分享:
分享到微信朋友圈
X
临床研究
基于T1 mapping技术的细胞外体积分数评估乙肝肝硬化患者肝功能分级的研究
许慧 李亚光 母建奎 闫子佳 韩晓楠 雷立存

Cite this article as: XU H, LI Y G, MU J K, et al. Research on the evaluation of the liver function grading for the patients with hepatitis B cirrhosis using T1 mapping based extracellular volume fraction[J]. Chin J Magn Reson Imaging, 2023, 14(5): 132-138.本文引用格式:许慧, 李亚光, 母建奎, 等. 基于T1 mapping技术的细胞外体积分数评估乙肝肝硬化患者肝功能分级的研究[J]. 磁共振成像, 2023, 14(5): 132-138. DOI:10.12015/issn.1674-8034.2023.05.023.


[摘要] 目的 评估细胞外体积分数(extracellular volume fraction, ECV)评价慢性乙型肝炎性肝硬化患者肝功能分级[肝功能(Child-Pugh)分级、白蛋白-胆红素(albumin-bilirubin, ALBI)分级]的研究价值,并探讨不同肝功能分级组间ECV值的差异性。材料与方法 前瞻性招募2022年1月至10月在河北医科大学第一医院接受肝脏钆贝葡胺(gadobenate dimeglumine, Gd-BOPTA)增强MRI检查的慢性乙型肝炎性肝硬化患者50例和肝功能正常(normal liver function, NLF)者17例,均具有MRI检查前/后两周内的实验室检查结果。所有受试者均行平扫期和平衡期的T1 mapping成像,测量出受试者肝实质、腹主动脉平扫期和平衡期的T1值,再结合红细胞压积水平,计算ECV值。根据2种肝功能分级法将肝硬化组分为Child-Pugh分级组(CP组)和ALBI分级组。使用Spearman相关系数分析ECV值与ALBI分级、Child-Pugh分级等肝功能评分之间的相关性;使用单因素方差分析比较组间ECV值的差异性;使用受试者工作特征(receiver operating characteristic, ROC)曲线评估ECV值鉴别不同肝功能分组的诊断效能,并计算其截断值、敏感度、特异度以及ROC曲线下面积(area under the curve, AUC)。结果 ECV值与Child-Pugh分级(r=0.694,P<0.01)和ALBI分级(r=0.689,P<0.01)之间均存在显著正相关;ECV值随着肝功能分级(Child-Pugh分级、ALBI分级)的增加而增加,Child-Pugh分级、ALBI分级组间的ECV值存在显著差异(P<0.01);ECV鉴别NLF vs. CP-A、CP-A vs. CP-B、CP-B vs. CP-C的AUC为0.82、0.78、0.84;ECV鉴别NLF vs. ALBI 1、ALBI 1 vs. ALBI 2、ALBI 2 vs. ALBI 3的AUC为0.79、0.70、0.91。结论 基于T1 mapping技术的ECV值是评估慢性乙型肝炎性肝硬化患者肝功能的可靠指标;ALBI分级在评估慢性乙型肝炎性肝硬化患者肝功能方面的诊断效能与Child-Pugh分级相当,但其更加简单、客观,可作为Child-Pugh分级的补充。
[Abstract] Objective To evaluate the research value of the extracellular volume fraction (ECV) in evaluating the liver function grading [Child-Pugh grade and albumin-bilirubin (ALBI) grade] for the patients with chronic hepatitis B cirrhosis, and to explore the ECV value difference among various liver function grading groups.Materials and Methods The patients that all received the gadobenate dimeglumine (Gd-BOPTA) enhanced MRI examination in the First Hospital of Hebei Medical University from January to October 2022 were selected, which all included the laboratory test results within two weeks before or after the MRI examination. A total of 67 cases of patients were included, with 17 cases in normal liver function (NLF) group and 50 cases in the cirrhosis group. The T1 mapping including the plain scan and balance phases was performed on all of these patients, and the T1 values of the patients' liver parenchyma and abdominal aorta in the plain scan and balance phases were measured, based on which, in combination with the hematocrit levels, the ECV values were calculated. The patients of the cirrhosis group were divided into a Child-Pugh grade group and an ALBI grade group as per the two liver function grading methods. The Spearman correlation coefficient was used to analyze the correlation between the ECV values and the scores as a result of the liver function scoring models such as ALBI grade and Child-Pugh grade. The one-way analysis of variance was used to compare the differences of the ECV values among the groups. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the ECV values in identifying the patients of the different liver function groups, and the cut-off values, sensitivity, specificity and area under the curve (AUC) were calculated.Results There was a significant positive correlation between the ECV values and the grades of the Child-Pugh grade (r=0.694, P<0.01) and those of the ALBI grade (r=0.689, P<0.01), and the ECV values increased with the increase of the liver function grading (Child-Pugh grade, and ALBI grade). There was a significant difference in the ECV values between the patients of the Child-Pugh grade group and those of the ALBI grade group (P<0.01). In the case of the Child-Pugh grade group, the AUCs of the ECV identification of NLF vs. CP-A, CP-A vs. CP-B and CP-B vs. CP-C were 0.82, 0.78 and 0.84, respectively. In the case of the ALBI grade group, the AUCs of the ECV identification of NLF vs. ALBI 1, ALBI 1 vs. ALBI 2 and ALBI 2 vs. ALBI 3 were 0.79, 0.70 and 0.91, respectively.Conclusions The ECV value based on the T1 mapping is a reliable index for evaluating the liver function of the patients with chronic hepatitis B cirrhosis. The diagnostic efficacy of the ALBI grading in evaluating the liver function of the patients with chronic hepatitis B cirrhosis is comparable to that of the Child-Pugh grading, but it is simpler and more objective, and therefore can be used as a complement to the Child-Pugh grading.
[关键词] 肝硬化;肝功能;白蛋白-胆红素分级;Child-Pugh分级;T1 mapping;细胞外体积分数;磁共振成像
[Keywords] liver cirrhosis;liver function;albumin-bilirubin grade;Child-Pugh grade;T1 mapping;extracellular volume fraction;magnetic resonance imaging

