分享:
分享到微信朋友圈
X
临床研究
癫痫神经影像学研究的文献计量学分析
高璐 王小玗 张钠 张华 李焕发 孙亲利 张卫善 杨健

Cite this article as: GAO L, MUSTAFA S A S, WANG X Y, et al. Bibliometric analysis in neuroimaging of epilepsy research[J]. Chin J Magn Reson Imaging, 2023, 14(6): 26-31, 44.本文引用格式:高璐, MUSTAFA Salimeen Abdelkareem Salimeen, 王小玗, 等. 癫痫神经影像学研究的文献计量学分析[J]. 磁共振成像, 2023, 14(6): 26-31, 44. DOI:10.12015/issn.1674-8034.2023.06.004.


[摘要] 目的 采用文献计量学方法探讨癫痫神经影像学研究的发展现状、前沿及热点。材料与方法 在科学网(Web of Science, WOS)核心数据库中检索1900~2021年发表在癫痫神经影像学领域的文献,筛选出年平均被引频次最高的50篇文献。对2012~2021年发表在癫痫神经影像学领域的文献的关键词做聚类分析。结果 被引用最高的50篇文献的年平均被引频次从47.33次到11.67次,发表年份自1900年至2018年,2010年最多为8篇,文献在《Brain》上发表最多;来源于10个国家,美国最多。根据研究目的将文献分为机理研究、预后研究及诊断研究。颞叶癫痫是最常见的癫痫类型。多数研究采用单模态成像。病例对照研究设计是常见的实验设计类型。研究热点是磁共振在颞叶癫痫和儿童癫痫的应用。结论 利用多模态MRI技术探究颞叶癫痫和儿童癫痫的机制、诊断及预后可能是癫痫神经影像领域未来的研究方向。
[Abstract] Objective To understand the trends and hotspots in the field of neuroimaging on epilepsy by bibliometric analysis.Materials and Methods Web of Science (WOS) Core Databases were used to search the literatures in neuroimaging of epilepsy between 1900 and 2021. The top 50 articles with highest yearly citation counts were regarded as most highly cited articles. Collaboration analyses in keywords were carried out in neuroimaging on epilepsy between 2012 to 2021.Results The number of yearly citations of the 50 most cited articles in the field of neuroimaging on epilepsy ranged from 47.33 to 11.67. These top cited articles were published between 1900 and 2021. The most productive year was 2010 (8 articles). The top journals was Brain. The top cited articles were from ten countries. The top country was America. For different study purpose, these studies were divided into three aspects: mechanism studies, prognosis studies and diagnosis studies. Temporal lobe epilepsy (TLE) was the most common type. Most studies use single modality. Case control study design was easily found. The hot topics in neuroimaging of epilepsy was the application of MRI in TLE and childhood epilepsy.Conclusions Study using MRI with multi-modality involving mechanism, diagnosis and prognosis of TLE and childhood epilepsy may be the future research hotspot in the field of neuroimaging on epilepsy.
[关键词] 癫痫;磁共振成像;神经影像;文献计量学;被引频次
[Keywords] epilepsy;magnetic resonance imaging;neuroimaging;bibliometric analysis;citation frequency

高璐 1   1   王小玗 1   张钠 1   张华 2   李焕发 2   孙亲利 1   张卫善 1   杨健 1*  

1 西安交通大学第一附属医院医学影像科,西安 710061

2 西安交通大学第一附属医院神经外科,西安 710061

通信作者:杨健,E-mail:yj1118@xjtu.edu.cn

作者贡献声明:杨健设计本研究的方案,对稿件的重要内容进行了修改;高璐草拟和撰写稿件,获取、分析与解释本研究的数据,获得了陕西省自然科学基础研究计划和西安交通大学医学院第一附属医院科研发展基金的资助;MUSTAFA Salimeen Abdelkareem Salimeen、王小玗、张钠、张华、李焕发、孙亲利、张卫善对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 陕西省自然科学基础研究计划 2022JQ-811 西安交通大学医学院第一附属医院科研发展基金 2021ZYTS-04
收稿日期:2022-11-01
接受日期:2023-04-28
中图分类号:R445.2  R742.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.06.004
本文引用格式:高璐, MUSTAFA Salimeen Abdelkareem Salimeen, 王小玗, 等. 癫痫神经影像学研究的文献计量学分析[J]. 磁共振成像, 2023, 14(6): 26-31, 44. DOI:10.12015/issn.1674-8034.2023.06.004.

