分享:
分享到微信朋友圈
X
技术研究
超高场7 T MRI对三叉神经及邻近血管的显示的应用研究
毕京凤 刘欣瑶 张喆 荆京 隋滨滨

Cite this article as: BI J F, LIU X Y, ZHANG Z, et al. The visualization of trigeminal nerve and its adjacent vessels using ultra-high field 7 T MRI[J]. Chin J Magn Reson Imaging, 2023, 14(6): 66-70, 84.本文引用格式:毕京凤, 刘欣瑶, 张喆, 等. 超高场7 T MRI对三叉神经及邻近血管的显示的应用研究[J]. 磁共振成像, 2023, 14(6): 66-70, 84. DOI:10.12015/issn.1674-8034.2023.06.010.


[摘要] 目的 探讨7 T MRI三维序列对三叉神经及邻近血管的显示效果。材料与方法 前瞻性纳入2022年5月至2023年1月同时行7 T颅脑三维时间飞跃法磁共振血管成像(three dimensional time of flight magnetic resonance angiography, 3D TOF MRA)、三维T1加权磁化准备2快速梯度回波(three dimensional T1-weighted magnetization prepared 2 rapid gradient echo, 3D T1-MP2RAGE)序列和三维T1加权磁化准备快速梯度回波(three dimensional T1-weighted magnetization prepared rapid gradient echo, 3D T1-MPRAGE)序列扫描的24例患者。由两位医生对三叉神经显示情况评分,并对3D T1-MPRAGE和3D T1-MP2RAGE第二个反转时间生成的图像(3D T1-MP2RAGE GRETI2)三叉神经与邻近血管关系进行判读,比较两组图像的信噪比(signal to noise ratio, SNR)。采用Kappa检验评价两医生评分的一致性,采用χ2检验评价两组图像判读结果的一致性,采用配对t检验比较两组图像的SNR。结果 两位医生对三组图像的评分一致性较好(Kappa值分别为0.846、1.000和0.846);两组图像三叉神经与邻近血管关系判读结果无差异(χ2=0.174,P>0.05),3D T1-MP2RAGE GRETI2组SNR高于3D T1-MPRAGE组,分别为(62.12±33.94)和(35.52±15.32),差异有统计学意义(P<0.001)。结论 7 T颅脑三维MRI中,3D T1-MP2RAGE GRETI2图像SNR高于3D T1-MPRAGE,且图像上邻近血管显示为高信号易于观察,对三叉神经与邻近血管的显示优于3D T1-MPRAGE和3D TOF MRA序列。
[Abstract] Objective To explore the visualization of trigeminal nerve and its adjacent vessels using 7 T MRI three dimensional sequences.Materials and Methods Prospective collection of 24 patients (48 trigeminal nerves in all) from May 2022 to January 2023, who underwent 7 T ultra-high-field cranial MRI. All patients were scanned with three dimensional time of flight magnetic resonance angiography (3D TOF MRA) sequence , three dimensional T1-weighted magnetization prepared 2 rapid gradient echo (3D T1-MP2RAGE) sequence and three dimensional T1-weighted magnetization prepared rapid gradient echo (3D T1-MPRAGE) sequence. The original image data was assigned a score independently by two radiologists. The relationship of trigeminal nerve and its adjacent vessels with 3D T1-MPRAGE images and images acquired at the second inversion time of 3D T1-MP2RAGE (3D T1-MP2RAGE GRETI2) were analyzed. Signal to noise ratio (SNR) of 3D T1-MPRAGE images and 3D T1-MP2RAGE GRETI2 images were compared. Kappa-test was used to compare the consistency of the scores. χ2 test was used to compare the relationship results of trigeminal nerve and its adjacent vessels between 3D T1-MPRAGE images and 3D T1-MP2RAGE GRETI2 images. A Paired t-test was used to compare SNR between 3D T1-MPRAGE images and 3D T1-MP2RAGE GRETI2 images.Results The Kappa values of the three groups of images were 0.846, 1.000 and 0.846, with good consistency. There was no difference between the two groups of sequences in displaying the relationship of trigeminal nerve and its adjacent vessels (χ2=0.174, P>0.05). SNR of 3D T1-MP2RAGE GRETI2 sequence was higher than that of 3D T1-MPRAGE, (62.12±33.94) and (35.52±15.32) respectively. The difference was statistically significant (P<0.001).Conclusions In 7 T ultra-high-field magnetic resonance brain imaging, 3D T1-MP2RAGE GRETI2 images are better than 3D T1-MPRAGE images in displaying trigeminal nerve and its adjacent vessels, which have better SNR, and the adjacent vessels are easy to be observed for their bright signals.
[关键词] 三叉神经;磁共振血管成像;磁共振成像;信噪比
[Keywords] trigeminal nerve;magnetic resonance angiography;magnetic resonance imaging;signal to noise ratio