许慧 1   李亚光 1   母建奎 1   闫子佳 1   韩晓楠 2   雷立存 1*  

1 河北医科大学第一医院放射与核医学科,石家庄 050031

2 河北医科大学第三医院放射科,石家庄 050051

通信作者:雷立存,E-mail:312660114@qq.com

作者贡献声明:雷立存进行文章的构思与设计,负责文章的质量控制及审校,并对文章整体负责、监督管理;许慧起草和撰写稿件,获取、分析或解释本研究的数据;李亚光、母建奎、闫子佳、韩晓楠进行研究的实施与可行性分析,对稿件重要的内容进行了修改;李亚光获得了河北省医学科学研究课题计划基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河北省医学科学研究课题计划 20231013
收稿日期:2022-12-30
接受日期:2023-05-06
中图分类号:R445.2  R575.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.05.023
本文引用格式:许慧, 李亚光, 母建奎, 等. 基于T1 mapping技术的细胞外体积分数评估乙肝肝硬化患者肝功能分级的研究[J]. 磁共振成像, 2023, 14(5): 132-138. DOI:10.12015/issn.1674-8034.2023.05.023.

0 前言

       慢性肝病因发病率的增加和死亡率的升高,已经成为一个全球性的公共卫生问题[1],慢性肝病的病因可细分为以下四类:饮酒、乙型肝炎感染、丙型肝炎感染和其他病因[2];其中慢性乙型肝炎(chronic hepatitis B, CHB)感染是一个重要因素[3]。根据《2020中国卫生健康统计年鉴》[4]的数据显示,我国目前约有七千万例慢性乙型肝炎病毒(hepatitis B virus, HBV)感染者,其中包括至少约三千万例乙肝患者[5]。肝脏活检一直被认为是评估肝脏疾病性质及严重程度的金标准,但因其有创、存在并发症且风险大而不能被广泛应用[6]。血液学检查是临床实践中应用最广泛的无创性评估肝功能的方法,如肝功能(Child-Pugh)分级、终末期肝病模型(model for end-stage liver disease, MELD)、白蛋白-胆红素(albumin-bilirubin, ALBI)分级等。但实验室生化指标的数值代表的是患者整个肝组织的肝功能水平,肝硬化是一种弥漫性的疾病,病变多呈不均质性改变,因此MRI定量评估患者的肝功能逐渐成为临床研究的热点。MRI T1 mapping技术已经在心肌水肿、纤维化、浸润性疾病[7]以及肾脏纤维化[8]方面显示出了良好的诊断效能,但基于T1 mapping技术的衍生参数细胞外体积分数(extracellular volume fraction, ECV)在评价肝功能方面的研究相对较少,相比于T1 mapping技术的其他参数,ECV值的优势在于它对于磁场强度、序列选择和成像参数的独立性,而使得不同扫描硬件之间测量出的ECV值具有一致性[9]。本研究探究基于T1 mapping技术的ECV值定量评估CHB性肝硬化患者肝功能的诊断价值,并且进一步探讨不同肝功能分级(Child-Pugh分级、ALBI分级)组间ECV值的差异性。

1 材料与方法

       本研究为前瞻性研究,遵守《赫尔辛基宣言》,并经河北医科大学第一医院伦理委员会批准(批准文号:20221226),所有受试者均知情并签署了知情同意书。

1.1 入组标准

       2022年1月至10月在河北医科大学第一医院招募接受肝脏钆贝葡胺(gadobenate dimeglumine, Gd-BOPTA)增强MRI检查的CHB性肝硬化患者(肝硬化组)和肝功能正常(normal liver function, NLF)的对照者(NLF组)。肝硬化组纳入标准:(1)CHB患者;(2)符合《肝硬化诊治指南(2019版)》[10]中肝硬化诊断标准的患者。NLF组纳入标准:(1)肝功能检查指标正常;(2)无病毒性肝炎或携带。所有入组受试者均具有肝脏增强MRI检查前/后两周内的实验室检查结果。

1.2 排除标准

       肝硬化组排除标准:(1)在MRI检查前接受过肝切除术、胆道切除术的患者;(2)肝脏局灶性病变范围大于一个肝段的患者;(3)重度脂肪肝、铁沉积等弥漫性肝病的患者。NLF组排除标准:(1)图像质量较差,不能够配合检查的;(2)肝脏影像学检查存在异常征象的。

1.3 分组标准

       对入组受试者进行Child-Pugh分级、ALBI分级,并计算MELD评分、天冬氨酸氨基转移酶(aspartate aminotransferase, AST)和血小板比率指数(aspartate aminotransferase to platelet ratio index, APRI)以及纤维化-4(Fibrosis 4, FIB-4)指数。

       (1)Child-Pugh分级:根据肝性脑病、腹水、胆红素、白蛋白(albumin, ALB)以及凝血酶原时间五项指标对入组患者进行评分,5~6分为A级,7~9分为B级,10~15分为C级。

       (2)ALBI分级:根据文献[11]公式ALBI评分=0.66×Lg(TBiL-0.085×ALB),其中TBiL为血清总胆红素(total bilirubin),单位为μmol/L;ALB单位为g/L。ALBI≤-2.60为1级,-2.60<ALBI≤-1.39为2级,ALBI>-1.39为3级。