0 前言

       癫痫是常见的中枢神经系统疾患,全球约有7000万人受累,给家庭和社会带来沉重的负担和巨大的压力[1, 2, 3]。文献计量学是以文献体系和文献计量特征为研究对象,量化分析文献的交叉科学。文献计量学以表征文献作者分布的洛特卡定律、文献中词频分布的齐普夫定律、特定文献在期刊中分布规律的布拉德福定律为核心[4, 5, 6]。不同于系统评价和Meta分析关注特定的问题,文献计量学专注于研究领域的全貌[7, 8]。被引分析是评价文献影响力的文献计量学分析方法。文献的被引频次越高,重要性和影响力越大[9]。知识图谱是文献计量学结果的一种表现形式,能显示科学知识的发展进程。文献计量学应用广泛,但尚未检索到癫痫神经影像学研究的报道,然而癫痫神经影像学领域已引起了广泛的关注,因此,有必要进行定量分析,帮助学者们了解该领域的发展趋势、研究现状及热点。

1 材料与方法

1.1 数据来源和检索方法

       在科学网(Web of Science, WOS)核心数据库中进行检索。检索式为:TS=((“epilepsy” or “seizures” or “epileptic”) and (“neuroimaging” or “neuroradiology” or “computed tomography” or “CT” or “magne-tic resonance imaging” or “MRI” or “diffusional kurtosis imaging” or “DKI” or “diffusion weighted imaging” or “DWI” or “diffusion tensor imaging” or “DTI” or “perfusion weighted imaging” or “PWI” or “arterial spin labelling” or “ASL” or “magnetic resonance spectroscopy” or “MRS” or “positron emission tomography” or “PET” or “single photon emission computed tomography” or “SPECT” or “network” or “connect*” or “ultrasound”or “doppler”))。检索实施时间为2021年12月31日。

       文章在发表后1~2年开始被引用,3~10年被引频次达到顶峰[10]。因此,近期发表的文章可能不会被纳入,故本研究对2012~2021年发表的文献进行聚类分析。

1.2 纳入和排除标准

       纳入标准:规定年限范围内发表的癫痫神经影像学领域的文献。排除标准:摘要、病例报道、指南、Meta分析、会议通知、评论、书目章节以及动物实验研究。

1.3 文献筛选和资料提取

       将文献按照年平均被引频次[总被引频次/(2021-发表年份)]由高到低进行排序。排名前10%的文献定义为被引最高的文献[11]。提取被引最高的文献的标题、来源期刊、作者、发表年份、国家、影像模态、被引频次以及研究内容。以上过程均由2名工作5年以上的神经影像学领域的主治医师独立完成,如遇到分歧讨论解决,必要时咨询第3名研究者以达成一致。使用CiteSpace软件(5.8.R3, USA,http://cluster.cis.drexel.edu/~cchen/citespace/)对关键词进行分析。

1.4 统计学分析

       利用Excel软件(2016 version, Microsoft, USA)录入提取的数据并进行统计学描述。

2 结果

       检索出36 671篇文献,最终纳入504篇(图1)。2012~2021年发表了12 395篇文献,按照纳排标准最终纳入351篇文献进行聚类分析。

       纳入被引最高的文献50篇(表1)。年平均被引频次最高为47.33次,最低为11.67次,平均为14.22次。文献发表年份自1990年至2018年,以2010年最多(8篇)。样本量在3~2149(中位数25,平均数77.24)之间浮动。病例对照研究是主要的研究设计类型(29篇),且近期呈明显的增长趋势。颞叶癫痫(temporal lobe epilepsy, TLE)是最常见的癫痫类型(29篇)。

       根据研究目的,将文献分为机理研究(13篇)、预后研究(3篇)和诊断研究(34篇),见表2

       图2展示了被引最高的50篇文献的影像模态。单模态研究居多,占82%。多模态研究仅有9篇,但从2011年开始呈现明显的增长趋势。功能磁共振成像(functional magnetic resonance imaging, fMRI)(24篇)、结构磁共振成像(structural magnetic resonance imaging, sMRI)(16篇)和扩散张量成像(diffusion tensor imaging, DTI)(11篇)是最常用的三种成像方式。平面回波序列(24篇)是最常用的MRI序列。14篇文献研究癫痫相关的脑网络改变,且从2011年开始越来越多的研究关注癫痫引起的脑网络变化。

       第一作者源于9个专业,以神经病学、医学影像学、脑科学居多。发表于13本期刊上,以《Brain》最多(15篇)(表3);文献来源于以下10个国家:美国(14篇),加拿大(10篇),英国(8篇),中国(6篇),德国(3篇),法国(3篇),澳大利亚(2篇),瑞士(2篇),巴西(1篇),日本(1篇)。以2020年的影响因子为参照,影响因子排名第一的杂志是《Brain》。

