分享:
分享到微信朋友圈
X
综述
IVIM-DWI及纹理分析评估子宫内膜癌生物学行为的研究进展
蒋雪艳 董江宁

Cite this article as: JIANG X Y, DONG J N. Advances in the assessment of biological behaviors of endometrial carcinoma by IVIM-DWI and texture analysis[J]. Chin J Magn Reson Imaging, 2023, 14(5): 191-195.本文引用格式:蒋雪艳, 董江宁. IVIM-DWI及纹理分析评估子宫内膜癌生物学行为的研究进展[J]. 磁共振成像, 2023, 14(5): 191-195. DOI:10.12015/issn.1674-8034.2023.05.034.


[摘要] 近年来,我国子宫内膜癌的发病率和死亡率呈上升趋势并居于女性生殖系统恶性肿瘤的第二位,严重威胁女性的生命健康。子宫内膜癌的生物学行为如病理类型、分期、分级和细胞增殖情况是影响患者诊疗及预后的重要因素。然而这些生物学行为的评估往往需要通过穿刺活检或术后病理才能获得,不仅有创且信息滞后。因此临床迫切需要一种早期无创性预测子宫内膜癌生物学行为的方法,从而指导患者的个体化治疗及预后评估。体素内不相干运动扩散加权成像(intravoxel incoherent motion diffusion weighted imaging, IVIM-DWI)能够从分子水平无创地评估肿瘤组织的水分子扩散和微循环灌注;纹理分析能够从微观角度无创地对肿瘤异质性进行客观、定量评估。IVIM-DWI与纹理分析为精准预测子宫内膜癌生物学行为提供了病理生理信息和微观层面信息,弥补了活检及手术病理的不足,有望为子宫内膜癌的诊治提供新的思路。本文对近几年IVIM-DWI与纹理分析技术预测子宫内膜癌生物学行为的最新相关研究进展进行综述,从子宫内膜癌组织学分型、分级和Ki-67表达多个方面对IVIM-DWI及纹理分析技术在评估子宫内膜癌生物学行为中的应用价值进行分析,旨在为早期无创性评估患者预后、制订个性化治疗方案提供依据。
[Abstract] Recently, endometrial carcinoma, as the second malignant tumor of female reproductive system, its incidence and morbidity have been on the rise in our country, which seriously threatens the life and health of women. The biological behaviors of the endometrial carcinoma, such as pathological type, stage, grade and cell proliferation, are important factors affecting the diagnosis, treatment and prognosis of the patients. However, the evaluation of these biological behaviors often needs to be obtained by biopsy or post-operative pathology, which is not only invasive but also information-delayed. Therefore, it is manifested that an early non-invasive method to predict the biological behaviors of endometrial carcinoma is urgently necessary for clinical application, so as to guide the individualized treatment and prognostic evaluation of patients. Intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) can non-invasively evaluate the water molecule diffusion and microcirculation perfusion of tumor tissue at the molecular level. Texture analysis can objectively and quantitatively evaluate tumor heterogeneity from a microscopic perspective. IVIM-DWI and texture analysis provide pathophysiological information and microscopic level information for accurately predicting the biological behaviors of endometrial carcinoma, which makes up for the deficiency of biopsy and surgical pathology and is expected to provide new ideas for the diagnosis and treatment of endometrial carcinoma. This article reviews the latest research progress of IVIM-DWI and texture analysis techniques in predicting the biological behaviors of endometrial carcinoma in recent years. The application value of IVIM-DWI and texture analysis in evaluating the biological behaviors of endometrial carcinoma was analyzed from the histological typing, grading and Ki-67 expression of endometrial carcinoma, aiming to provide a basis for early non-invasive evaluation of patient prognosis and development of individualized treatment plans.
[关键词] 子宫内膜癌;磁共振成像;体素内不相干运动;扩散加权成像;纹理分析;分型;分级;Ki-67
[Keywords] endometrial carcinoma;magnetic resonance imaging;intravoxel incoherent motion;diffusion weighted imaging;texture analysis;typing;grading;Ki-67

蒋雪艳 1   董江宁 1, 2*  

1 蚌埠医学院研究生院,蚌埠 233030

2 中国科学技术大学附属第一医院西区(安徽省肿瘤医院)影像科,合肥 230031

通信作者:董江宁,E-mail:dongjn@163.com

作者贡献声明:董江宁设计本研究的方案,对稿件重要的内容进行了修改;蒋雪艳起草和撰写稿件,获取、分析或解释被研究的数据;董江宁获得了中华国际医学交流基金会资助项目、2022年安徽省重点研究与开发项目和国家癌症中心攀登基金临床研究课题资金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 中华国际医学交流基金会资助项目 Z-2014-07-2003-11 2022年安徽省重点研究与开发项目 2022e07020008 国家癌症中心攀登基金临床研究课题 NCC201912B03
收稿日期:2022-11-15
接受日期:2023-05-06
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.05.034
本文引用格式:蒋雪艳, 董江宁. IVIM-DWI及纹理分析评估子宫内膜癌生物学行为的研究进展[J]. 磁共振成像, 2023, 14(5): 191-195. DOI:10.12015/issn.1674-8034.2023.05.034.