       (3)MELD评分:MELD评分=3.8×ln(TBiL)+11.2×ln(INR)+9.6×ln(Scr)+6.4×病因(胆汁性或酒精性0、其他1),TBiL为血清总胆红素,单位为mg/dl;INR为国际标准化比值(international normalized ratio);Scr为血清肌酐,单位为mg/dl。

       (4)APRI:APRI=(AST/ULN)×100/PLT,其中AST为天冬氨酸氨基转移酶,单位U/L,ULN为上限正常值;PLT为血小板计数(platelet count),单位为109/L。

       (5)FIB-4指数:FIB-4指数=(年龄×AST)/(PLT×ALT),其中年龄单位为岁;AST为天冬氨酸氨基转移酶,单位为U/L;PLT为血小板计数,单位为109/L;ALT为丙氨酸氨基转移酶(alanine aminotransferase),单位为U/L。

1.4 MRI检查

       MRI检查采用Siemens MRI扫描仪(其中1.5 T Amira完成扫描13例,3.0 T Prisma完成扫描54例),所有受试者均行肝脏Gd-BOPTA增强扫描。采用经B1场校正的可变多翻转角(B1-corrected variable flip angles, B1-corrected VFAs)序列于增强前及平衡期获得T1 mapping图像。1.5 T扫描参数如下:TR 4.7 ms,TE 2.3 ms,翻转角3°、15°,层厚3 mm,FOV 360 mm×384 mm。3.0 T扫描参数如下:TR 5.0 ms,TE 2.2 ms,翻转角3°、15°,层厚3 mm,FOV 360 mm×384 mm。Gd-BOPTA采用高压注射器经肘前静脉以剂量0.1 mmol/kg,流率2 mL/s注射。分别在20 s、30 s、60 s、6 min时获得肝动脉早期、动脉晚期、门静脉期、平衡期的图像。

1.5 图像处理

       由两位分别具有11年和13年腹部诊断经验的影像科副主任医师在对受试者的实验室检查结果、肝功能分级以及临床信息不知情的情况下评价图像,使用后处理软件在T1 mapping图像上进行感兴趣区(region of interest, ROI)的勾画。勾画时应注意避开主要的分支血管及胆管、局灶性病变以及磁场不均匀的区域,在肝脏的左内、外叶和右前、后叶绘制四个大小、形状相同的圆形ROI,面积为(150±10)mm2,取四个ROI的平均值作为肝脏的T1值(图1);在同层面的腹主动脉绘制一个圆形ROI,面积为(100±10)mm2;两位医师测量的平均T1值作为最终值。ECV值计算的步骤如下:(1)收集受试者MRI检查前后两周内的红细胞压积水平(hematokrit, HCT);(2)测量肝实质、腹主动脉平扫期和平衡期的T1弛豫时间;(3)代入ECV值的计算公式[11]:ECV=(1-HCT)×(1/T1liver-post-1/T1liver-pre)/(1/T1blood-post-1/T1blood-pre)。

图1  乙肝肝硬化患者的T1 mapping图像。1A、1B分别为肝功能(Child-Pugh)A级[白蛋白-胆红素(ALBI)评分:-1.93]患者和Child-Pugh B级(ALBI评分:-1.75)患者增强前的T1 mapping图像;1C、1D分别为其钆贝葡胺(Gd-BOPTA)增强后平衡期的T1 mapping图像。
Fig. 1  T1 mapping of a patient with hepatitis B cirrhosis. 1A and 1B are T1 mapping images before enhancement of hepatitis B Child-Pugh grade A [albumin-bilirubin (ALBI) score: -1.93] and hepatitis B cirrhosis (ALBI score: -1.75), respectively. 1C and 1D are T1 mapping images of the balance phase after enhanced of gadobenate dimeglumine (Gd-BOPTA).

1.6 统计学分析

       采用SPSS 26.0以及Prism 8.0软件进行统计学分析;服从正态分布的计量资料以(x¯±s)表示,不服从正态分布的计量资料用中位数(上下四分位数)表示。计数资料用例表示。使用Spearman相关系数分析ECV值与肝功能评分之间的相关性。各组间差异比较采用单因素方差分析,使用组内相关系数(intra-class correlation coefficient, ICC)来评价两位影像科医师测量组织T1弛豫时间的一致性,ICC值>0.75认为一致性良好。使用Bonferroni检验进行组间两两比较;使用受试者工作特征(receiver operating characteristic curve, ROC)曲线来评价ECV值鉴别不同肝功能分级组间的诊断效能,并计算出其截断值、敏感度、特异度以及曲线下面积(area under the curve, AUC)。P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       本研究共入组67名受试者。年龄(52±16)岁,男46例,女21例,其中NLF组17例,肝硬化组50例(按照Child-Pugh分级分为CP-A组24例、CP-B组17例、CP-C组9例),在NLF组与Child-Pugh分级组中,受试者的年龄、AST/ALT比值差异无统计学意义(P>0.05),但性别、凝血酶原时间(prothrombin time, PT)、INR、AST、ALT、TBiL、ALB、HCT、PLT、MELD评分、APRI、FIB-4指数组间差异均有统计学意义(P<0.05)。入组病例的一般资料如表1所示。

表1  入组受试者的一般资料
Tab. 1  General information of the enrolled patients

2.2 ECV值与临床肝功能评分之间的相关性分析

       ECV值与临床肝功能评分均存在正相关,与Child-Pugh分级的相关性最强(r=0.694,P<0.01),其次是ALBI分级(r=0.689,P<0.01),不同肝功能评分之间也存在相关性,相关矩阵见图2

图2  ECV值与临床肝功能评分之间的相关性热图。ECV:细胞外体积分数;Child-Pugh:肝功能分级;ALBI:白蛋白-胆红素分级;MELD:终末期肝病模型;APRI:天冬氨酸氨基转移酶和血小板比率指数;FIB-4:纤维化-4指数。
Fig. 2  Heat map of Correlation between ECV value and clinical liver function score. ECV: extracellular volume fraction; ALBI: albumin-bilirubin; MELD: model for end-stage liver disease; APRI: aspartate aminotransferase to platelet ratio index; FIB-4: fibrosis 4.

