432-441. DOI: 10.1148/radiol.2017162853">10.1148/radiol.2017162853">10.1148/radiol.2017162853.
[14]
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013
Breast Cancer Committee of Chinese Anti-Cancer Association. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013
[15]
ZHAO R, MA W J, TANG J, et al. Heterogeneity of enhancement kinetics in dynamic contrast-enhanced MRI and implication of distant metastasis in invasive breast cancer[J/OL]. Clin Radiol, 2020, 75(12): 961.e25-961.e32 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/32859381. DOI: 10.1016/j.crad.2020.07.030">10.1016/j.crad.2020.07.030">10.1016/j.crad.2020.07.030.
[16]
YANG X P, DONG M S, LI S, et al. Diffusion-weighted imaging or dynamic contrast-enhanced curve: a retrospective analysis of contrast-enhanced magnetic resonance imaging-based differential diagnoses of benign and malignant breast lesions[J]. Eur Radiol, 2020, 30(9): 4795-4805. DOI: 10.1007/s00330-020-06883-w">10.1007/s00330-020-06883-w">10.1007/s00330-020-06883-w.
[17]
刘佳妮, 罗娅红. 三阴性乳腺癌的影像学特征分析[J]. 肿瘤影像学, 2018, 27(2): 75-81. DOI: 10.3969/j.issn.1008-617X.2018.02.003">10.3969/j.issn.1008-617X.2018.02.003">10.3969/j.issn.1008-617X.2018.02.003.
LIU J N, LUO Y H. Imaging characteristic analysis of triple-negative breast cancer[J]. Oncoradiology, 2018, 27(2): 75-81. DOI: 10.3969/j.issn.1008-617X.2018.02.003">10.3969/j.issn.1008-617X.2018.02.003">10.3969/j.issn.1008-617X.2018.02.003.
[18]
唐梦晓, 马新星, 李勇刚, 等. 磁共振表观扩散系数及动态增强时间-信号强度曲线对三阴性乳腺癌的鉴别诊断价值[J]. 实用放射学杂志, 2020, 36(10): 1596-1600. DOI: 10.3969/j.issn.1002-1671.2020.10.016">10.3969/j.issn.1002-1671.2020.10.016">10.3969/j.issn.1002-1671.2020.10.016.
TANG M X, MA X X, LI Y G, et al. The differential diagnosis value of MR apparent diffusion coefficient and dynamic contrast enhanced time-intensity curve for triple negative breast cancer[J]. J Pract Radiol, 2020, 36(10): 1596-1600. DOI: 10.3969/j.issn.1002-1671.2020.10.016">10.3969/j.issn.1002-1671.2020.10.016">10.3969/j.issn.1002-1671.2020.10.016.
[19]
胡静, 汪登斌, 柴维敏, 等. 三阴性乳腺癌的MRI影像学特点分析[J]. 放射学实践, 2010, 25(9)1011-1015. DOI: 10.3969/j.issn.1000-0313.2010.09.018">10.3969/j.issn.1000-0313.2010.09.018">10.3969/j.issn.1000-0313.2010.09.018
HU J, WANG D B, CHAI W M, et al. MR imaging characteristics of triple-negative breast cancer[J]. Radiol Pract, 2010, 25(9)1011-1015. DOI: 10.3969/j.issn.1000-0313.2010.09.018">10.3969/j.issn.1000-0313.2010.09.018">10.3969/j.issn.1000-0313.2010.09.018
[20]
SONG L R, LI C L, YIN J D. Texture analysis using semiquantitative kinetic parameter maps from DCE-MRI: preoperative prediction of HER2 status in breast cancer[J/OL]. Front Oncol, 2021, 11: 675160 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217832. DOI: 10.3389/fonc.2021.675160">10.3389/fonc.2021.675160">10.3389/fonc.2021.675160.
[21]
YANG Z Q, CHEN X F, ZHANG T H, et al. Quantitative multiparametric MRI as an imaging biomarker for the prediction of breast cancer receptor status and molecular subtypes[J/OL]. Front Oncol, 2021, 11: 628824 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/34604024. DOI: 10.3389/fonc.2021.628824">10.3389/fonc.2021.628824">10.3389/fonc.2021.628824.
[22]
MATSUDA M, TSUDA T, EBIHARA R, et al. Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: a comparison with non-triple-negative breast carcinoma[J/OL]. Eur J Radiol, 2021, 142: 109838 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/34217136. DOI: 10.1016/j.ejrad.2021.109838">10.1016/j.ejrad.2021.109838">10.1016/j.ejrad.2021.109838.