毕京凤    刘欣瑶    张喆    荆京    隋滨滨 *  

首都医科大学附属北京天坛医院国家神经系统疾病临床医学研究中心神经影像研究中心,北京 100070

通信作者:隋滨滨,E-mail:reneesui@163.com

作者贡献声明:隋滨滨酝酿和设计实验,实施研究,分析或解释数据,对文章的知识性内容做批评性审阅,指导论文撰写,获得了北京市自然科学基金的资助;毕京凤酝酿和设计实验,实施研究,采集数据,分析或解释数据,起草文章,统计分析;刘欣瑶、张喆、荆京酝酿和设计实验,采集数据,分析或解释数据,对文章的知识性内容做批评性审阅;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 北京市自然科学基金 7212028
收稿日期:2023-02-01
接受日期:2023-05-05
中图分类号:R445.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.06.010
本文引用格式:毕京凤, 刘欣瑶, 张喆, 等. 超高场7 T MRI对三叉神经及邻近血管的显示的应用研究[J]. 磁共振成像, 2023, 14(6): 66-70, 84. DOI:10.12015/issn.1674-8034.2023.06.010.

0 前言

       MRI已广泛应用于三叉神经脑池段的显示[1, 2, 3],在3 T及以下场强的磁共振仪上常采用三维时间飞跃法磁共振血管成像(three dimensional time of flight magnetic resonance angiography, 3D TOF MRA)序列进行观察,图像上三叉神经呈等信号,脑脊液呈低信号,邻近血管呈高信号,可以较好地显示三叉神经脑池段与邻近血管的三维关系。但是该区域结构较复杂,受限于图像的信噪比(signal to noise ratio, SNR)以及空间分辨率,以往的MRI图像上三叉神经及其邻近血管的显示不够理想。近几年来,7 T超高场磁共振在颅脑的应用[4],意味着更高的SNR和空间分辨率,为清晰显示颅脑的细微结构提供了可能。很多学者在7 T超高场磁共振上对颅脑进行了大量研究[5, 6, 7],其中3D TOF MRA序列对血管显示的研究多见[8, 9, 10, 11, 12],但是其对三叉神经的显示鲜有报道。本文在7 T场强下研究了3D TOF MRA对三叉神经的显示情况,并分析了原因。同时对比了3D TOF MRA、三维T1加权磁化准备快速梯度回波(three dimensional T1-weighted magnetization prepared rapid gradient echo, 3D T1-MPRAGE)序列和三维T1加权磁化准备2快速梯度回波(three dimensional T1-weighted magnetization prepared 2 rapid gradient echo, 3D T1-MP2RAGE)序列三种常用的颅脑三维成像序列对三叉神经及其邻近血管的显示效果,旨在探索7 T超高场强下清晰显示三叉神经及其邻近血管结构的三维成像序列。

1 材料与方法

1.1 一般资料

       选取2022年5月至2023年1月期间在天坛医院国家神经系统疾病临床医学研究中心进行7 T超高场颅脑磁共振检查的24例患者的48根三叉神经为研究对象,其中男12例,女12例,年龄16~62(43.21±15.93)岁。纳入标准:(1)所有患者均进行3D TOF MRA序列、3D T1-MP2RAGE序列以及3D T1-MPRAGE序列扫描;(2)图像质量满足诊断要求。排除标准:(1)图像质量差,运动伪影明显者;(2)有颅脑肿瘤性病变者。本研究遵守《赫尔辛基宣言》,经首都医科大学附属北京天坛医院伦理委员会批准(批准文号:KY2021-147-01),所有患者均签署知情同意书。

1.2 扫描方法与参数

       采用德国西门子公司TERRA 7.0 T磁共振扫描仪,8通道并行发射模式(PTx)32通道头颅相控阵线圈。所有患者均扫描3D TOF MRA序列、3D T1-MP2RAGE序列以及3D T1-MPRAGE序列,三组序列的主要扫描参数见表1。3D T1-MPRAGE序列和3D T1-MP2RAGE序列扫描范围包括整个颅脑;3D TOF MRA序列定位方法及扫描范围:在矢状面T1-MPRAGE序列图像上定位,以三叉神经为中心,上至桥脑上缘,下至延髓中部,定位线与三叉神经走行平行。