2.3 Child-Pugh分级、ALBI分级各组间ECV值的差异性分析

       肝硬化组患者ECV值明显高于NLF组,并且随肝功能分级(Child-Pugh分级、ALBI分级)的增加而增加;不同Child-Pugh分级组间的ECV值差异有统计学意义:NLF vs. Child-Pugh A vs. Child-Pugh B vs. Child-Pugh C(24.73%±3.75% vs. 31.96%±6.23% vs. 38.47%±5.46% vs. 46.43%±5.81%,P均<0.01);不同ALBI分级组间的ECV值差异有统计学意义:NLF vs. ALBI 1级(24.73%±3.75% vs. 31.75%±6.80%,P<0.01)、ALBI 1级 vs. ALBI 2级(31.75%±6.80% vs. 36.34%±6.44%,P<0.05)、ALBI 2级 vs. ALBI 3级(36.34±6.44% vs. 47.64±5.41%,P<0.01)(图3)。

图3  NLF组和CP分级(3A)、ALBI分级(3B)的ECV值分布箱式图。*、**、***分别表示两两比较显著性水平的P值≤0.05、≤0.01、≤0.001。NLF:肝功能正常;CP:肝功能(Child-Pugh)分级,根据肝性脑病、腹水、胆红素、白蛋白以及凝血酶原时间五项指标对入组患者进行评分,A级为5~6分,B级为7~9分,C级为10~15分;ALBI:白蛋白-胆红素分级,ALBI≤-2.60为1级,-2.60<ALBI≤-1.39为2级,ALBI>-1.39为3级;ECV:细胞外体积分数。
Fig. 3  Box plot of ECV value distribution for NLF group and CP grade (3A) and ALBI grade (3B). *, **, *** indicate P values ≤0.05, ≤0.01 and ≤0.001 for pairwise comparison significance levels, respectively. NLF: normal liver function; CP: Child-Pugh, grade A scores 5-6 points, grade B scores 7-9 points, and grade C scores 10-15 points; ALBI: albumin-bilirubin, ALBI≤-2.60 is level 1, -2.60<ALBI≤-1.39 is level 2, and ALBI>-1.39 is level 3; ECV: extracellular volume fraction.

2.4 NLF组与不同Child-Pugh和ALBI分级患者ECV值的ROC曲线

       不同Child-Pugh分级受试者ECV值的ROC曲线如图4A,ECV鉴别NLF vs. CP-A、CP-A vs. CP-B、CP-B vs. CP-C的截断值分别是28.71、35.20、40.43,AUC分别为0.82、0.78、0.84(表2)。

       不同ALBI分级受试者ECV值的ROC曲线如图4B,ECV鉴别NLF vs. ALBI 1、ALBI 1 vs. ALBI 2、ALBI 2 vs. ALBI 3的截断值分别是28.71、34.36、41.79,AUC分别为0.79、0.70、0.91(表2)。

图4  ECV值鉴别CP分级(4A)、ALBI分级(4B)的诊断效能分析ROC曲线。ECV:细胞外体积分数;CP:肝功能(Child-Pugh)分级,根据肝性脑病、腹水、胆红素、白蛋白以及凝血酶原时间五项指标对入组患者进行评分,A级为5~6分,B级为7~9分,C级为10~15分;ALBI:白蛋白-胆红素分级,ALBI≤-2.60为1级,-2.60<ALBI≤-1.39为2级,ALBI>-1.39为3级;ROC:受试者工作特征。
Fig. 4  ROC curve of the diagnostic efficacy of ECV value in differentiating CP groups (4A) and ALBI groups (4B). ECV: extracellular volume fraction; CP: Child-Pugh, grade A scores 5-6 points, grade B scores 7-9 points, and grade C scores 10-15 points; ALBI: albumin-bilirubin, ALBI≤-2.60 is level 1, -2.60<ALBI≤-1.39 is level 2, and ALBI>-1.39 is level 3; ROC: receiver operating characteristic.
表2  ECV值对鉴别NLF组与不同Child-Pugh和ALBI分级患者的效能
Tab. 2  The efficacy of ECV value for differentiating NLF group from patients with different Child-Pugh and ALBI grades

2.5 ECV值与生化指标的相关性分析

       ECV值与PT、INR、ALT、AST、TBiL呈正相关(P<0.05),与ALB、HCT以及PLT呈负相关(P<0.01)(表3)。

表3  入组患者ECV值与生化指标的相关性分析
Tab. 3  Correlation analysis of ECV value and biochemical indexes in enrolled patients

2.6 一致性检验

       两位影像科医师测量平扫期肝实质、腹主动脉以及平衡期肝实质、腹主动脉的ICC值分别为0.914 [95%置信区间(confidence interval, CI):0.863~0.946]、0.971(95% CI:0.954~0.982)、0.926(95% CI:0.882~0.954)以及0.906(95% CI:0.851~0.941),P<0.05。

3 讨论

       本文通过对CHB性肝硬化患者与肝功能正常对照者的临床实验室生化指标和T1 mapping图像的研究,分析了ECV值与Child-Pugh分级、ALBI分级的相关性,结果显示ECV值与ALBI分级的相关性仅次于Child-Pugh分级,同时,ROC曲线分析表明,ECV值在区分ALBI 1级、2级、3级方面显示出了良好的准确性。本研究的创新之处在于计算了ECV值与不同肝功能评分模型之间的相关性,并且,对于肝功能评分系统,不仅选择了临床常用的Child-Pugh分级法,还采用了更加简单、客观的ALBI分级法。本研究发现,在无创性评估乙肝肝硬化患者肝功能分级方面,ALBI分级可作为Child-Pugh分级的补充。