0 前言

       子宫内膜癌是我国女性生殖系统的三大恶性肿瘤之一,仅次于宫颈癌,居女性生殖系统恶性肿瘤的第二位[1]。目前,术前准确评估子宫内膜癌生物学行为的主要方法是穿刺活检,但是由于术前穿刺活检受取材局限性和肿瘤异质性的影响,往往与术后病理存在较大的差异,并且其可重复率低。常规MRI是一种常用的无创性检出、诊断和评估子宫内膜癌的重要工具,但常规MRI检查评估子宫内膜癌生物学行为价值有限。随着MRI设备和人工智能技术的飞速发展,功能MRI技术可以定量反映组织细胞水平的信息,为常规MRI序列提供极大的补充。体素内不相干运动扩散加权成像(intravoxel incoherent motion diffusion weighted imaging, IVIM-DWI)为新型功能MRI技术,可以有效区分组织中水分子扩散运动和局部组织微循环灌注信息,进而准确地反映肿瘤组织的细胞密集度和微循环灌注状态[2]。近年来,影像组学成为影像学研究的热点,纹理分析作为影像组学的一个重要组成部分,是一种基于统计分析从医学图像中提取肿瘤组织纹理特征的方法,可以检测肉眼无法识别的肿瘤组织微观结构改变,揭示医学图像中所包含的数字信息,无创地对肿瘤异质性进行客观、定量分析[3]。多项研究表明,IVIM-DWI及纹理分析在术前无创性预测子宫内膜癌生物学行为具有良好的应用前景[4, 5, 6]。但研究结果仍存在争议,不同研究显示出不同的相关性[7, 8]。目前尚无系统总结IVIM-DWI及纹理分析在子宫内膜癌生物学行为预测中的研究。因此,我们将从子宫内膜癌组织学分型、分级和Ki-67表达多个方面对IVIM-DWI及纹理分析技术在评估子宫内膜癌生物学行为中的应用价值进行综述,旨在为临床评估患者预后、制订个性化治疗方案提供更具有指导性的参考依据。

1 子宫内膜癌组织学分型、分级和Ki-67表达的临床意义

1.1 子宫内膜癌组织学分型与分级

       1983年,BOKHMAN[9]将子宫内膜癌分为Ⅰ型(雌激素依赖型)和Ⅱ型(非雌激素依赖型)。Ⅰ型主要包括高分化(G1)和中分化(G2)的子宫内膜样癌,占所有子宫内膜癌的80%~90%,预后较好;Ⅱ型主要包括低分化(G3)子宫内膜样癌、透明细胞癌、浆液性癌等,占所有子宫内膜癌的10%~20%,此型预后较差。国际妇产科联盟(International Federation of Gynecology and Obstetrics, FIGO)分级标准是基于实性非鳞状生长的范围来确定的,腺癌中实性结构≤5%为G1;实性结构占6%~50%为G2;实性结构>50%为G3[10]。2020年世界卫生组织(World Health Organization, WHO)对子宫内膜癌病理学类型进行了修订[11],采用2级分级,G1和G2被归类为低级别,G3为高级别。手术治疗是子宫内膜癌首选的治疗方式,对于高危组织学的妇女,在行全子宫及双侧附件切除的基础上,推荐行盆腔及腹主动脉旁淋巴结清扫术,浆液性癌、癌肉瘤和未分化子宫内膜癌应进行网膜切除术[12, 13],因此术前准确预测子宫内膜癌组织学分型及分级对临床制订个性化治疗方案具有重要的作用。

1.2 Ki-67表达的临床意义

       Ki-67是一种位于细胞核的非组蛋白,该蛋白仅存在细胞有丝分裂周期G1、S、G2、M期中表达,在G0期的静息细胞中不表达[14, 15]。在细胞有丝分裂周期M期结束后,Ki-67就会快速降解。由于Ki-67的半衰期较短,且不易受到其他因素的影响,进而成为反映肿瘤细胞增殖情况的有效指标,与多种肿瘤的发生、发展和患者预后有关[16, 17, 18, 19]。OCAK等[20]研究发现Ki-67是评估低危和中危子宫内膜样癌患者复发情况的指标。另外,在JIANG等[21]研究中发现高Ki-67表达指数与子宫内膜癌复发显著相关,并且高Ki-67表达组的三年及五年无复发生存率(76.7%和69.2%)均低于低Ki-67表达组(92.3%和91.7%),故Ki-67可作为评价子宫内膜癌患者预后的生物学指标。

2 子宫内膜癌组织学分型、分级和Ki-67表达的术前病理诊断

       临床上,子宫内膜癌组织学分型、分级和Ki-67表达在术前多经穿刺活检获得,但穿刺活检为有创性检查,且术前检查结果与术后病理结果存在一定的差异。SHIOZAKI等[22]报道Ⅰ型子宫内膜癌术前组织学检查结果与术后病理结果符合率约56%~67%,Ⅱ型子宫内膜癌术前组织学检查结果与术后病理结果符合率约67%~82%。另外一项研究[23]发现,1%的术前1级子宫内膜样癌在子宫切除标本中升级为2~3级,另有1.2%的子宫内膜样腺癌在子宫切除标本中存在高风险组织型(浆液性癌或透明细胞癌)。张春等[24]和KALVALA等[25]发现乳腺癌穿刺活检检测的Ki-67表达低于术后标本。由此可见,术前穿刺活检具有一定的局限性,可能与取材的局限性和肿瘤的异质性有关,不能反映整个肿瘤的全部信息。