表1  三组序列的主要参数
Tab. 1  Main parameters of the three sequences

1.3 数据处理

1.3.1 三叉神经脑池段显示情况的评分

       将扫描得到的原始数据导入西门子工作站自带的3D后处理软件进行多平面重建(multi-planner reconstruction, MPR),由两位主治以上的磁共振医师采用双盲法对图像进行评分。评分标准:在同一层面清晰显示三叉神经完整走行计4分;清晰显示三叉神经主干大部分走行计3分;三叉神经显示稍模糊但与周围结构分界尚清计2分;三叉神经显示模糊,与周围结构分界不清计1分;三叉神经无法分辨计0分。

1.3.2 三叉神经与邻近血管关系的判读标准

       利用3D后处理软件对原始数据进行任意角度MPR重建,首先在横断面上找到三叉神经,根据三叉神经的走行分别进行平行于三叉神经和垂直于三叉神经的斜矢状面和斜冠状面重建,测量三叉神经与邻近血管的最短距离,分类标准[13]如下。(1)远离:三叉神经与邻近血管内侧缘最近距离大于2 mm;(2)接近:三叉神经与邻近血管内侧缘不接触,且最近距离小于2 mm;(3)接触:三叉神经与邻近血管内侧缘紧密贴合。

1.3.3 图像SNR的测量和计算

       图像浏览界面同时打开矢状面3D T1-MPRAGE序列和3D T1-MP2RAGE GRETI2序列的图像,在T1-MPRAGE图像显示三叉神经最大层面的三叉神经区域画感兴趣区(region of interest, ROI),然后在两组图像相应层面利用复制粘贴的方式,在三叉神经以及双侧颅外区域空气信号内设置ROI,测量相应区域的平均信号强度和标准差。利用公式SNR=SI三叉神经/SD空气计算图像的SNR[14],其中SI三叉神经指ROI内三叉神经信号强度的平均值,SD空气指空气信号的标准差。

1.4 统计学分析

       采用SPSS 24.0分析软件对数据进行统计学分析,使用Kolmogorov-Smirnov test对数据进行正态性检验,正态分布的计量资料采用(x¯±s)表示,采用Kappa检验评价两位医生评分的一致性,采用χ2检验对两组图像三叉神经与邻近血管关系的结果进行统计分析,采用配对t检验对图像的SNR结果进行统计学分析,P<0.05表示差异有统计学意义。

2 结果

2.1 两位医生对三叉神经脑池段显示情况的评分结果

       3D T1-MPRAGE和3D T1-MP2RAGE GRETI2组图像评分明显高于3D TOF MRA组,三叉神经在3D TOF MRA上显示不清,在3D T1-MPRAGE和3D T1-MP2RAGE GRETI2组图像上的显示如图1所示。两位医生对三组图像的评分结果见表2,Kappa值分别为0.846、1.000和0.846,一致性好。

图1  3D T1-MPRAGE序列(1A、1B、1C)和3D T1-MP2RAGE GRETI2序列(1D、1E、1F)对三叉神经的显示情况,白箭所指为双侧三叉神经。T1-MPRAGE:T1加权磁化准备快速梯度回波序列;T1-MP2RAGE GRETI2:T1加权磁化准备2快速梯度回波第二个反转时间所对应的成像序列。
Fig. 1  The display of trigeminal nerve on 3D T1-MPRAGE sequence (1A, 1B, 1C) and 3D T1-MP2RAGE GRETI2 sequence (1D, 1E, 1F). White arrows show the trigeminal nerves. T1-MPRAGE: T1-weighted magnetization prepared rapid gradient echo sequence; T1-MP2RAGE GRETI2: Imaging sequence acquired at the second inversion time of T1-MP2RAGE.
表2  三组序列图像主观评价结果
Tab. 2  The score results of the three sequences