3.1 ECV值与实验室生化指标的相关性

       肝脏在人体代谢中的作用至关重要,在慢性肝病的中晚期,肝脏合成的ALB和肝源性凝血因子的减少导致PT增加。有研究表明[12],在肝硬化患者中,TBiL与肝脏T1弛豫时间之间存在较强相关性,在非肝硬化患者呈中度相关性,这可能与TBiL可以通过肝脏特异性对比剂的有机阴离子转运多肽1B1(OATP1B1)转运体进入肝细胞有关[13]。本研究结果表明,ECV值的升高与PT、INR、ALT、AST、TBiL的升高以及ALB、HCT、PLT的降低存在相关性,其中相关性较高的是PT(r=0.73,P<0.01)、INR(r=0.73,P<0.01)以及ALB(r=-0.70,P<0.01),这与之前的研究结果一致[14]

3.2 ECV值与肝功能分级的相关性分析

       肝脏通常被认为由血管内、细胞内、血管外细胞外三个空间组成[15, 16],在组织发生纤维化时,细胞外胶原蛋白沉积导致组织中水分减少[17],细胞外基质的增加导致间质摄取对比剂增加,从而使得组织的T1值缩短,因此,平衡期的强化程度反映的是组织纤维化的程度[14,18, 19, 20, 21]。细胞外体积在正常肝脏中约占总液体空间的15%,但在终末期肝病患者中可扩大到50%以上[22]。盛若凡等[23]对66例乙肝患者进行研究后发现ECV与肝纤维化分期(liver fibrosis, LF)呈正相关(r=0.86,P<0.01)。WANG等[24]扩大样本量进一步研究,指出ECV与LF的相关性最强(r=0.73,P<0.01),而与APRI(r=0.47,P<0.01)和FIB-4(r=0.44,P<0.01)相关性较弱。本研究结果表明,ECV值与Child-Pugh分级呈显著正相关(r=0.694,P<0.01),这与MESROPYAN等[25]最新的研究结果一致,且相关性更高。之前的研究[26]发现年龄、性别、脂肪含量以及铁过载的R2*值对于组织的T1值没有影响,可能是因为本研究入组患者均为CHB,排除了其他肝脏疾病的干扰。此外,本研究还发现ECV值与ALBI分级之间也存在着显著的正相关(r=0.689,P<0.01),其相关性稍低于Child-Pugh评分(r=0.694,P<0.01),但明显高于ECV值与MELD评分、APRI、FIB-4评分之间的相关性。Child-Pugh评分已经被应用了半个世纪[27],是临床应用最广泛的肝功能评分标准[28, 29],但主观因素(腹水和肝性脑病)仍存在疑问。WANG等[30]在对乙肝肝硬化患者的随访研究中发现,ALBI分级是肝脏相关死亡率的独立影响因子,并且ALBI评分在预测2年、3年、4年、5年和整体死亡率方面优于MELD评分,且与Child-Pugh评分相当。本研究发现ECV值区分ALBI 2级和3级患者的AUC(0.91)高于Child-Pugh B级和C级患者(0.84);ALBI分级是通过将Child-Pugh评分中的五个指标放入一个多变量模型中开发出来的,Child-Pugh评分的整个预后价值可以仅用多变量模型推导出的ALB和胆红素水平解释,即ALBI评分[31],与Child-Pugh分级相比,ALBI分级更加简单、客观[18],并且在评估中重度肝硬化患者上ALBI分级可作为Child-Pugh分级的有力补充。

       肝硬化是一个弥漫性的疾病,病变多呈不均质改变,生化指标的数值代表的是整个肝脏的肝功能,而ECV值可以评估局部肝实质的肝功能,所以相较于实验室指标可以更加准确地评估患者的肝功能[24],为术前诊断以及术后预后的评估提供了可靠的依据。临床上应用最多的肝胆特异性对比剂是钆塞酸二钠和Gd-BOPTA。这两种对比剂是在钆喷酸葡胺的分子结构基础上分别加入了乙氧基苯甲基和苯环衍生而来的,所以它们不仅具备细胞外对比剂的特性,还兼有肝胆特异性对比剂的特性[32]。有研究[33, 34]发现,在给予两种对比剂之后,无论是图像质量还是肝胆期T1WI上肝脏增强的程度上,这两种对比剂的效果是一致的。本研究中使用的对比剂是Gd-BOPTA,它的不良反应发生率低,目前尚未有单独使用Gd-BOPTA对比剂导致成人肾源性系统性纤维化的病例报道,即使对严重肾功能不全的患儿来说,仍然可以安全使用Gd-BOPTA[35]

       ECV值是在一个预先设定的延迟时间之后(细胞内、外的对比剂分布达到一种平衡状态时)计算出来的,不受磁场强度、序列选择等技术参数的影响,是一个相对稳定的指标。T1 mapping技术的成像序列主要有两种,一种是改良的Look-Locker成像(modified Look-Locker imaging, MOLLI),一种是B1-corrected VFAs序列成像,目前这两种技术均已广泛应用于肝脏[36, 37]。MOLLI技术扫描时间较长(17个心动周期以上,约15 s左右),这对于一些老年人以及有肺部疾病的患者来说,可能是一个不小的挑战;VFAs成像技术扫描时间相对较短,但是容易受到磁场不均匀性的影响。本研究采用的是B1-corrected VFAs序列成像,克服了磁场的不均匀性对测量T1弛豫时间带来的干扰。