       关键词是文章的核心与精髓,是对文献内容的高度凝练和概括,对文章的关键词进行分析,通常被用来明确一个研究领域的热点[62]。而关键词共现聚类分析是在关键词共现网络基础上进行聚类分析得到的癫痫神经影像关键词共现聚类图谱。聚类分析是将没有分类信息的数据按照相似程度进行归类,从而来了解该领域的基本知识体系及动态演变过程。癫痫神经影像学领域关键词共现网络形成9个聚类(图3)。聚类#1、#2、#5、#7、#8联系较紧密;聚类#0、#1归为癫痫造成的脑损伤;聚类#3、#5、#7归为不同类型的癫痫;聚类#6和#8归为不同的成像模态。频次较高的前6位关键词是:“children”“TLE”“seizure”“epilepsy surgery”“epilepsy”和“MRI”。

图1  文献筛选流程。
Fig. 1  Flowchart of the selection process.
图2  被引最高50篇文献的成像模态和研究目的分布图。2A:被引最高的50篇文献的成像模态;2B:不同研究目的的成像方式。rs-fMRI:静息态功能磁共振成像;tb-fMRI:任务态功能磁共振成像;MSI:磁源成像;PI:磁共振灌注成像;SPECT:单光子发射计算机断层显像;EEG-fMRI:同步脑电-功能磁共振成像;PET-CT:正电子发射断层显像;DWI:扩散加权成像。
Fig. 2  The distribution of the imaging modality and study topics. 2A: The imaging modality of the top 50 most highly cited articles; 2B: Imaging modality for different study purposes. rs-fMRI: resting state-fMRI; tb-fMRI: task based-fMRI; MSI: magnetic source imaging; PI: perfusion fMRI; SPECT: single photon emission computed tomography; EEG-fMRI: electroencephalogram-fMRI; PET-CT: positron emission tomography computed tomography; DWI: diffusion-weighted imaging.
图3  关键词共现知识图谱。关键词共现网络共形成9个聚类。“年轮”环内的颜色代表关键词出现在不同的年份;“年轮”越厚,表明该关键词出现的频次越多;节点间的连线代表节点与节点间的共现关系,连线越粗,表明节点间的联系越紧密;连线的颜色代表两个节点同时出现在同一篇文章中的最早年份。
Fig. 3  Map of the co-occurring keywords related to neuroimaging on epilepsy. For the keywords, nine clusters are identified. Size of the circle indicates the number of occurrence. A bigger circle indicates the keywords is more frequently used and gets higher attention. Thickness of the lines reflects number of shared keywords. The color of the lines represents the earliest year of when two circles appear in the same article.
表1  癫痫神经影像学领域被引最高的50篇文献
Tab. 1  The top 50 most highly cited articles in neuroimaging of epilepsy research
表2  被引最高的50篇文献的研究被试类型、研究类型和研究目的
Tab. 2  Patients and study designs of the top 50 most highly cited articles in different study purpose
表3  癫痫神经影像学研究发文量前10期刊
Tab. 3  The top 10 journals of neuroimaging in epilepsy research

3 讨论

       癫痫是常见的神经系统疾患,脑电图是常用的诊断方法,但其空间定位及定性诊断具有一定的局限性[63]。此外,超过三分之一的患者为难治性癫痫,手术切除是唯一有效的治疗方式,故影像学对检测出致癫痫区相关的结构异常显得尤为重要[64, 65, 66]。随着大量的文章被发表,如何获取高质量的文献及明确该领域发展前沿具有一定的挑战性。

       本研究采用文献计量学方法对癫痫神经影像学领域的文献进行分析,结果显示文献量呈上升趋势,表明全球学者对该领域的关注一直保持着较高的热度。由于不同的发表年限会对结果产生影响,较早发表的文献被引用的机会更大,故本研究采用年平均被引用频次筛选出被引最高的文献。

       在被引最高的50篇文献中,TLE是最常见的癫痫类型。TLE是最常见的难治性癫痫,约占癫痫的40%[67, 68, 69, 70]。TLE患者的认知功能受到了严重的影响,因此引起了广泛的关注[71, 72, 73]。关键词共现分析表明儿童是癫痫神经影像学领域主要关注的人群。由于处在生长发育的关键时期,故患有癫痫的儿童更容易出现脑损伤及神经行为障碍[74, 75, 76, 77]

       在被引最高的50篇文献中,最早的诊断研究利用sMRI来定位癫痫灶[15]。迄今为止,sMRI在癫痫领域仍应用广泛,现已结合神经心理学系统地分析全脑的改变[78, 79, 80]。电生理源成像等更加敏感的成像方法逐渐被用来定位癫痫灶[81, 82]。目前,更多的学者关注癫痫相关的脑网络变化,尤其是默认网络[8, 83, 84, 85]。fMRI逐渐取代Wada试验,来评估癫痫患者语言的偏侧性且fMRI在探究机理中普遍应用[86]。此外,具有严谨实验设计的多模态研究近期呈现明显的增长趋势,因此,基于病例对照实验设计的多模态研究可能是癫痫神经影像学未来的研究方向。