2.2 3D T1-MPRAGE序列和3D T1-MP2RAGE GRETI2序列对三叉神经与邻近血管关系的判读结果的比较

       三组图像对三叉神经与邻近血管的显示如图2所示:3D TOF MRA序列对三叉神经显示欠清晰,无法对其三叉神经与邻近血管的关系进行判读;3D T1-MPRAGE序列上,三叉神经呈等信号,脑脊液呈低信号,邻近血管呈更低信号;3D T1-MP2RAGE GRETI2序列上,三叉神经呈等信号,脑脊液呈低信号,邻近血管呈高信号。三组图像对三叉神经与邻近血管关系的判读结果见表33D T1-MPRAGE和3D T1-MP2RAGE GRETI2序列图像判读结果差异无统计学意义(P>0.05)。

图2  三组序列对三叉神经及其邻近血管的关系的显示情况。3D T1-MPRAGE序列(2A、2B、2C)及3D T1-MP2RAGE GRETI2 序列(2D、2E、2F)显示左侧三叉神经与邻近血管的关系为接近。3D TOF MRA序列(2G、2H、2I)对三叉神经显示欠佳,邻近血管表现为高信号。白色细箭所指为左侧三叉神经的邻近血管,白色粗箭所指为左侧三叉神经。T1-MPRAGE:T1加权磁化准备快速梯度回波序列;T1-MP2RAGE GRETI2:T1加权磁化准备2快速梯度回波第二个反转时间所对应的成像序列。
Fig. 2  The relationship of the trigeminal nerve and its adjacent vessels displayed on the three sequences. The relationship of the left trigeminal nerve and its adjacent vessels displayed on 3D T1-MPRAGE sequence (2A, 2B, 2C) and 3D T1-MP 2RAGE GRETI2 sequence (2D, 2E, 2F) is proximity. The left trigeminal nerve is not clearly observed on 3D TOF MRA sequence (2G, 2H, 2I), and its adjacent vessels are bright. White thin arrows show the adjacent vessels. White thick arrows show the left trigeminal nerves. T1-MPRAGE: T1-weighted magnetization prepared rapid gradient echo sequence; T1-MP 2RAGE GRETI2: Imaging sequence acquired at the second inversion time of T1-MP2RAGE.
表3  三组序列对三叉神经与邻近血管关系的判读结果的比较
Tab. 3  Comparison of the relationship results between trigeminal nerve and its adjacent vessels

2.3 3D T1-MPRAGE序列和3D T1-MP2RAGE GRETI2序列SNR的比较

       48根三叉神经,3D T1-MP2RAGE GRETI2组SNR高于3D T1-MPRAGE组,差异有统计学意义(P<0.001),结果见表4

表4  3D T1-MPRAGE序列和3D T1-MP2RAGE GRETI2序列图像SNR的比较
Tab. 4  Comparison of SNR between 3D T1-MPRAGE and 3D T1-MP2RAGE GRETI2 sequences

3 讨论

       本研究在7 T超高场强下对比分析了临床常用的三组颅脑高分辨率三维序列对三叉神经及其邻近血管的显示效果,发现在7 T超高场强下,3D T1-MP2RAGE GRETI2序列能够清晰显示三叉神经,同时还可以清晰显示三叉神经的邻近血管,效果优于3D TOF MRA和3D T1-MPRAGE序列。本研究国内首次在7 T超高场强下对比了几种常用的3D序列对三叉神经与邻近血管的显示情况,为7 T磁共振超高分辨率成像判断三叉神经与邻近血管关系推荐了新的成像序列。

3.1 3D TOF MRA序列对三叉神经及其邻近血管的显示情况

       3D TOF MRA序列层厚薄,扫描时间短,虽然SNR和软组织分辨率有限,对三叉神经的显示不够理想,但是由于三叉神经脑池段的特殊解剖结构,脑脊液、三叉神经以及邻近血管可以形成很好的对比,在3 T及1.5 T磁共振上,3D TOF MRA常用于判断三叉神经与邻近血管的关系。7 T磁共振的使用可得到更高的SNR和空间分辨力,有望解决3D TOF MRA图像上三叉神经显示欠佳的问题。但是本研究发现,与以往在3 T及1.5 T磁共振上的研究结果不同[15, 16, 17],在7 T场强下,进行3D TOF MRA序列扫描的48根三叉神经的图像上,三叉神经呈等信号,邻近血管呈高信号,脑脊液呈稍低信号,三叉神经脑池段与脑脊液之间的对比欠佳,三叉神经主干均无法清晰分辨,均无法判断三叉神经与邻近血管的关系,显示效果不如3 T及1.5 T。考虑原因为[18, 19]:(1)3D TOF MRA序列本身对三叉神经显示欠佳,其对三叉神经的显示依赖三叉神经脑池段的良好的软组织对比。随着场强的增加,组织的T1值延长,采用快速重复激发后形成的饱和效应会使神经与脑脊液的对比减小[20],相比较于1.5 T和3 T磁共振,这种信号对比的减低在7 T场强下更为突出,不利于三叉神经的清晰显示;(2)对比3 T以下场强的磁共振,7 T磁共振B1场的不均匀显著,即便采用了PTx在一定程度上纠正了B1场的不均匀[21],处于幕下结构的三叉神经的显示仍受到影响。所以,相对于1.5 T及3 T磁共振,7 T磁共振场强的升高不仅仅会带来高SNR以及高图像分辨率等积极的影响,同时也会引起组织T1值的升高以及B1场不均匀性的显著增加,从而导致不同组织间的T1对比变差以及带来图像质量的变差。因此,在7 T场强下,不推荐采用3D TOF MRA来判断三叉神经与邻近血管的关系。