3 IVIM-DWI和纹理分析评估子宫内膜癌组织学分型、分级和Ki-67表达

3.1 IVIM-DWI定量参数评估子宫内膜癌组织学分型、分级和Ki-67表达

       扩散加权成像(diffusion weighted imaging, DWI)能够通过图像灰度信号无创性地检测活体组织中水分子扩散运动情况,间接反映组织微观结构和功能的变化。表观扩散系数(apparent diffusion coefficient, ADC)值作为DWI定量描述指标,除了受活体组织内水分子扩散的影响之外,还受血流灌注及其生理运动影响,因此其并不能表达真实的扩散值[26]。鉴于此,LE BIHAN等[2]于1986年首次提出基于DWI的双指数模型IVIM-DWI的概念,IVIM-DWI能够同时得到活体组织内水分子扩散和毛细血管灌注两种信息,恰好弥补了DWI的不足。常用的定量参数包括:真扩散系数(true diffusion coefficient, D),代表体素内单纯的水分子扩散运动,其不受组织微循环影响;假扩散系数(pseudo-diffusion coefficient, D*),代表体素内微循环的不相干扩散运动,主要受微循环灌注中血流量和毛细血管长度的影响,反映毛细血管中的血流速度;灌注分数(perfusion fraction, f),代表体素内微循环灌注效应占总体扩散效应的容积比率,与毛细血管的血容量有关。

       相对传统DWI单指数计算模型,IVIM-DWI更有助于精准表征组织微观结构特征[27, 28, 29, 30]。近年来IVIM-DWI在子宫内膜癌的诊断、组织学分型及病理分级等方面的应用越来越多,它不仅可以获得肿瘤的细胞增殖密度信息,还可以从病理生理变化中对肿瘤进行定性诊断。LIU等[31]及MOHARAMZAD等[32]发现IVIM-DWI的定量参数可将子宫内膜癌与子宫良性病变区分开来,为子宫内膜癌的早期检出提供了必要的支撑。另外,多项研究[6,33, 34]将IVIM-DWI应用于子宫内膜癌分级的诊断研究,结果显示,ADC值及D值在不同分化程度之间差异存在统计学意义,肿瘤分级越高,ADC值和D值越低。原因可能是随着肿瘤组织分化程度的降低,其细胞的异型性更显著,相应肿瘤增殖加快,单位体积内细胞密度增加,细胞外间隙减小,细胞内核仁等大物质及细胞器增加,使得细胞内水分子扩散受限,导致ADC、D值减小。

       IVIM-DWI技术在术前无创性评估子宫内膜癌组织学分型及Ki-67表达的应用也逐渐增多。顾亮亮等[35]对93例子宫内膜癌患者进行研究,发现Ⅰ型子宫内膜癌的ADC值高于Ⅱ型,曲线下面积(area under the curve, AUC)为0.782,敏感度、特异度和准确度分别为64%、90%和84%,DWI有助于子宫内膜癌组织学分型的鉴别。YAN等[36]和CHEN等[37]对子宫内膜癌患者进行回顾性研究,得出了类似的结论。分析原因可能是随着子宫内膜样腺癌级别的升高,子宫内膜癌腺体结构减少;浆液性癌、透明细胞癌多呈乳头状、片状致密排列[38],实性成分含量多,使得肿瘤组织较致密,细胞外间隙减小,水分子扩散更受限,故Ⅱ型子宫内膜癌ADC值较低。王成艳等[39]研究显示Ⅱ型子宫内膜癌的慢速表观扩散系数(slow apparent diffusion coefficient, ADC-slow)、水分子扩散分布指数(distributed diffusion coefficient, DDC)值低于Ⅰ型,快速ADC(fast ADC, ADC-fast)值高于Ⅰ型,说明Ⅱ型子宫内膜癌的水分子扩散受限更明显,血流灌注量更丰富。多项研究[40, 41, 42]利用IVIM-DWI多模型参数评价Ki-67表达水平时发现,ADC值、D值及DDC值与Ki-67表达呈不同程度的负相关。上述研究均表明IVIM-DWI可以反映子宫内膜癌病理特征及肿瘤细胞的增殖能力。

       IVIM-DWI定量参数在术前无创性地鉴别子宫内膜良恶性、病理分级、组织学分型及Ki-67表达等多个方面具有一定的临床实用价值,但其应用仍存在一些缺陷。首先,与常规MRI相比,IVIM-DWI扫描时间较长;其次,IVIM-DWI扫描序列中多b值的选择和设置目前尚无统一标准,采用不同b值设定的IVIM-DWI的结果间具有较大差异,如JIANG等[43]与彭琴等[44]报道的肺腺癌D*值相差甚远[(16.87±16.24)×10-3 mm2/s vs.(142.68±190.04)×10-3 mm2/s];此外,感兴趣区(region of interest, ROI)的勾画以及目前研究多为单中心小样本研究,结果的可靠性和可重复性仍需进一步验证。相信随着MRI设备的进步和IVIM-DWI技术的进一步规范,IVIM-DWI序列的缺陷能够得到改正,从而能广泛地应用于临床实际工作中。

3.2 纹理分析评估子宫内膜癌组织学分型、分级和Ki-67表达

       纹理分析逐渐应用到医学领域中,通过分析医学影像中像素和体素的分布,无创性地对肿瘤的异质性进行客观定量的分析[45]。所提取的纹理特征包括一阶统计量、二阶统计量和高阶统计量;一阶统计量基于灰度直方图的分析方法,描述ROI内的单个像素值的分布;二阶统计量描述2个相邻像素强度之间的相关性,主要基于灰度共生矩阵(gray level co-occurrence matrix, GLCM)、灰度游程矩阵(gray level run length matrix, GLRLM)等;高阶统计量描述多个像素或体素之间的差异和关系,往往包含了更重要的图像结构和相位特征。目前大量研究表明,生物学异质性与影像纹理异质性在恶性肿瘤中具有一定的相关性[46, 47, 48, 49]