       本研究也存在一定的局限性:(1)本研究以WOS为检索数据库,未涉及其他数据库的检索结果;(2)纳入文献仅限于英文期刊,可能遗漏了一些其他语言发表的文章;(3)本研究仅纳入了临床研究,对反映当前该领域总体研究情况存在一定的局限性。

4 结论

       综上所述,本研究利用文献计量学方法明确了癫痫神经影像学领域中被引用最高的文献,阐明了该领域的研究类型、试验设计等情况。通过绘制可视化图谱探寻该领域演化的关键路径和发展前沿。利用多模态磁共振成像技术探究颞叶癫痫和儿童癫痫的机制、诊断及预后是癫痫神经影像领域未来的研究方向。

[1]
SEN A, JETTE N, HUSAIN M, et al. Epilepsy in older people[J]. Lancet, 2020, 395 (10225): 735-748. DOI: 10.1016/j.ncl.2022.03.014.
[2]
OWOLABI L F, ADAMU B, JIBO A M, et al. Prevalence of active epilepsy, lifetime epilepsy prevalence, and burden of epilepsy in Sub-Saharan Africa from meta-analysis of door-to-door population-based surveys[J/OL]. Epilepsy Behav, 2020, 103(Pt A): 106846 [2022-09-20]. https://www.epilepsybehavior.com/retrieve/pii/S1525505019311977. DOI: 10.1016/j.yebeh.2019.106846.
[3]
DEVINSKY O, VEZZANI A, O'BRIEN T J, et al. Epilepsy[J/OL]. Nat Rev Dis Primers, 2018, 4: 18024 [2022-09-20]. https://www.nature.com/articles/nrdp201824. DOI: 10.1038/nrdp.2018.24.
[4]
ROLDAN-VALADEZ E, SALAZAR-RUIZ S Y, IBARRA-CONTRERAS R, et al. Current concepts on bibliometrics: a brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics[J]. Irish J Med Sci, 2019, 188(3): 939-951. DOI: 10.1007/s11845-018-1936-5.
[5]
NINKOV A, FRANK J R, MAGGIO L A. Bibliometrics: Methods for studying academic publishing[J]. Perspect Med Educ, 2022, 11(3): 173-176. DOI: 10.1007/s40037-021-00695-4.
[6]
MONDAL H, MONDAL S. A Brief Review on Article-, Author-, and Journal-Level Scientometric Indices[J]. Indian Dermatol Online J, 2022, 13(5): 578-584. DOI: 10.4103/idoj.idoj_729_21.
[7]
NYANCHOKA L, TUDUR-SMITH C, THU V N, et al. A scoping review describes methods used to identify, prioritize and display gaps in health research[J]. J Clin Epidemiol, 2019, 109: 99-110. DOI: 10.1016/j.jclinepi.2019.01.005.
[8]
TANTRY T P, KARANTH H, SHETTY P K, et al. Self-learning software tools for data analysis in meta-analysis[J]. Korean J Anesthesiol, 2021, 74(5): 459-461. DOI: 10.4097/kja.21080.
[9]
KELLY J C, GLYNN R W, O'BRIAIN D E, et al. The 100 classic papers of orthopaedic surgery: a bibliometric analysis[J]. J Bone Joint Surg Br, 2010, 92(10): 1338-1343. DOI: 10.1302/0301-620X.92B10.24867.
[10]
CALLAHAM M, WEARS R L, WEBER E. Journal prestige, publication bias, and other characteristics associated with citation of published studies in peer-reviewed journals[J]. JAMA, 2002, 287 (21): 2847-2850. DOI: 10.1001/jama.287.21.2847.
[11]
LEVITT J M, THELWALL M. Does the higher citation of collaborative research differ from region to region? A case study of economics[J]. Scientometrics, 2010, 85: 171-183. DOI: 10.1007/s11192-010-0197-5.
[12]
BINDER J R, SWANSON S J, HAMMEKE T A, et al. Determination of language dominance using functional MRI: A comparison with the Wada test[J]. Neurology, 1996, 46(4): 978-984. DOI: 10.1212/wnl.46.4.978.
[13]
SPRINGER J A, BINDER J R, HAMMEKE T A, et al. Language dominance in neurologically normal and epilepsy subjects-A functional MRI study[J]. Brain, 1999, 122(Pt 11): 2033-2046. DOI: 10.1093/brain/122.11.2033.
[14]
CASCINO G D, JACK C R, PARISI J E, et al. Magnetic-resonance imaging-based volume studies in temporal-lobe epilepsy-pathological correlations[J]. Ann Neurol, 1991, 30(1): 31-36. DOI: 10.1002/ana.410300107.
[15]
JACK C R, SHARBROUGH F W, TWOMEY C K, et al. Temporal-lobe seizures - lateralization with MR volume measurements of the hippocampal-formation[J]. Radiology, 1990, 175(2): 423-429. DOI: 10.1148/radiology.175.2.2183282.
[16]
DESMOND J E, SUM J M, WAGNER A D, et al. Functional MRI measurement of language lateralization in Wada-tested patients[J]. Brain, 1995, 118 (Pt 6): 1411-1419. DOI: 10.1093/brain/118.6.1411.