3.2 3D T1-MPRAGE及3D T1-MP2RAGE GRETI2序列对三叉神经及其邻近血管的显示

       3D T1-MPRAGE及3D T1-MP2RAGE GRETI2序列本质是同一类序列,是施加了磁化准备脉冲的3D扰相梯度回波序列,此类序列应用预备180°反转脉冲产生一个反转恢复的对比,同时应用小角度激发梯度回波快速获得三维傅里叶数据,可以获得很高的组织对比和空间分辨率[22, 23],能够很好地显示人脑内部细微解剖结构及细微病变[24, 25, 26, 27]。其中3D T1-MP2RAGE是3D T1-MPRAGE序列的改进版本,一次扫描中利用两组不同的反转时间进行成像,最终生成三组图像:两组不同反转时间的图像(3D T1-MP2RAGE GRETI1和3D T1-MP2RAGE GRETI2),以及组合这两组图像最终生成的一组T1加权图像(MP2RAGE)[28]。3D T1-MP2RAGE GRETI2是3D T1-MP2RAGE序列第二个反转时间(本研究中第二个反转时间为3200 ms)生成的一组图像,由于T1 MPRAGE以及T1 MP2RAGE序列可以生成高SNR、高空间分辨率三维颅脑成像,临床上常用于功能区的定位以及与功能像进行融合定位。而其对三叉神经与邻近血管关系的判断研究少见[29, 30, 31, 32]

       本研究中24例患者共48根三叉神经扫描了3D T1-MPRAGE和3D T1-MP2RAGE序列,研究发现,3D T1-MP2RAGE GRETI2图像和3D T1-MPRAGE图像经MPR后均能清晰显示三叉神经完整走行,两组序列显示三叉神经与邻近血管关系的结果无差异(P<0.05)。本研究还发现3D T1-MP2RAGE GRETI2图像上邻近血管呈高信号,相比较于3D T1 MPRAGE图像上邻近血管的更低信号易于识别,同时本研究也计算了两组图像的SNR,发现3D T1-MP2RAGE GRETI2图像SNR高于3D T1-MPRAGE序列,对判断三叉神经与邻近血管关系优于3D T1-MPRAGE序列。

       相较于1.5 T及3 T磁共振,超高场7 T的使用提高了图像的SNR及空间分辨率,使得三叉神经及其邻近血管这样的细微结构的清晰显示得以实现。其中3D T1-MP2RAGE GRETI2序列可以作为7 T磁共振上观察三叉神经与邻近血管关系的常规序列。

3.3 本研究的不足

       样本量不够大,研究对象也不是针对三叉神经痛的患者。后续研究中会将临床诊断为三叉神经痛的患者纳入研究,增加三叉神经痛患者的手术对照,同时扩大样本量,从而得到更翔实更有说服力的结果。

4 结论

       综上所述,7 T颅脑MRI中,3D T1-MP2RAGE GRETI2及3D T1-MPRAGE序列均能清晰显示三叉神经及邻近血管,其中3D T1-MP2RAGE GRETI2图像SNR优于3D T1-MPRAGE序列,且邻近血管呈高信号易于识别,更利于判断三叉神经与邻近血管关系。