       纹理分析技术已逐步应用到子宫内膜癌组织学分型和分级中。张凯悦等[50]基于T2WI图像提取纹理特征参数并构建预测模型,发现单个纹理参数预测Ⅰ型和Ⅱ型子宫内膜癌的效能较低(AUC为0.597~0.736),将ADC值与纹理分析联合预测Ⅰ型和Ⅱ型子宫内膜癌的效能显著提高(AUC为0.909),敏感度与特异度为84.6%和82.8%。刘娟娟等[51]回顾性分析134例子宫内膜癌患者,通过基于多序列MRI图像提取的影像组学特征,构建组学模型,并将该模型与MRI影像表现相联合,对子宫内膜癌组织学分级显示出了更高的诊断能力(训练组、验证组的AUC分别为0.855、0.780)。另外,多项研究显示[52, 53, 54, 55],术前MRI获得的纹理参数能够预测子宫内膜癌的肌层浸润深度、高危组织学亚型、宫颈间质浸润和淋巴结转移等,提供精准的术前分期和风险评估。

       纹理特征参数与子宫内膜癌Ki-67表达程度有着一定的相关性。孙茜楠等[56]基于动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)参数直方图定量分析DCE-MRI参数与Ki-67表达水平的相关性,发现容积转换常数(Ktrans)的峰度是鉴别Ki-67表达高、低的最佳参数,可以有效评估子宫内膜癌的增殖程度。田士峰等[57]回顾性分析37例子宫内膜癌患者,研究发现,能量、惯性矩与子宫内膜癌Ki-67表达呈负相关,熵、相关性、逆差距与Ki-67表达呈正相关。由此可见通过纹理分析技术所得的参数可以无创地反映子宫内膜癌肿瘤细胞的增殖活性。

       尽管纹理分析技术在子宫内膜癌组织学分型、分级及Ki-67表达等多个方面显示出良好前景,有望成为一种可为影像科医生提供更多客观性数据的新的生物学标记方法。然而目前纹理分析尚处于初级阶段依然存在诸多的不足,如ROI的勾画多采用手动勾画,不可避免地存在测量数据误差;且纹理分析软件繁杂,纹理特征的提取、数据的分析尚无统一标准,数据的可重复性和可对比性相对困难。相信随着计算机技术的快速发展和大型数据库的建立,纹理分析将作为一种量化病变细微差异的工具,更好地服务临床。