[17]
CENDES F, ANDERMANN F, GLOOR P, et al. MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy[J]. Neurology, 1993, 43(4): 719-725. DOI: 10.1212/wnl.43.4.719.
[18]
LENCZ T, MCCARTHY G, BRONEN R A, et al. Quantitative magnetic resonance imaging in temporal lobe epilepsy relationship to neuropathology and neuropsychological function[J]. Ann Neurol, 1992, 31(6): 629-637. DOI: 10.1002/ana.410310610.
[19]
CENDES F, ANDERMANN F, DUBEAU F, et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study[J]. Neurology, 1993, 43(6): 1083-1087. DOI: 10.1371/journal.pone.0008525.
[20]
LIAO W, ZHANG Z, PAN Z, et al. Altered Functional Connectivity and Small-World in Mesial Temporal Lobe Epilepsy[J/OL]. PLoS One, 2010, 5(1): e8525 [2022-09-20]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008525. DOI: 10.1371/journal.pone.0008525.
[21]
O'BRIEN T J, SO E L, MULLAN B P, et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus[J]. Neurology, 1998, 50(2): 445-454. DOI: 10.1212/wnl.50.2.445.
[22]
ZHANG Z, LIAO W, CHEN H, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy[J]. Brain, 2011, 134(Pt 10): 2912-2928. DOI: 10.1093/brain/awr223.
[23]
BERNASCONI N, BERNASCONI A, CARAMANOS Z, et al. Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region[J]. Brain, 2003, 126(Pt 2): 462-469. DOI: 10.1093/brain/awg034.
[24]
LEHÉRICY S, COHEN L, BAZIN B, et al. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test[J]. Neurology, 2000, 54(8): 1625-1633. DOI: 10.1212/wnl.54.8.1625.
[25]
WOERMANN F G, JOKEIT H, LUERDING R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy[J]. Neurology, 2003, 61(5): 699-701. DOI: 10.121201.wnl.0000078815.03224.57.
[26]
AGHAKHANI Y, BAGSHAW A P, BÉNAR C G, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy[J]. Brain, 2004, 127(Pt 5): 1127-1144. DOI: 10.1093/brain/awh136.
[27]
BETTUS G, GUEDJ E, JOYEUX F, et al. Decreased Basal fMRI Functional Connectivity in Epileptogenic Networks and Contralateral Compensatory Mechanisms[J]. Hum Brain Mapp, 2009, 30(5): 1580-1591. DOI: 10.1002/hbm.20625.
[28]
ADCOCK J E, WISE R G, OXBURY J M, et al. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy[J]. Neuroimage, 2003, 18(2): 423-438. DOI: 10.1016/s1053-8119(02)00013-7.
[29]
ERIKSSON S H, RUGG-GUNN F J, SYMMS M R, et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development[J]. Brain, 2001, 124(Pt 3): 617-626. DOI: 10.1093/brain/124.3.617.
[30]
BRODBECK V, SPINELLI L, LASCANO A M, et al. Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients[J]. Brain, 2011, 134(Pt 10): 2887-2897. DOI: 10.1093/brain/awr243.
[31]
WAITES A B, BRIELLMANN R S, SALING M M, et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy[J]. Ann Neurol, 2006, 59(2): 335-343. DOI: 10.1002/ana.20733.
[32]
Bernasconi N, Duchesne S, Janke A, et al. Whole-brain voxel-based statistical analysis of gray alter and white matter in temporal lobe epilepsy[J]. Neuroimage, 2004, 23(2): 717-723. DOI: 10.1016/j.neuroimage.2004.06.015.
[33]
Szabo K, Poepel A, Pohlmann-Eden B, et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus[J]. Brain, 2005, 128(Pt 6): 1369-1376. DOI: 10.1093/brain/awh454.
[34]
BLUMENFELD H, MCNALLY K A, VANDERHILL S D, et al. Positive and negative network correlations in temporal lobe epilepsy[J]. Cereb Cortex, 2004, 14(8): 892-902. DOI: 10.1093/cercor/bhh048.
[35]
LIAO W, ZHANG Z Q, PAN Z Y, et al. Default Mode Network Abnormalities in Mesial Temporal Lobe Epilepsy: A Study Combining fMRI and DTI[J]. Hum Brain Mapp, 2011, 32(6): 883-895. DOI: 10.1002/hbm.21076.