[23]
GIGLI S, AMABILE M I, DAVID E, et al. Morphological and semiquantitative kinetic analysis on dynamic contrast enhanced MRI in triple negative breast cancer patients[J]. Acad Radiol, 2019, 26(5): 620-625. DOI: 10.1016/j.acra.2018.06.014">10.1016/j.acra.2018.06.014">10.1016/j.acra.2018.06.014.
[24]
SUN Z Q, HU S D, SHAO L, et al. A pilot study of low-dose CT perfusion imaging (LDCTPI) technology in patients with triple-negative breast cancer[J]. J Xray Sci Technol, 2019, 27(3): 443-451. DOI: 10.3233/XST-180465">10.3233/XST-180465">10.3233/XST-180465.
[25]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508">10.1002/mrm.20508">10.1002/mrm.20508.
[26]
ZHANG D D, GENG X C, SUO S T, et al. The predictive value of DKI in breast cancer: does tumour subtype affect pathological response evaluations?[J]. Magn Reson Imaging, 2022, 85: 28-34. DOI: 10.1016/j.mri.2021.10.013">10.1016/j.mri.2021.10.013">10.1016/j.mri.2021.10.013.
[27]
ZHOU W P, ZAN X Y, HU X Y, et al. Characterization of breast lesions using diffusion kurtosis model-based imaging: an initial experience[J]. J Xray Sci Technol, 2020, 28(1): 157-169. DOI: 10.3233/XST-190590">10.3233/XST-190590">10.3233/XST-190590.
[28]
KANG H S, KIM J Y, KIM J J, et al. Diffusion kurtosis MR imaging of invasive breast cancer: correlations with prognostic factors and molecular subtypes[J]. J Magn Reson Imaging, 2022, 56(1): 110-120. DOI: 10.1002/jmri.27999">10.1002/jmri.27999">10.1002/jmri.27999.
[29]
WANG W W, LV S Q, XUN J, et al. Comparison of diffusion kurtosis imaging and dynamic contrast enhanced MRI in prediction of prognostic factors and molecular subtypes in patients with breast cancer[J/OL]. Eur J Radiol, 2022, 154: 110392 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/35679701. DOI: 10.1016/j.ejrad.2022.110392">10.1016/j.ejrad.2022.110392">10.1016/j.ejrad.2022.110392.
[30]
李婷, 鲁伦博, 卓瑶瑶, 等. 扩散峰度成像联合动态对比增强MRI诊断乳腺良恶性病变的价值[J]. 中华放射学杂志, 2018, 52(6): 436-441. DOI: 10.3760/cma.j.issn.1005-1201.2018.06.006">10.3760/cma.j.issn.1005-1201.2018.06.006">10.3760/cma.j.issn.1005-1201.2018.06.006.
LI T, LU L B, ZHUO Y Y, et al. Diagnostic value of diffusion kurtosis imaging combined with quantitative dynamic contrast-enhanced MRI in breast lesions[J]. Chin J Radiol, 2018, 52(6): 436-441. DOI: 10.3760/cma.j.issn.1005-1201.2018.06.006">10.3760/cma.j.issn.1005-1201.2018.06.006">10.3760/cma.j.issn.1005-1201.2018.06.006.
[31]
陈小凤, 范伟雄, 程凤燕, 等. 动态对比增强磁共振成像联合表观扩散系数值对三阴型乳腺癌的诊断价值[J]. 实用放射学杂志, 2019, 35(8): 1258-1261. DOI: 10.3969/j.issn.1002-1671.2019.08.014">10.3969/j.issn.1002-1671.2019.08.014">10.3969/j.issn.1002-1671.2019.08.014.
CHEN X F, FAN W X, CHENG F Y, et al. Diagnostic value of DCE-MRI combined with ADC value for triple-negative breast cancer[J]. J Pract Radiol, 2019, 35(8): 1258-1261. DOI: 10.3969/j.issn.1002-1671.2019.08.014">10.3969/j.issn.1002-1671.2019.08.014">10.3969/j.issn.1002-1671.2019.08.014.

上一篇 多参数MRI在原发性乳腺癌不同分子亚型中的诊断价值研究
下一篇 心脏磁共振在合并室性心律失常的扩张型心肌病患者中诊断及预后价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2