4 结语

       综上所述,IVIM-DWI及纹理分析技术在评估子宫内膜癌组织学分型、分级及Ki-67表达方面取得了一定成果。IVIM-DWI及纹理分析技术的应用有望在临床医生为患者的个性化治疗及预后方面提供一定的辅助诊断价值。相信随着人工智能技术和影像组学新一代软件的开发与应用,采用三维自动勾画病灶结合多中心大样本的研究,将进一步提高IVIM-DWI与纹理分析技术在子宫内膜癌生物学行为评估方面的准确性与可及性,为临床制订个性化治疗方案提供影像学与影像组学依据。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660">10.3322/caac.21660">10.3322/caac.21660.
[2]
LE BIHAN D, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909">10.1148/radiology.161.2.3763909">10.1148/radiology.161.2.3763909.
[3]
RIZZO S, BOTTA F, RAIMONDI S, et al. Radiomics: the facts and the challenges of image analysis[J/OL]. Eur Radiol Exp, 2018, 2(1): 36 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/30426318/. DOI: 10.1186/s41747-018-0068-z">10.1186/s41747-018-0068-z">10.1186/s41747-018-0068-z.
[4]
YAMADA I, MIYASAKA N, KOBAYASHI D, et al. Endometrial carcinoma: texture analysis of apparent diffusion coefficient maps and its correlation with histopathologic findings and prognosis[J/OL]. Radiol Imaging Cancer, 2019, 1(2): e190054 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/33778684/. DOI: 10.1148/rycan.2019190054">10.1148/rycan.2019190054">10.1148/rycan.2019190054.
[5]
YUE X N, HE X Y, HE S J, et al. Multiparametric magnetic resonance imaging-based radiomics nomogram for predicting tumor grade in endometrial cancer[J/OL]. Front Oncol, 2023, 13: 1081134 [2023-04-28]. https://pubmed.ncbi.nlm.nih.gov/36895487/. DOI: 10.3389/fonc.2023.1081134">10.3389/fonc.2023.1081134">10.3389/fonc.2023.1081134.
[6]
CHRYSSOU E G, MANIKIS G C, IOANNIDIS G S, et al. Diffusion weighted imaging in the assessment of tumor grade in endometrial cancer based on intravoxel incoherent motion MRI[J/OL]. Diagnostics, 2022, 12(3): 692 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/35328246/. DOI: 10.3390/diagnostics12030692">10.3390/diagnostics12030692">10.3390/diagnostics12030692.
[7]
LI Y, LIN C Y, QI Y F, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: correlation with Ki-67 proliferation status[J]. Magn Reson Imaging, 2021, 78: 18-24. DOI: 10.1016/j.mri.2021.02.006">10.1016/j.mri.2021.02.006">10.1016/j.mri.2021.02.006.
[8]
ZHANG G Y, YAN R F, LIU W Y, et al. Use of biexponential and stretched exponential models of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging to assess the proliferation of endometrial carcinoma[J]. Quant Imaging Med Surg, 2023, 13(4): 2568-2581. DOI: 10.21037/qims-22-688">10.21037/qims-22-688">10.21037/qims-22-688.
[9]
BOKHMAN J V. Two pathogenetic types of endometrial carcinoma[J]. Gynecol Oncol, 1983, 15(1): 10-17. DOI: 10.1016/0090-8258(83)90111-7">10.1016/0090-8258(83)90111-7">10.1016/0090-8258(83)90111-7.
[10]
SOSLOW R A, TORNOS C, PARK K J, et al. Endometrial carcinoma diagnosis: use of FIGO grading and genomic subcategories in clinical practice: recommendations of the international society of gynecological pathologists[J]. Int J Gynecol Pathol, 2019, 38(Suppl 1): S64-S74. DOI: 10.1097/PGP.0000000000000518">10.1097/PGP.0000000000000518">10.1097/PGP.0000000000000518.
[11]
MCCLUGGAGE W G, SINGH N, GILKS C B. Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020)[J]. Histopathology, 2022, 80(5): 762-778. DOI: 10.1111/his.14609">10.1111/his.14609">10.1111/his.14609.
[12]
BARRETINA-GINESTA M P, QUINDÓS M, ALARCÓN J D, et al. SEOM-GEICO clinical guidelines on endometrial cancer (2021)[J]. Clin Transl Oncol, 2022, 24(4): 625-634. DOI: 10.1007/s12094-022-02799-7">10.1007/s12094-022-02799-7">10.1007/s12094-022-02799-7.
[13]
中国抗癌协会妇科肿瘤专业委员会. 子宫内膜癌诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6): 501-512. DOI: 10.19401/j.cnki.1007-3639.2021.06.08">10.19401/j.cnki.1007-3639.2021.06.08">10.19401/j.cnki.1007-3639.2021.06.08.
Chinese Anti-Cancer Association Gynecological Oncology Committee. Guidelines for diagnosis and treatment of endometrial cancer (2021 edition)[J]. China Oncol, 2021, 31(6): 501-512. DOI: 10.19401/j.cnki.1007-3639.2021.06.08">10.19401/j.cnki.1007-3639.2021.06.08">10.19401/j.cnki.1007-3639.2021.06.08.
[14]
GERDES J, LEMKE H, BAISCH H, et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67[J]. J Immunol, 1984, 133(4): 1710-1715.
[15]
DARZYNKIEWICZ Z, ZHAO H, ZHANG S F, et al. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry[J]. Oncotarget, 2015, 6(14): 11735-11750. DOI: 10.18632/oncotarget.4149">10.18632/oncotarget.4149">10.18632/oncotarget.4149.
[16]
JAIN P, DOVAL D C, BATRA U, et al. Ki-67 labeling index as a predictor of response to neoadjuvant chemotherapy in breast cancer[J]. Jpn J Clin Oncol, 2019, 49(4): 329-338. DOI: 10.1093/jjco/hyz012">10.1093/jjco/hyz012">10.1093/jjco/hyz012.
[17]