[36]
FOCKE N K, YOGARAJAH M, BONELLI S B, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis[J]. Neuroimage, 2008, 40(2): 728-737. DOI: 10.1016/j.neuroimage.2007.12.031.
[37]
CONCHA L, GROSS D W, WHEATLEY B M, et al. Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients[J]. Neuroimage, 2006, 32(3): 1090-1099. DOI: 10.1016/j.neuroimage.2006.04.187.
[38]
CARNE R P, O'BRIEN T J, KILPATRICK C J, et al. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome[J]. Brain, 2004, 127(Pt 10): 2276-2285. DOI: 10.1093/brain/awh257.
[39]
SALEK-HADDADI A, DIEHL B, HAMANDI K, et al. Hemodynarnic correlates of epileptiform discharges: An EEG-fMRI study of 63 patients with focal epilepsy[J]. Brain Res, 2006, 1088(1): 148-166. DOI: 10.1016/j.brainres.2006.02.098.
[40]
HAMANDI K, SALEK-HADDADI A, LAUFS H, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies[J]. Neuroimage, 2006, 31(4): 1700-1710. DOI: 10.1016/j.neuroimage.2006.02.016.
[41]
CONCHA L, BEAULIEU C, GROSS D W. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy[J]. Ann Neurol, 2005, 57(2): 188-196. DOI: 10.1002/ana.20334.
[42]
MCDONALD C R, AHMADI M E, HAGLER D J, et al. Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy[J]. Neurology, 2008, 71(23): 1869-1876. DOI: 10.1212/01.wnl.0000327824.05348.3b.
[43]
BAI X X, VESTAL M, BERMAN R, et al. Dynamic Time Course of Typical Childhood Absence Seizures: EEG, Behavior, and Functional Magnetic Resonance Imaging[J]. J Neurosci, 2010, 30(17): 5884-5893. DOI: 10.1523/JNEUROSCI.5101-09.2010.
[44]
HERMANN B, JONES J, DABBS K, et al. The frequency, complications and aetiology of ADHD in new onset paediatric epilepsy[J]. Brain, 2007, 130(Pt 12): 3135-3148. DOI: 10.1093/brain/awm227.
[45]
PITTAU F, GROVA C, MOELLER F, et al. Patterns of altered functional connectivity in mesial temporal lobe epilepsy[J]. Epilepsia, 2012, 53(6): 1013-1023. DOI: 10.1111/j.1528-1167.2012.03464.x.
[46]
LUO C, Li Q F, LAI Y X, et al. Altered Functional Connectivity in Default Mode Network in Absence[J]. Hum Brain Mapp, 2011, 32(3): 438-449. DOI: 10.1002/hbm.21034.
[47]
HERMANN B, JONES J, SHETH R, et al. Children with new-onset epilepsy: neuropsychological status and brain structure[J]. Brain, 2006, 129(Pt 10): 2609-2619. DOI: 10.1093/brain/awl196.
[48]
BONELLI S B, POWELL R H, YOGARAJAH M, et al. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection[J]. Brain, 2010, 133(Pt 4): 1186-1199. DOI: 10.1093/brain/awq006.
[49]
ZHANG Z Q, LU G M, ZHONG Y, et al. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy[J]. Brain Res, 2010, 1323: 152-160. DOI: 10.1016/j.brainres.2010.01.042.
[50]
CONCHA L, LIVY D J, BEAULIEU C, et al. In Vivo Diffusion Tensor Imaging and Histopathology of the Fimbria-Fornix in Temporal Lobe Epilepsy[J]. J Neurosci, 2010, 30(3): 996-1002. DOI: 10.1523/JNEUROSCI.1619-09.2010.
[51]
KNOWLTON R C, ELGAVISH R A, BARTOLUCCI A, et al. Functional imaging: II. Prediction of epilepsy surgery outcome[J]. Ann Neurol, 2008, 64(1): 35-41. DOI: 10.1002/ana.21419.
[52]
GROUILLER F, THORNTON R C, GROENING K, et al. With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging[J]. Brain, 2011, 134(Pt 10): 2867-2886. DOI: 10.1093/brain/awr156.
[53]
MOELLER F, SIEBNER H R, WOLFF S, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy[J]. Epilepsia, 2008, 49(9): 1510-1519. DOI: 10.1111/j.1528-1167.2008.01626.x.
[54]
PEREIRA F R, ALESSIO A, SERCHELI M S, et al. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI[J/OL]. BMC Neurosci, 2010, 11: 66 [2022-09-20]. https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-11-66. DOI: 10.1186/1471-2202-11-66.