3.3 局限性与展望

       本研究存在以下局限性:首先,样本量过小且重度肝硬化患者较少,以后可以纳入更大的群体进行前瞻性研究,使研究结果更加准确,适用面更广;其次,对于入组患者,没有肝脏活检的结果作为参照,未来可以使用临床更加认可的肝脏纤维化分期标准来进行研究,如肝脏活检、磁共振弹性成像等;最后,B1-corrected VFAs序列仅采用了两个翻转角度(3°和15°),这会降低组织T1测量值的精确性,未来可以采用两个以上的翻转角度进行研究。

4 结论

       综上所述,基于T1 mapping技术的ECV值是评价CHB性肝硬化患者肝功能的可靠指标;ALBI分级在评估CHB性肝硬化患者肝功能方面的诊断效能与Child-Pugh分级相当,但更加简单、客观,可作为Child-Pugh分级的补充。

[1]
ASRANI S K, DEVARBHAVI H, EATON J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-171. DOI: 10.1016/j.jhep.2018.09.014">10.1016/j.jhep.2018.09.014">10.1016/j.jhep.2018.09.014.
[2]
PIMPIN L, CORTEZ-PINTO H, NEGRO F, et al. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies[J]. J Hepatol, 2018, 69(3): 718-735. DOI: 10.1016/j.jhep.2018.05.011">10.1016/j.jhep.2018.05.011">10.1016/j.jhep.2018.05.011.
[3]
SEBASTIANI G, GKOUVATSOS K, PANTOPOULOS K. Chronic hepatitis C and liver fibrosis[J]. World J Gastroenterol, 2014, 20(32): 11033-11053. DOI: 10.3748/wjg.v20.i32.11033">10.3748/wjg.v20.i32.11033">10.3748/wjg.v20.i32.11033.
[4]
国家卫生健康委员会. 中国卫生健康统计年鉴-2020[M]. 北京: 中国协和医科大学出版社, 2020.
National Health Commission of the People's Republic of China. China health statistics yearbook-2020[M]. Beijing: Peking Union Medical College Press, 2020.
[5]
中华医学会感染病学分会, 中华医学会肝病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 中华临床感染病杂志, 2019, 12(6): 401-428. DOI: 10.3760/cma.j.issn.1674-2397.2019.06.001">10.3760/cma.j.issn.1674-2397.2019.06.001">10.3760/cma.j.issn.1674-2397.2019.06.001.
Chinese Society of Infectious Diseases of Chinese Medical Association, Chinese Society of Hepatology of Chinese Medical Association. The guideline of prevention and treatment for chronic hepatitis B (2019 version)[J]. Chin J Clin Infect Dis, 2019, 12(6): 401-428. DOI: 10.3760/cma.j.issn.1674-2397.2019.06.001">10.3760/cma.j.issn.1674-2397.2019.06.001">10.3760/cma.j.issn.1674-2397.2019.06.001.
[6]
ROCKEY D C, CALDWELL S H, GOODMAN Z D, et al. Liver biopsy[J]. Hepatology, 2009, 49(3): 1017-1044. DOI: 10.1002/Hep.22742">10.1002/Hep.22742">10.1002/Hep.22742.
[7]
EVERETT R J, STIRRAT C G, SEMPLE S I R, et al. Assessment of myocardial fibrosis with T1 mapping MRI[J]. Clin Radiol, 2016, 71(8): 768-778. DOI: 10.1016/j.crad.2016.02.013">10.1016/j.crad.2016.02.013">10.1016/j.crad.2016.02.013.
[8]
FRIEDLI I, CROWE L A, BERCHTOLD L, et al. New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation[J/OL]. Sci Rep, 2016, 6: 30088 [2023-04-25]. https://www.nature.com/articles/srep30088. DOI: 10.1038/srep30088">10.1038/srep30088">10.1038/srep30088.
[9]
MESSROGHLI D R, MOON J C, FERREIRA V M, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 75 [2023-04-25]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-017-0389-8#citeas. DOI: 10.1186/s12968-017-0389-8">10.1186/s12968-017-0389-8">10.1186/s12968-017-0389-8.
[10]
徐小元, 丁惠国, 李文刚, 等. 肝硬化诊治指南[J]. 临床肝胆病杂志, 2019, 35(11): 2408-2425. DOI: 10.3969/j.issn.1001-5256.2019.11.006">10.3969/j.issn.1001-5256.2019.11.006">10.3969/j.issn.1001-5256.2019.11.006.
XU X Y, DING H G, LI W G, et al. Chinese guidelines on the management of liver cirrhosis[J]. J Clin Hepatol, 2019, 35(11): 2408-2425. DOI: 10.3969/j.issn.1001-5256.2019.11.006">10.3969/j.issn.1001-5256.2019.11.006">10.3969/j.issn.1001-5256.2019.11.006.
[11]
JOHNSON P J, BERHANE S, KAGEBAYASHI C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade[J]. J Clin Oncol, 2015, 33(6): 550-558. DOI: 10.1200/JCO.2014.57.9151">10.1200/JCO.2014.57.9151">10.1200/JCO.2014.57.9151.
[12]
FAHLENKAMP U L, KUNKEL J, ZIEGELER K, et al. Correlation of native liver parenchyma T1 and T2 relaxation times and liver synthetic function tests: a pilot study[J/OL]. Diagnostics (Basel), 2021, 11(6): 1125 [2023-04-25]. https://www.mdpi.com/2075-4418/11/6/1125. DOI: 10.3390/diagnostics11061125">10.3390/diagnostics11061125">10.3390/diagnostics11061125.
[13]
OKUBO H, ANDO H, SORIN Y, et al. Gadoxetic acid-enhanced magnetic resonance imaging to predict paritaprevir-induced hyperbilirubinemia during treatment of hepatitis C[J/OL]. PLoS One, 2018, 13(4): e0196747 [2023-04-25]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196747. DOI: 10.1371/journal.pone.0196747">10.1371/journal.pone.0196747">10.1371/journal.pone.0196747.