Li Z H, Li F, Pan C, et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma[J]. Lung Cancer, 2021, 154: 69-75. DOI: 10.1016/j.lungcan.2021.02.009">10.1016/j.lungcan.2021.02.009">10.1016/j.lungcan.2021.02.009.
[18]
BYUN S S, LEE M, HONG S K, et al. Elevated Ki-67 (MIB-1) expression as an independent predictor for unfavorable pathologic outcomes and biochemical recurrence after radical prostatectomy in patients with localized prostate cancer: a propensity score matched study[J/OL]. PLoS One, 2019, 14(11): e0224671 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/31697718/. DOI: 10.1371/journal.pone.0224671">10.1371/journal.pone.0224671">10.1371/journal.pone.0224671.
[19]
SEO S H, KIM K H, OH S H, et al. Ki-67 labeling index as a prognostic marker in advanced stomach cancer[J]. Ann Surg Treat Res, 2019, 96(1): 27-33. DOI: 10.4174/astr.2019.96.1.27">10.4174/astr.2019.96.1.27">10.4174/astr.2019.96.1.27.
[20]
OCAK B, ATALAY F Ö, SAHIN A B, et al. The impact of Ki-67 index, squamous differentiation, and several clinicopathologic parameters on the recurrence of low and intermediate-risk endometrial cancer[J]. Bosn J Basic Med Sci, 2021, 21(5): 549-554. DOI: 10.17305/bjbms.2020.5437">10.17305/bjbms.2020.5437">10.17305/bjbms.2020.5437.
[21]
JIANG P, JIA M Z, HU J, et al. Prognostic value of Ki67 in patients with stage 1-2 endometrial cancer: validation of the cut-off value of Ki67 as a predictive factor[J]. Oncotargets Ther, 2020, 13: 10841-10850. DOI: 10.2147/ott.s274420">10.2147/ott.s274420">10.2147/ott.s274420.
[22]
SHIOZAKI T, MIWA M, SAKUMA T, et al. Correlation between pre-operative and final histological diagnosis on endometrial cancer[J]. Int J Gynecol Cancer, 2019, 29(5): 886-889. DOI: 10.1136/ijgc-2018-000041">10.1136/ijgc-2018-000041">10.1136/ijgc-2018-000041.
[23]
MARIO M, LEITAO, JR, et al. Comparison of D&C and office endometrial biopsy accuracy in patients with FIGO grade 1 endometrial adenocarcinoma[J]. Gynecol Oncol, 2009, 113(1): 105-108. DOI: 10.1016/j.ygyno.2008.12.017">10.1016/j.ygyno.2008.12.017">10.1016/j.ygyno.2008.12.017.
[24]
张春, 禹雪, 张永辉, 等. 乳腺癌术前空芯针穿刺活检与手术标本检测Ki-67表达的差异及影响因素[J]. 中国微创外科杂志, 2019, 19(11): 977-980, 992. DOI: 10.3969/j.issn.1009-6604.2019.11.005">10.3969/j.issn.1009-6604.2019.11.005">10.3969/j.issn.1009-6604.2019.11.005.
ZHANG C, YU X, ZHANG Y H, et al. Differences of ki-67 index in breast cancer patients between core needle biopsy and surgical specimens and its influencing factors[J]. Chin J Minim Invasive Surg, 2019, 19(11): 977-980, 992. DOI: 10.3969/j.issn.1009-6604.2019.11.005">10.3969/j.issn.1009-6604.2019.11.005">10.3969/j.issn.1009-6604.2019.11.005.
[25]
KALVALA J, PARKS R M, GREEN A R, et al. Concordance between core needle biopsy and surgical excision specimens for Ki-67 in breast cancer - a systematic review of the literature[J]. Histopathology, 2022, 80(3): 468-484. DOI: 10.1111/his.14555">10.1111/his.14555">10.1111/his.14555.
[26]
ZHANG K Y, ZHANG Y, FANG X, et al. Nomograms of combining apparent diffusion coefficient value and radiomics for preoperative risk evaluation in endometrial carcinoma[J/OL]. Front Oncol, 2021, 11: 705456 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/34386425/. DOI: 10.3389/fonc.2021.705456">10.3389/fonc.2021.705456">10.3389/fonc.2021.705456.
[27]
ZHU S C, LIU Y H, WEI Y, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: comparison with conventional diffusion-weighted imaging[J]. World J Gastroenterol, 2018, 24(8): 929-940. DOI: 10.3748/wjg.v24.i8.929">10.3748/wjg.v24.i8.929">10.3748/wjg.v24.i8.929.
[28]
ZHOU Y, ZHENG J, YANG C, et al. Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(27): 3334-3345. DOI: 10.3748/wjg.v28.i27.3334">10.3748/wjg.v28.i27.3334">10.3748/wjg.v28.i27.3334.
[29]
HU Q, JIANG P P, FENG Y J, et al. Noninvasive assessment of endometrial fibrosis in patients with intravoxel incoherent motion MR imaging[J/OL]. Sci Rep, 2021, 11(1): 12887 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/34145361/. DOI: 10.1038/s41598-021-92383-w">10.1038/s41598-021-92383-w">10.1038/s41598-021-92383-w.
[30]
LECLER A, DURON L, ZMUDA M, et al. Intravoxel incoherent motion (IVIM) 3 T MRI for orbital lesion characterization[J]. Eur Radiol, 2021, 31(1): 14-23. DOI: 10.1007/s00330-020-07103-1">10.1007/s00330-020-07103-1">10.1007/s00330-020-07103-1.
[31]
LIU J Y, WAN Y D, WANG Z, et al. Perfusion and diffusion characteristics of endometrial malignancy based on intravoxel incoherent motion MRI at 3.0 T: comparison with normal endometrium[J]. Acta Radiol, 2016, 57(9): 1140-1148. DOI: 10.1177/0284185115618550">10.1177/0284185115618550">10.1177/0284185115618550.
[32]