[55]
WHELAN C D, ALTMANN A, BOTÍA J A, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study[J]. Brain, 2018, 141(2): 391-408. DOI: 10.1093/brain/awx341.
[56]
VOLLMAR C, O'MUIRCHEARTAIGH J, BARKER G J, et al. Motor system hypercon- nectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study[J]. Brain, 2011, 134(Pt 6): 1710-1719. DOI: 10.1093/brain/awr098.
[57]
BONILHA L, NESLAND T, MARTZ G U, et al. Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures[J]. J Neurol Neurosur Ps, 2012, 83(9): 903-909. DOI: 10.1136/jnnp-2012-302476.
[58]
BERNHARDT B C, BERNASCONI N, CONCHA L, et al. Cortical thickness analysis in temporal lobe epilepsy reproducibility and relation to outcome[J]. Neurology, 2010, 74(22): 1776-1784. DOI: 10.1212/WNL.0b013e3181e0f80a.
[59]
BESSON P, DINKELACKER V, VALABREGUE R, et al. Structural connectivity differences in left and right temporal lobe epilepsy[J]. Neuroimage, 2014, 100: 135-144. DOI: 10.1016/j.neuro-image.2014.04.071.
[60]
ZHANG Z Q, LU G M, ZHONG Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation Analysis[J]. Hum Brain Mapp, 2010, 31(12): 1851-1861. DOI: 10.1002/hbm.20982.
[61]
O'MUIRCHEARTAIGH J, VOLLMAR C, BARKER G J, et al. Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy[J]. Neurology, 2011, 76(1): 34-40. DOI: 10.1212/WNL.0b013e318203e93d.
[62]
ZHANG J, ZHANG Y, HU L, et al. Global Trends and Performances of Magnetic Resonance Imaging Studies on Acupuncture: A Bibliometric Analysis[J/OL]. Front Neurosci, 2020, 14: 620555 [2022-09-22]. https://www.frontiersin.org/articles/10.3389/fnins.2020.620555/full. DOI: 10.3389/fnins.2020.620555.
[63]
SHAKHATREH L, JANMOHAMED M, Baker A A, et al. Interictal and seizure-onset EEG patterns in malformations of cortical development: A systematic review[J/OL]. Neurobiol Dis, 2022, 174: 105863 [2022-09-22]. https://linkinghub.elsevier.com/retrieve/pii/S0969-9961(22)00255-8. DOI: 10.1016/j.nbd.2022.105863.
[64]
BERNASCONI N, BERNASCONI A. Epilepsy: Imaging the epileptic brain--time for new standards[J]. Nat Rev Neurol, 2014, 10(3): 133-134. DOI: 10.1038/nrneurol.2013.280.
[65]
CÁRDENAS-RODRÍGUEZ N, CARMONA-APARICIO L, PÉREZ-LOZANO D L, et al. Genetic variations associated with pharmacoresistant epilepsy[J]. Mol Med Rep, 2020, 21(4): 1685-1701. DOI: 10.3892/mmr.2020.10999.
[66]
GOODMAN A M, SZAFLARSKI J P. Recent Advances in Neuroimaging of Epilepsy[J]. Neurotherapeutics, 2021, 18(2): 811-826. DOI: 10.1007/s13311-021-01049-y.
[67]
LOPEZ C, BRAGA P. Clinico-electroencephalographic variants in pharmacoresistant mesial temporal lobe epilepsy[J]. Rev Neurol, 2019, 69(1): 18-26. DOI: 10.33588/rn.6901.2018328.
[68]
UNAL Y, KARA M, GENC F, et a1. The methylation status of NKCC 1 and KCC2 in the patients with refractory temporal lobe epilepsy[J]. Ideggyogy Szemle, 2019, 72(5-6): 181-186. DOI: 10.18071/isz.72.0181.
[69]
MARTINEZ B, PEPLOW P V. MicroRNAs as potential biomarkers in temporal lobe epilepsy and mesial temporal lobe epilepsy[J]. Neural Regen Res, 2023, 18(4): 716-726. DOI: 10.4103/1673-5374.354510.
[70]
BERNHARDT B C, FADAIE F, LIU M, et al. Temporal lobe epilepsy: Hippocampal pathology modulates connectome topology and controllability[J/OL]. Neurology, 2019, 92(19): e2209-e2220 [2022-09-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703109. DOI: 10.1212/WNL.0000000000007447.
[71]
VINTI V, DELL'ISOLA G B, TASCINI G, et al. Temporal Lobe Epilepsy and Psychiatric Comorbidity[J/OL]. Front Neurol, 2021, 12: 775781 [2022-09-22]. https://www.frontiersin.org/articles/10.3389/fneur.2021.775781/full. DOI: 10.3389/fneur.2021.775781.