[1]
曾晨, 李烨晗, 闫伟, 等. 磁共振神经成像对典型三叉神经痛压迫位置与疼痛区域相关性的研究[J]. 磁共振成像, 2022, 13(7): 103-106. DOI: 10.12015/issn.1674-8034.2022.07.018.
ZENG C, LI Y H, YAN W, et al. A study of the correlation between the compression location and the painful region in classical trigeminal neuralgia by MRN[J]. Chin J Magn Reson Imaging, 2022, 13(7): 103-106. DOI: 10.12015/issn.1674-8034.2022.07.018.
[2]
刘天水, 刘萌, 周纯, 等. 经典三叉神经痛患者三叉神经根部结构异常与脑内局部活动改变的相关性研究[J]. 磁共振成像, 2020, 11(10): 848-852, 895. DOI: 10.12015/issn.1674-8034.2020.10.003.
LIU T S, LIU M, ZHOU C, et al. The relationship between the abnormal trigeminal root structure and the changes of local brain activity in classic trigeminal neuralgia patients[J]. Chin J Magn Reson Imaging, 2020, 11(10): 848-852, 895. DOI: 10.12015/issn.1674-8034.2020.10.003.
[3]
WANG B, ZHANG Y, MING Y, et al. A segmentation-independent volume rendering visualization method might reduce redundant explorations and post-surgical complications of microvascular decompression[J]. Eur Radiol, 2020, 30(7): 3823-3833. DOI: 10.1007/s00330-020-06715-x.
[4]
TONA K D, VAN OSCH M J P, NIEUWENHUIS S, et al. Quantifying the contrast of the human locus coeruleus in vivo at 7 Tesla MRI[J/OL]. PLoS One, 2019, 14(2): e0209842 [2023-01-05]. https://pubmed.ncbi.nlm.nih.gov/30726221/. DOI: 10.1371/journal.pone.0209842.
[5]
JEON P, MACKINLEY M, THÉBERGE J, et al. The trajectory of putative astroglial dysfunction in first episode schizophrenia: a longitudinal 7-Tesla MRS study[J/OL]. Sci Rep, 2021, 11(1): 22333 [2023-01-06]. https://pubmed.ncbi.nlm.nih.gov/34785674/. DOI: 10.1038/s41598-021-01773-7.
[6]
CHAI Y, LI L, WANG Y, et al. Magnetization transfer weighted EPI facilitates cortical depth determination in native fMRI space[J/OL]. Neuroimage, 2021, 242: 118455 [2023-01-06]. https://pubmed.ncbi.nlm.nih.gov/34364993/. DOI: 10.1016/j.neuroimage.2021.118455.
[7]
CERNASOV P, WALSH E C, KINARD J L, et al. Multilevel growth curve analyses of behavioral activation for anhedonia (BATA) and mindfulness-based cognitive therapy effects on anhedonia and resting-state functional connectivity: Interim results of a randomized trial[J]. J Affect Disord, 2021, 292: 161-171. DOI: 10.1016/j.jad.2021.05.054.
[8]
GROCHOWSKI C, STAŚKIEWICZ G. Ultra high field TOF-MRA: A method to visualize small cerebral vessels. 7 T TOF-MRA sequence parameters on different MRI scanners-Literature review[J]. Neurol Neurochir Pol, 2017, 51(5): 411-418. DOI: 10.1016/j.pjnns.2017.06.011.
[9]
LIU J, CHEN F, WANG X Y, et al. A comparative analysis framework of 3T and 7 T TOF-MRA based onautomatecerebrovascular segmentation[J/OL]. Comput Med Imaging Graph, 2021, 89: 101830 [2023-01-07]. https://pubmed.ncbi.nlm.nih.gov/33548821/. DOI: 10.1016/j.compmedimag.2020.101830.
[10]
KONG Q L, ZHANG Z H, YANG Q, et al. 7 T TOF-MRA shows modulated orifices of lenticulostriate arteries associated with atherosclerotic plaques in patients with lacunar infarcts[J]. Eur J Radiol, 2019, 118: 271-276. DOI: 10.1016/j.ejrad.2019.07.032.
[11]