[14]
KUPCZYK P A, MESROPYAN N, ISAAK A, et al. Quantitative MRI of the liver: evaluation of extracellular volume fraction and other quantitative parameters in comparison to MR elastography for the assessment of hepatopathy[J]. Magn Reson Imaging, 2021, 77: 7-13. DOI: 10.1016/j.mri.2020.12.005">10.1016/j.mri.2020.12.005">10.1016/j.mri.2020.12.005.
[15]
VARENIKA V, FU Y J, MAHER J J, et al. Hepatic fibrosis: evaluation with semiquantitative contrast-enhanced CT[J]. Radiology, 2013, 266(1): 151-158. DOI: 10.1148/radiol.12112452">10.1148/radiol.12112452">10.1148/radiol.12112452.
[16]
BENEDETTI N, ASLAM R, WANG Z J, et al. Delayed enhancement of ascites after i.v. contrast material administration at CT: time course and clinical correlation[J]. AJR Am J Roentgenol, 2009, 193(3): 732-737. DOI: 10.2214/AJR.08.1929">10.2214/AJR.08.1929">10.2214/AJR.08.1929.
[17]
LEPORQ B, DAIRE J L, PASTOR C M, et al. Quantification of hepatic perfusion and hepatocyte function with dynamic gadoxetic acid-enhanced MRI in patients with chronic liver disease[J]. Clin Sci (Lond), 2018, 132(7): 813-824. DOI: 10.1042/CS20171131">10.1042/CS20171131">10.1042/CS20171131.
[18]
CHEN R C, CAI Y J, WU J M, et al. Usefulness of albumin-bilirubin grade for evaluation of long-term prognosis for hepatitis B-related cirrhosis[J]. J Viral Hepat, 2017, 24(3): 238-245. DOI: 10.1111/jvh.12638">10.1111/jvh.12638">10.1111/jvh.12638.
[19]
MESROPYAN N, KUPCZYK P, KUKUK G M, et al. Diagnostic value of magnetic resonance parametric mapping for non-invasive assessment of liver fibrosis in patients with primary sclerosing cholangitis[J/OL]. BMC Med Imaging, 2021, 21(1): 65 [2023-04-25]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-021-00598-0. DOI: 10.1186/s12880-021-00598-0.
[20]
LUETKENS J A, KLEIN S, TRÄBER F, et al. Quantification of liver fibrosis at T1 and T2 mapping with extracellular volume fraction MRI: preclinical results[J]. Radiology, 2018, 288(3): 748-754. DOI: 10.1148/radiol.2018180051">10.1148/radiol.2018180051">10.1148/radiol.2018180051.
[21]
LUETKENS J A, KLEIN S, TRAEBER F, et al. Quantitative liver MRI including extracellular volume fraction for non-invasive quantification of liver fibrosis: a prospective proof-of-concept study[J]. Gut, 2018, 67(3): 593-594. DOI: 10.1136/gutjnl-2017-314561">10.1136/gutjnl-2017-314561">10.1136/gutjnl-2017-314561.
[22]
SAHIN S, ROWLAND M. Estimation of aqueous distributional spaces in the dual perfused rat liver[J]. J Physiol, 2000, 528(Pt 1): 199-207. DOI: 10.1111/j.1469-7793.2000.00199">10.1111/j.1469-7793.2000.00199">10.1111/j.1469-7793.2000.00199.
[23]
盛若凡, 金开璞, 汪禾青, 等. 磁共振成像细胞外容积对乙型肝炎肝纤维化的诊断价值研究[J]. 中华肝脏病杂志, 2018, 26(9): 650-653. DOI: 10.3760/cma.j.issn.1007-3418.2018.09.003">10.3760/cma.j.issn.1007-3418.2018.09.003">10.3760/cma.j.issn.1007-3418.2018.09.003.
SHENG R F, JIN K P, WANG H Q, et al. Study on diagnostic value of extracellular volume imaging by magnetic resonance imaging for liver fibrosis of hepatitis B[J]. Chin J Hepatol, 2018, 26(9): 650-653. DOI: 10.3760/cma.j.issn.1007-3418.2018.09.003">10.3760/cma.j.issn.1007-3418.2018.09.003">10.3760/cma.j.issn.1007-3418.2018.09.003.
[24]
WANG H Q, JIN K P, ZENG M S, et al. Assessing liver fibrosis in chronic hepatitis B using MR extracellular volume measurements: comparison with serum fibrosis indices[J]. Magn Reson Imaging, 2019, 59: 39-45. DOI: 10.1016/j.mri.2019.03.002">10.1016/j.mri.2019.03.002">10.1016/j.mri.2019.03.002.
[25]
MESROPYAN N, KUPCZYK P A, DOLD L, et al. Assessment of liver cirrhosis severity with extracellular volume fraction MRI[J/OL]. Sci Rep, 2022, 12(1): 9422 [2023-04-25]. https://www.nature.com/articles/s41598-022-13340-9. DOI: 10.1038/s41598-022-13340-9">10.1038/s41598-022-13340-9">10.1038/s41598-022-13340-9.
[26]
BREIT H C, BLOCK K T, WINKEL D J, et al. Evaluation of liver fibrosis and cirrhosis on the basis of quantitative T1 mapping: are acute inflammation, age and liver volume confounding factors?[J/OL]. Eur J Radiol, 2021, 141: 109789 [2023-04-25]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(21)00270-9. DOI: 10.1016/j.ejrad.2021.109789">10.1016/j.ejrad.2021.109789">10.1016/j.ejrad.2021.109789.