[72]
ELVERMAN K H, RESCH Z J, QUASNEY E E, et al. Temporal lobe epilepsy is associated with distinct cognitive phenotypes[J]. Epilepsy Behav, 2019, 96: 61-68. DOI: 10.1016/j.yebeh.2019.04.015.
[73]
QIN L, JIANG W, ZHENG J, et al. Alterations Functional Connectivity in Temporal Lobe Epilepsy and Their Relationships With Cognitive Function: A Longitudinal Resting-State fMRI Study[J/OL]. Front Neurol, 2020, 11: 625 [2022-09-25]. https://www.frontiersin.org/articles/10.3389/fneur.2020.00625/full. DOI: 10.3389/fneur.2020.00625.
[74]
GONZALEZ-VIANA E, SEN A, BONNON A, et al. Epilepsies in children, young people, and adults: summary of updated NICE guidance[J/OL]. BMJ, 2022, 378: o1446 [2022-09-25]. https://www.bmj.com/content/378/bmj.o1446.long. DOI: 10.1136/bmj.o1446.
[75]
MALONEY E M, CORCORAN P, COSTELLO D J, et al. Association between social deprivation and incidence of first seizures and epilepsy: A prospective population-based cohort[J]. Epilepsia, 2022, 63(8): 2108-2119. DOI: 10.1111/epi.17313.
[76]
FINE A, WIRRELL E C. Seizures in Children[J]. Pediatr Rev, 2020, 41(7): 321-347. DOI: 10.1542/pir.2019-0134.
[77]
GOGOU M, CROSS J H. Seizures and Epilepsy in Childhood[J]. Continuum (Minneap Minn), 2022, 28(2): 428-456. DOI: 10.1212/CON.0000000000001087.
[78]
LAPALME-REMIS S, NGUYEN D K. Neuroimaging of Epilepsy[J]. Continuum (Minneap Minn), 2022, 28(2): 306-338. DOI: 10.1212/CON.0000000000001080.
[79]
BERNASCONI A, CENDES F, THEODORE W H, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force[J]. Epilepsia, 2019, 60(6): 1054-1068. DOI: 10.1111/epi.15612.
[80]
DENG K, ZOU R, HUANG B, et al. Abnormalities of Cortical Thickness in Pediatric Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis[J]. Curr Med Imaging, 2020, 16(9): 1095-1104. DOI: 10.2174/1573405616666200116161335.
[81]
SOHRABPOUR A, CAI Z, YE S, et al. Noninvasive electromagnetic source imaging of spatiotemporally distributed epileptogenic brain sources[J/OL]. Nat Commun, 2020, 11(1): 1946 [2022-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181775/. DOI: 10.1038/s41467-020-15781-0.
[82]
BALDINI S, COITO A, KORFF C M, et al. Localizing non-epileptiform abnormal brain function in children using high density EEG: Electric Source Imaging of focal slowing[J]. Epilepsy Res, 2020, 159: 106245 [2022-09-25]. https://www.sciencedirect.com/science/article/abs/pii/S0920121119304371?via%3Dihub. DOI: 10.1016/j.eplepsyres.2019.106245.
[83]
BONILHA L, NESLAND T, MARTZ G U, et al. Medial temporal lobe epilepsy is associated with neuronal fifibre loss and paradoxical increase in structural connectivity of limbic structures[J]. J Neurol Neurosurg Psychiatry, 2012, 83(9): 903-909. DOI: 10.1136/jnnp-2012-302476.
[84]
JIANG L W, QIAN R B, FU X M, et al. Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study[J]. Epilepsy Behav, 2018, 88: 81-86. DOI: 10.1016/j.yebeh.2018.06.045.
[85]
SINHA N, JOHNSON G W, DAVIS K A, et al. Integrating Network Neuroscience Into Epilepsy Care: Progress, Barriers, and Next Steps[J]. Epilepsy Curr, 2022, 22(5): 272-278. DOI: 10.1177/15357597221101271.
[86]
MASSOT-TARRÚS A, MIRSATTARI S M. Roles of fMRI and Wada tests in the presurgical evaluation of language functions in temporal lobe epilepsy[J/OL]. Front Neurol, 2022, 13: 884730 [2022-09-25]. https://www.frontiersin.org/articles/10.3389/fneur.2022.884730/full. DOI: 10.3389/fneur.2022.884730.

上一篇 基于静息态fMRI区分健康老年人认知水平的MVPA方法研究
下一篇 重离子疗法治疗肝细胞癌的MRI影像评估价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2