SU J, NI W, YANG B F, et al. Preliminary Study on the Application of Ultrahigh Field Magnetic Resonance in Moyamoya Disease[J/OL]. Oxid Med Cell Longev, 2021, 2021: 5653948 [2023-01-08]. https://pubmed.ncbi.nlm.nih.gov/33520085/. DOI: 10.1155/2021/5653948.
[12]
KUFNER A, KHALIL A A, GALINOVIC I, et al. Magnetic resonance imaging-based changes in vascular morphology and cerebral perfusion in subacute ischemic stroke[J]. J Cereb Blood Flow Metab, 2021, 41(10): 2617-2627. DOI: 10.1177/0271678X211010071.
[13]
罗松江, 代铁军, 韩忠奎, 等. 原发性三叉神经痛特征性MRI序列检查的临床应用[J]. 影像研究与医学应用, 2021, 5(17): 175-176. DOI: 10.3969/j.issn.2096-3807.2021.17.085.
LUO S J, DAI T J, HAN Z K, et al. Clinical application of MRI sequences in primary trigeminal neuralgia[J]. Journal of Imaging Research and Medical Applications, 2021, 5(17): 175-176. DOI: 10.3969/j.issn.2096-3807.2021.17.085.
[14]
陈佳敏, 梁永刚, 叶培筠, 等. MRI系统质量控制检测的SNR及均匀度的自动测量研究[J]. 中国医疗设备, 2022, 37(8): 160-163, 172. DOI: 10.3969/j.issn.1674-1633.2022.08.033.
CHEN J M, LIANG Y G, YE P Y, et al. Research on Automatic Measurement of SNR and Uniformity in MRI Quality Control Test[J]. China Medical Devices, 2022, 37(8): 160-163, 172. DOI: 10.3969/j.issn.1674-1633.2022.08.033.
[15]
黄雨, 柴学, 肖朝勇, 等. 三维双激发平衡式稳态自由进动序列和三维时间飞跃MRA序列在原发性三叉神经痛中的诊断价值[J]. 临床神经病学杂志, 2020, 33(5): 362-366. DOI: 10.3969/j.issn.1004-1648.2020.05.011.
HUANG Y, CHAI X, XIAO C Y, et al. Diagnostic value of three-dimensional fast imaging employing steady-state acquisition with phase cycling and three-dimensional time-of-flight MRA in patients with primary trigeminal neuralgia[J]. Journal of Clinical Neurology, 2020, 33(5): 362-366. DOI: 10.3969/j.issn.1004-1648.2020.05.011.
[16]
周新军, 郭佑民, 陈利军. 3D-FIESTA-C与3D-TOF-MRA 序列在血管压迫三叉神经痛中责任血管显示的比较研究[J]. 实用放射学杂志, 2016, 32(5): 667-670. DOI: 10.3969/j.issn.1002-1671.2016.05.002.
ZHOU X J, GUO Y M, CHEN L J. The comparative study of showing the responsible blood vessels for neurovascular compression in trigeminal neuralgia by 3D-FIESTA-C and 3D-TOF-MRA[J]. J Pract Radiol, 2016, 32(5): 667-670. DOI: 10.3969/j.issn.1002-1671.2016.05.002.
[17]
弥龙, 宋云龙, 陈红, 等. 3D-TOF MRA联合3D-FIESTA对三叉神经血管受压及脑池段形态学的初步研究[J].实用放射学杂志, 2018, 34(8): 1160-1163, 1171. DOI: 10.3969/j.issn.1002-1671.2018.08.002.
MI L, SONG Y L, CHEN H, et al. Preliminary study of vascular compression and morphological characteristics of trigeminal nerve bridge forebay section by 3D-TOF MRA combined with 3D-FIESTA[J]. J Pract Radiol, 2018, 34(8): 1160-1163, 1171. DOI: 10.3969/j.issn.1002-1671.2018.08.002.
[18]
ROONEY W D, JOHNSON G, LI X, et al. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo[J]. Magn Reson Med, 2007, 57(2): 308-318. DOI: 10.1002/mrm.21122.
[19]
RODGERS C T, PIECHNIK S K, DELABARRE L J, et al. Inversion recovery at 7 T in the human myocardium: measurement of T(1), inversion efficiency and B(1) (+)[J]. Magn Reson Med, 2013, 70(4): 1038-1046. DOI: 10.1002/mrm.24548.
[20]
SHIMIZU M, IMAI H, KAGOSHIMA K, et al. Detection of compression vessels in trigeminal neuralgia by surface-rendering three-dimensional reconstruction of 1.5-T and 3.0-T magnetic resonance imaging[J]. World Neurosurg, 2013, 80(3-4): 378-385. DOI: 10.1016/j.wneu.2012.05.030.