MOHARAMZAD Y, DAVARPANAH A H, YAGHOBI JOYBARI A, et al. Diagnostic performance of apparent diffusion coefficient (ADC) for differentiating endometrial carcinoma from benign lesions: a systematic review and meta-analysis[J]. Abdom Radiol (NY), 2021, 46(3): 1115-1128. DOI: 10.1007/s00261-020-02734-w">10.1007/s00261-020-02734-w">10.1007/s00261-020-02734-w.
[33]
SATTA S, DOLCIAMI M, CELLI V, et al. Quantitative diffusion and perfusion MRI in the evaluation of endometrial cancer: validation with histopathological parameters[J/OL]. Br J Radiol, 2021, 94(1125): 20210054 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/34111974. DOI: 10.1259/bjr.20210054">10.1259/bjr.20210054">10.1259/bjr.20210054.
[34]
MENG N, FANG T, FENG P Y, et al. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma[J]. J Magn Reson Imaging, 2021, 54(4): 1200-1211. DOI: 10.1002/jmri.27684">10.1002/jmri.27684">10.1002/jmri.27684.
[35]
顾亮亮, 李海明, 刘佳, 等. MR扩散加权成像对Ⅰ型与Ⅱ型子宫内膜癌的鉴别诊断价值[J]. 放射学实践, 2019, 34(3): 302-305. DOI: 10.13609/j.cnki.1000-0313.2019.03.012">10.13609/j.cnki.1000-0313.2019.03.012">10.13609/j.cnki.1000-0313.2019.03.012.
GU L L, LI H M, LIU J, et al. The value of MR diffusion-weighted imaging in differentiating type Ⅰ from type Ⅱ endometrial carcinoma[J]. Radiol Pract, 2019, 34(3): 302-305. DOI: 10.13609/j.cnki.1000-0313.2019.03.012">10.13609/j.cnki.1000-0313.2019.03.012">10.13609/j.cnki.1000-0313.2019.03.012.
[36]
YAN B, ZHAO T T, LIANG X F, et al. Can the apparent diffusion coefficient differentiate the grade of endometrioid adenocarcinoma and the histological subtype of endometrial cancer?[J]. Acta Radiol, 2018, 59(3): 363-370. DOI: 10.1177/0284185117716198">10.1177/0284185117716198">10.1177/0284185117716198.
[37]
CHEN J Y, FAN W M, GU H L, et al. The value of the apparent diffusion coefficient in differentiating type Ⅱ from type I endometrial carcinoma[J]. Acta Radiol, 2021, 62(7): 959-965. DOI: 10.1177/0284185120944913">10.1177/0284185120944913">10.1177/0284185120944913.
[38]
RUTGERS J K. Update on pathology, staging and molecular pathology of endometrial (uterine corpus) adenocarcinoma[J]. Future Oncol, 2015, 11(23): 3207-3218. DOI: 10.2217/fon.15.262">10.2217/fon.15.262">10.2217/fon.15.262.
[39]
王成艳, 孙美玉, 刘爱连, 等. IVIM双指数、拉伸指数模型对子宫内膜癌分型的价值[J]. 国际医学放射学杂志, 2021, 44(5): 561-565. DOI: 10.19300/j.2021.L18611">10.19300/j.2021.L18611">10.19300/j.2021.L18611.
WANG C Y, SUN M Y, LIU A L, et al. Value of intravoxel incoherent motion MR imaging with biexponential and stretched-exponential models in differentiating types of endometrial cancer[J]. Int J Med Radiol, 2021, 44(5): 561-565. DOI: 10.19300/j.2021.L18611">10.19300/j.2021.L18611">10.19300/j.2021.L18611.
[40]
FU F F, MENG N, HUANG Z, et al. Identification of histological features of endometrioid adenocarcinoma based on amide proton transfer-weighted imaging and multimodel diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2022, 12(2): 1311-1323. DOI: 10.21037/qims-21-189">10.21037/qims-21-189">10.21037/qims-21-189.
[41]
JIANG J X, ZHAO J L, ZHANG Q, et al. Endometrial carcinoma: diffusion-weighted imaging diagnostic accuracy and correlation with Ki-67 expression[J/OL]. Clin Radiol, 2018, 73(4): 413.e1-413.e6 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/29246587. DOI: 10.1016/j.crad.2017.11.011">10.1016/j.crad.2017.11.011">10.1016/j.crad.2017.11.011.
[42]
王芳, 刘颖, 张宇威, 等. ZOOMit IVIM成像评估子宫内膜癌病理分级及Ki-67表达的价值[J]. 放射学实践, 2022, 37(3)356-362. DOI: 10.13609/j.cnki.1000-0313.2022.03.013">10.13609/j.cnki.1000-0313.2022.03.013">10.13609/j.cnki.1000-0313.2022.03.013.
WANG F, LIU Y, ZHANG Y W, et al. Value of ZOOMit IVIM imaging in endometrial carcinoma for estimating histological grade and Ki-67 expression[J]. Radiol Pract, 2022, 37(3)356-362. DOI: 10.13609/j.cnki.1000-0313.2022.03.013">10.13609/j.cnki.1000-0313.2022.03.013">10.13609/j.cnki.1000-0313.2022.03.013.
[43]
JIANG J Q, FU Y G, ZHANG L L, et al. Volumetric analysis of intravoxel incoherent motion diffusion-weighted imaging in preoperative assessment of non-small cell lung cancer[J]. Jpn J Radiol, 2022, 40(9): 903-913. DOI: 10.1007/s11604-022-01279-w">10.1007/s11604-022-01279-w">10.1007/s11604-022-01279-w.
[44]
彭琴, 黄遥, 唐威, 等. 不同病理亚型肺癌的体素内不相干运动扩散加权成像模型参数比较[J]. 中华肿瘤杂志, 2018, 40(11): 824-828. DOI: 10.3760/cma.j.issn.0253-3766.2018.11.005">10.3760/cma.j.issn.0253-3766.2018.11.005">10.3760/cma.j.issn.0253-3766.2018.11.005.
PENG Q, HUANG Y, TANG W, et al. Comparison of parameters for diffusion-weighted intravoxel incoherent motion imaging in lung cancer patients with different histopathological subtypes[J]. Chin J Oncol, 2018, 40(11): 824-828. DOI: 10.3760/cma.j.issn.0253-3766.2018.11.005">10.3760/cma.j.issn.0253-3766.2018.11.005">10.3760/cma.j.issn.0253-3766.2018.11.005.