[27]
WONG M, BUSUTTIL R W. Surgery in patients with portal hypertension[J]. Clin Liver Dis, 2019, 23(4): 755-780. DOI: 10.1016/j.cld.2019.07.003">10.1016/j.cld.2019.07.003">10.1016/j.cld.2019.07.003.
[28]
CHOLONGITAS E, PAPATHEODORIDIS G V, VANGELI M, et al. Systematic review: the model for end-stage liver disease: should it replace Child-Pugh's classification for assessing prognosis in cirrhosis?[J]. Aliment Pharmacol Ther, 2005, 22(11/12): 1079-1089. DOI: 10.1111/j.1365-2036.2005.02691">10.1111/j.1365-2036.2005.02691">10.1111/j.1365-2036.2005.02691.
[29]
D'AMICO G, GARCIA-TSAO G, PAGLIARO L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies[J]. J Hepatol, 2006, 44(1): 217-231. DOI: 10.1016/j.jhep.2005.10.013">10.1016/j.jhep.2005.10.013">10.1016/j.jhep.2005.10.013.
[30]
WANG J, ZHANG Z P, YAN X M, et al. Albumin-Bilirubin (ALBI) as an accurate and simple prognostic score for chronic hepatitis B-related liver cirrhosis[J]. Dig Liver Dis, 2019, 51(8): 1172-1178. DOI: 10.1016/j.dld.2019.01.011">10.1016/j.dld.2019.01.011">10.1016/j.dld.2019.01.011.
[31]
TOYODA H, JOHNSON P. The ALBI score: from liver function in patients with HCC to a general measure of liver function[J/OL]. JHEP Rep, 2022, 4(10):100557 [2023-04-25]. https://www.jhep-reports.eu/article/S2589-5559(22)00129-X/fulltext. DOI: 10.1016/J.Jhepr.2022.100557">10.1016/J.Jhepr.2022.100557">10.1016/J.Jhepr.2022.100557.
[32]
任雪, 刘爱连, 赵莹. 肝胆特异性对比剂MRI在肝脏弥漫性疾病的应用进展[J]. 磁共振成像, 2022, 13(6): 151-154, 159. DOI: 10.12015/issn.1674-8034.2022.06.032">10.12015/issn.1674-8034.2022.06.032">10.12015/issn.1674-8034.2022.06.032.
REN X, LIU A L, ZHAO Y. Application progress of hepatobiliary specific contrast agent MRI in diffuse disease of the liver[J]. Chin J Magn Reson Imaging, 2022, 13(6): 151-154, 159. DOI: 10.12015/issn.1674-8034.2022.06.032">10.12015/issn.1674-8034.2022.06.032">10.12015/issn.1674-8034.2022.06.032.
[33]
BRISMAR T B, DAHLSTROM N, EDSBORG N, et al. Liver vessel enhancement by Gd-BOPTA and Gd-EOB-DTPA: a comparison in healthy volunteers[J]. Acta Radiol, 2009, 50(7): 709-715. DOI: 10.1080/02841850903055603">10.1080/02841850903055603">10.1080/02841850903055603.
[34]
LEWIS S, VASUDEVAN P, CHATTERJI M, et al. Comparison of gadoxetic acid to gadobenate dimeglumine for assessment of biliary anatomy of potential liver donors[J]. Abdom Radiol (NY), 2016, 41(7): 1300-1309. DOI: 10.1007/s00261-016-0693-z">10.1007/s00261-016-0693-z">10.1007/s00261-016-0693-z.
[35]
中华医学会放射学分会儿科学组, 中华医学会儿科学分会放射学组. 对比剂钆贝葡胺儿童中枢神经系统MRI增强检查中国专家共识[J]. 中华放射学杂志, 2019, 53(5): 329-335. DOI: 10.3760/cma.j.issn.1005-1201.2019.05.001">10.3760/cma.j.issn.1005-1201.2019.05.001">10.3760/cma.j.issn.1005-1201.2019.05.001.
Pediatric Group of Chinese Society of Radiology of Chinese Medical Association, Radiology Group of Chinese Society of Pediatric of Chinese Medical Association. Chinese expert consensus on contrast agent gadobenate dimeglumine for enhanced MRI of center nervous system in children[J]. Chin J Radiol, 2019, 53(5): 329-335. DOI: 10.3760/cma.j.issn.1005-1201.2019.05.001">10.3760/cma.j.issn.1005-1201.2019.05.001">10.3760/cma.j.issn.1005-1201.2019.05.001.
[36]
CATUCCI D, OBMANN V C, BERZIGOTTI A, et al. Noninvasive assessment of clinically significant portal hypertension using ΔT1 of the liver and spleen and ECV of the spleen on routine Gd-EOB-DTPA liver MRI[J/OL]. Eur J Radiol, 2021, 144: 109958 [2023-04-25]. https://www.ejradiology.com/article/S0720-048X(21)00439-3/fulltext. DOI: 10.1016/j.ejrad.2021.109958">10.1016/j.ejrad.2021.109958">10.1016/j.ejrad.2021.109958.
[37]
LI Z M, SUN J H, HU X, et al. Assessment of liver fibrosis by variable flip angle T1 mapping at 3.0T[J]. J Magn Reson Imaging, 2016, 43(3): 698-703. DOI: 10.1002/jmri.25030">10.1002/jmri.25030">10.1002/jmri.25030.

上一篇 心脏磁共振特征追踪技术对急性心肌梗死介入术后院内MACE预后价值的多中心研究
下一篇 3D酰胺质子转移成像与体素内不相干运动成像对前列腺癌的诊断价值研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2