[21]
STEFAN H, MARIA R, STEFANESCU D, et al. Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission[J/OL]. PLoS One, 2022, 17(6): e0270689 [2023-01-08]. https://pubmed.ncbi.nlm.nih.gov/35767553/. DOI: 10.1371/journal.pone.0270689.
[22]
TOMASI S O, UMANA G E, SCALIA G, et al. Importance of Veins for Neurosurgery as Landmarks Against Brain Shifting Phenomenon: An Anatomical and 3D-MPRAGE MR Reconstruction of Superficial Cortical Veins[J/OL]. Front Neuroanat, 2020, 14: 596167 [2023-01-09]. https://pubmed.ncbi.nlm.nih.gov/33384587/. DOI: 10.3389/fnana.2020.596167.
[23]
孙雨龙, 丁爽, 罕迦尔别克·库锟, 等. T1WI-3D-MPRAGE在难治性癫痫海马及杏仁核体积上的成像研究[J]. 中国CT和MRI杂志, 2022, (2): 5-7, 17. DOI: 10.3969/j.issn.1672-5131.2022.02.002.
SUN Y L, DING S, HANJIAERBIEKE K K, et al. T1WI-3D-MPRAGE Imaging Study on the Volume of Hippocampus and Amygdala in Refractory Epilepsy[J]. Chin J CT & MRI, 2022, (2): 5-7, 17. DOI: 10.3969/j.issn.1672-5131.2022.02.002.
[24]
顾昕, 徐菲, 张丽玲, 等. 颞叶内侧癫痫患者杏仁核体积变化的临床研究[J]. 磁共振成像, 2022, 13(6): 36-39. DOI: 10.12015/issn.1674-8034.2022.06.007.
GU X, XU F, ZHANG L L, et al. A clinical study of amygdala volume changes in medial temporal lobe epilepsy patients[J]. Chin J Magn Reson Imaging, 2022, 13(6): 36-39. DOI: 10.12015/issn.1674-8034.2022.06.007.
[25]
NAIR G, ABSINTA M. Optimized T1-MPRAGE sequence for better visualization of spinal cord multiple sclerosis lesions at 3T[J]. AJNR Am J Neuroradiol, 2013, 34(11): 2215-2222. DOI: 10.3174/ajnr.A3637.
[26]
NELSON F, POONAWALLA A, DATTA S. Is 3D MPRAGE better than the combination DIR/PSIR for cortical lesion detection at 3T MRI?[J]. Mult Scler Relat Disord, 2014, 3(2): 253-257. DOI: 10.1016/j.msard.2013.10.002.
[27]
Barch D M, Tillman R, Kelly D, et al. Hippocampal volume and depression among young children[J]. Psychiatry Res Neuroimaging, 2019, 288: 21-28. DOI: 10.1016/j.pscychresns.2019.04012.
[28]
MARQUES J P, KOBER T, KRUEGER G, et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field[J]. Neuroimage, 2010, 49(2): 1271-1281. DOI: 10.1016/j.neuroimage.2009.10.002.
[29]
OLIVEIRA Í A F, ROOS T, DUMOULIN S O, et al. Can 7 T MPRAGE match MP2RAGE for gray-white matter contrast?[J/OL]. Neuroimage, 2021, 240: 118384 [2023-01-09]. https://pubmed.ncbi.nlm.nih.gov/34265419/. DOI: 10.1016/j.neuroimage.2021.118384.
[30]
LA ROSA F, YU T, BARQUERO G, et al. MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients[J/OL]. Comput Biol Med, 2021, 132: 104297. [2023-01-11]. https://pubmed.ncbi.nlm.nih.gov/33711559/. DOI: 10.1016/j.compbiomed.2021.104297.
[31]
DATTA R, BACCHUS M K, KUMAR D, et al. Fast automatic segmentation of thalamic nuclei from MP2RAGE acquisition at 7 Tesla[J]. Magn Reson Med, 2021, 85(5): 2781-2790. DOI: 10.1002/mrm.28608.
[32]
DEMERATH T, KALLER C P, HEERS M, et al. Fully automated detection of focal cortical dysplasia: Comparison of MPRAGE and MP2RAGE sequences[J]. Epilepsia, 2022, 63(1): 75-85. DOI: 10.1111/epi.17127.

上一篇 磁共振波谱联合减影技术在高级别胶质瘤影像组学分级预测的研究
下一篇 压缩感知技术三维MRI矢状位T2加权频率衰减反转恢复序列显示距腓前韧带的价值探索
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2