[45]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846">10.1002/med.21846">10.1002/med.21846.
[46]
YE R P, WENG S P, LI Y M, et al. Texture analysis of three-dimensional MRI images may differentiate borderline and malignant epithelial ovarian tumors[J]. Korean J Radiol, 2021, 22(1): 106-117. DOI: 10.3348/kjr.2020.0121">10.3348/kjr.2020.0121">10.3348/kjr.2020.0121.
[47]
SHI B, DONG J N, ZHANG L X, et al. A combination analysis of IVIM-DWI biomarkers and T2WI-based texture features for tumor differentiation grade of cervical squamous cell carcinoma[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 2837905 [2023-03-08]. https://pubmed.ncbi.nlm.nih.gov/35360261/. DOI: 10.1155/2022/2837905">10.1155/2022/2837905">10.1155/2022/2837905.
[48]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169">10.1148/radiol.2015151169">10.1148/radiol.2015151169.
[49]
LUKANOVIĆ D, MATJAŠIČ M, KOBAL B. Accuracy of preoperative sampling diagnosis for predicting final pathology in patients with endometrial carcinoma: a review[J]. Transl Cancer Res TCR, 2020, 9(12): 7785-7796. DOI: 10.21037/tcr-20-2228">10.21037/tcr-20-2228">10.21037/tcr-20-2228.
[50]
张凯悦, 钱立庭, 董江宁, 等. 表观扩散系数值联合纹理分析术前预测Ⅰ型与Ⅱ型子宫内膜癌的价值[J]. 实用放射学杂志, 2022, 38(1): 80-84. DOI: 10.3969/j.issn.1002-1671.2022.01.020">10.3969/j.issn.1002-1671.2022.01.020">10.3969/j.issn.1002-1671.2022.01.020.
ZHANG K Y, QIAN L T, DONG J N, et al. The value of apparent diffusion coefficient value combined with texture analysis in predicting type Ⅰ and type Ⅱ endometrial carcinoma before operation[J]. J Pract Radiol, 2022, 38(1): 80-84. DOI: 10.3969/j.issn.1002-1671.2022.01.020">10.3969/j.issn.1002-1671.2022.01.020">10.3969/j.issn.1002-1671.2022.01.020.
[51]
刘娟娟, 王瑞瑞, 张传敏, 等. 多序列MRI影像组学在子宫内膜癌组织学分级术前预测的价值[J]. 临床放射学杂志, 2022, 41(6): 1099-1104. DOI: 10.3969/j.issn.1674-1633.2021.05.020">10.3969/j.issn.1674-1633.2021.05.020">10.3969/j.issn.1674-1633.2021.05.020.
LIU J J, WANG R R, ZHANG C M, et al. The value of multi-sequence MRI radiomics in preoperative prediction of endometrial carcinoma histological grade[J]. J Clin Radiol, 2022, 41(6): 1099-1104. DOI: 10.3969/j.issn.1674-1633.2021.05.020">10.3969/j.issn.1674-1633.2021.05.020">10.3969/j.issn.1674-1633.2021.05.020.
[52]
YTRE-HAUGE S, DYBVIK J A, LUNDERVOLD A, et al. Preoperative tumor texture analysis on MRI predicts high-risk disease and reduced survival in endometrial cancer[J]. J Magn Reson Imaging, 2018, 48(6): 1637-1647. DOI: 10.1002/jmri.26184">10.1002/jmri.26184">10.1002/jmri.26184.
[53]
叶芷君, 宁刚, 谢淋旭, 等. MRI影像组学在预测子宫内膜癌风险因素中的价值[J]. 实用放射学杂志, 2022, 38(9): 1099-1104. DOI: 10.3969/j.issn.1002-1671.2022.09.021">10.3969/j.issn.1002-1671.2022.09.021">10.3969/j.issn.1002-1671.2022.09.021.
YE Z J, NING G, XIE L X, et al. The value of MRI radiomics in predicting risk factors for endometrial cancer[J]. J Pract Radiol, 2022, 38(9): 1099-1104. DOI: 10.3969/j.issn.1002-1671.2022.09.021">10.3969/j.issn.1002-1671.2022.09.021">10.3969/j.issn.1002-1671.2022.09.021.
[54]
BEREBY-KAHANE M, DAUTRY R, MATZNER-LOBER E, et al. Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis[J]. Diagn Interv Imaging, 2020, 101(6): 401-411. DOI: 10.1016/j.diii.2020.01.003">10.1016/j.diii.2020.01.003">10.1016/j.diii.2020.01.003.
[55]
UENO Y, FORGHANI B, FORGHANI R, et al. Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification-a preliminary analysis[J]. Radiology, 2017, 284(3): 748-757. DOI: 10.1148/radiol.2017161950">10.1148/radiol.2017161950">10.1148/radiol.2017161950.
[56]
孙茜楠, 蒋璟璇, 蔡正权, 等. 子宫内膜癌动态对比增强MRI参数直方图与Ki-67表达的相关性[J]. 实用放射学杂志, 2021, 37(9): 1503-1507. DOI: 10.3969/j.issn.1002-1671.2021.09.024">10.3969/j.issn.1002-1671.2021.09.024">10.3969/j.issn.1002-1671.2021.09.024.
SUN Q N, JIANG J X, CAI Z Q, et al. The correlation between dynamic contrast-enhanced MRI parameter histogram and Ki-67 expression in endometrial cancer[J]. J Pract Radiol, 2021, 37(9): 1503-1507. DOI: 10.3969/j.issn.1002-1671.2021.09.024">10.3969/j.issn.1002-1671.2021.09.024">10.3969/j.issn.1002-1671.2021.09.024.
[57]
田士峰, 刘爱连, 刘静红, 等. 初探基于肿瘤全域ADC图的灰度共生矩阵纹理分析与子宫内膜癌Ki-67表达的相关性[J]. 磁共振成像, 2019, 10(11): 826-829. DOI: 10.12015/issn.1674-8034.2019.11.006">10.12015/issn.1674-8034.2019.11.006">10.12015/issn.1674-8034.2019.11.006.
TIAN S F, LIU A L, LIU J H, et al. Preliminary study on correlation between gray level co-occurrence matrix texture analysis based on whole tumor volume measurement ADC image and Ki-67 expression in endometrial cancer[J]. Chin J Magn Reson Imaging, 2019, 10(11): 826-829. DOI: 10.12015/issn.1674-8034.2019.11.006">10.12015/issn.1674-8034.2019.11.006">10.12015/issn.1674-8034.2019.11.006.

上一篇 磁共振成像预测前列腺癌根治术后生化复发的研究进展
下一篇 合成磁共振成像技术在恶性肿瘤中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2