分享:
分享到微信朋友圈
X
综述
疼痛-抑郁症共病患者脑功能磁共振成像研究进展
田雨 彭娟 刘松江 陈昆涛

Cite this article as: TIAN Y, PENG J, LIU S J, et al. Research progress of brain function magnetic resonance imaging in patients with pain-depression comorbidity[J]. Chin J Magn Reson Imaging, 2023, 14(6): 103-107.本文引用格式:田雨, 彭娟, 刘松江, 等. 疼痛-抑郁症共病患者脑功能磁共振成像研究进展[J]. 磁共振成像, 2023, 14(6): 103-107. DOI:10.12015/issn.1674-8034.2023.06.018.


[摘要] 疼痛和抑郁症均是临床常见疾病,二者常相互伴随。并且,疼痛-抑郁症共病患者较单一疾病患者预后更差、治疗费用更高,严重影响患者的生活质量。目前,疼痛-抑郁症共病的发病机制尚不明确。功能磁共振成像(function magnetic resonance imaging, fMRI)是一种无辐射、非侵入性的功能成像技术,可通过探测脑组织血氧饱和水平反映神经元的激活程度而被广泛应用于认知神经科学和神经精神病学的研究中。本研究通过对近年来fMRI在疼痛-抑郁症共病的研究进行综述发现,神经可塑性变化及炎症因子学说可能是导致疼痛和抑郁共病的重要原因,疼痛-抑郁症共病导致前额叶皮层、顶叶皮层、杏仁核、前扣带皮层等脑区以及它们构建的神经回路、功能连接异常可能是二者共病的神经影像学基础。本文对fMRI在疼痛-抑郁症共病方面的研究进展作一综述,为将来的研究提供参考方向,为进一步揭示疼痛-抑郁症共病的中枢机制提供客观影像学依据。
[Abstract] Pain and depression are both common clinical diseases that often accompany each other. Moreover, the prognosis of patients with comorbid pain and depression is worse and the treatment cost is higher than that of patients with a single disease, seriously affecting the quality of life of patients. At present, the pathogenesis of pain-depression comorbidity is still unclear. Functional magnetic resonance imaging (fMRI) is a non-radiation, non-invasive functional imaging technique, which has been widely used in cognitive neuroscience and neuropsychiatry research by detecting the oxygen saturation level of brain tissue to reflect the activation degree of neurons. Based on the review of fMRI research on pain-depression comorbidity in recent years, this study found that neuroplastic changes and inflammatory factor theory may be an important cause of pain-depression comorbidity, and pain-depression comorbidity leads to the parietal cortex, amygdala, anterior cingulate cortex and other brain regions, as well as their neural circuits and abnormal functional connections may be the neuroimaging basis of the comorbidity of the two. This article reviews the research progress of fMRI in pain-depression comorbidity, provides a reference direction for future research, and provides an objective imaging basis for further revealing the central mechanism of pain-depression comorbidity.
[关键词] 抑郁症;疼痛;静息态功能磁共振成像;磁共振成像
[Keywords] depression;pain;resting state functional magenetic resonance imaging;magenetic resonance imaging

田雨 1   彭娟 2   刘松江 3   陈昆涛 1*  

1 遵义医科大学第五附属(珠海)医院医学影像科,珠海 519100

2 遵义医科大学管理学院,遵义 563003

3 遵义医科大学附属医院放射科,遵义 563003

通信作者:陈昆涛,E-mail:chenkunt2021@163.com

作者贡献声明:陈昆涛设计本研究的方案,对稿件重要智力内容进行了修改;田雨起草和撰写稿件,收集并分析参考文献;彭娟、刘松江收集并分析相关参考文献,对稿件重要智力内容进行了修改,彭娟获得贵州省卫生健康委科学技术基金项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 贵州省卫生健康委科学技术基金项目 gzwkj2022-332
收稿日期:2022-12-30
接受日期:2023-05-24
中图分类号:R445.2  R749.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.06.018
本文引用格式:田雨, 彭娟, 刘松江, 等. 疼痛-抑郁症共病患者脑功能磁共振成像研究进展[J]. 磁共振成像, 2023, 14(6): 103-107. DOI:10.12015/issn.1674-8034.2023.06.018.

0 前言

       抑郁症是一种常见的慢性精神障碍性疾病,以持续心境低落为主要特征。调查显示我国成人抑郁症终身患病率约3.4%[1],青少年抑郁症终身患病率在11%~20%不等[2, 3],并且其高发病率、高自杀率为个体和家庭带来极高的疾病负担[4]。疼痛是另一种严重危害人类健康的疾病,也是全球致残的主要原因,中国有超过1亿人患有慢性疼痛,造成巨大的社会经济负担[5, 6]。慢性疼痛可诱发抑郁症,抑郁症患者也可能出现异常的疼痛感知和调节。疼痛和抑郁之间存在高度共病率,高达85%的慢性疼痛患者受到严重抑郁的影响,抑郁症患者伴发疼痛的平均发生率为65%[7]。慢性疼痛与抑郁症在发生、发展上存在密切的相关性,并相互促进自身疾病严重程度的进展[8]。到目前为止,慢性疼痛和抑郁的病理生理机制及其相互关系尚未明确,这给疼痛-抑郁症共病患者的临床治疗带来了巨大的挑战。随着功能磁共振(function magnetic resonance imaging, fMRI)技术的日益成熟并广泛应用于精神疾病的研究,研究者们对疼痛-抑郁症共病患者脑功能神经影像机制的认识得到了极大提升。本文从fMRI角度综述疼痛-抑郁症共病的神经影像学研究进展,以期为进一步揭示二者共病的中枢机制提供影像学线索。

1 疼痛和抑郁症共病神经病理生理机制

       由于疼痛和抑郁共病的广泛性,这些疾病被认定为疼痛-抑郁综合征或疼痛-抑郁二分体[9, 10]。普遍理论认为,疼痛和抑郁在中枢神经系统中涉及相同的大脑结构,彼此相互加剧,共享生物途径和神经递质,这表明在两种疾病的发生发展中可能存在重叠的发病机制[11, 12],包括单胺能的缺陷(如5-羟色胺、多巴胺)、肾上腺皮质轴的失调、炎症因子假说和神经可塑性降低等[8,10,13]。多种免疫细胞(如小胶质细胞、T细胞)和免疫分子失衡引起的免疫反应最终影响神经递质代谢、神经内分泌功能和突触可塑性[14]

       研究表明,慢性神经炎症在疼痛和抑郁的病理生理中独立发挥关键作用,因此越来越多的研究认为免疫细胞、胶质细胞和神经细胞之间的炎症因子信号传导失衡是疼痛和抑郁共病的病理生理学基础[15]。由此提出的炎症-疼痛-抑郁假说,表明应激状态下机体激活外周巨噬细胞和单核细胞以及中枢神经系统的小胶质细胞和新型胶质细胞释放大量的促炎因子,如白细胞介素-2、白细胞介素-6、肿瘤坏死因子-α等[10],尤其是在海马、杏仁核、前扣带回(anterior cingulate cortex, ACC)和额叶皮层区域[11,16],导致与情绪和疼痛相关脑区的神经元损伤,同时伴发神经营养因子减少、神经可塑性降低,最终出现抑郁和疼痛症状。

2 fMRI研究进展

       fMRI是一种无辐射、非侵入性的功能成像技术,于1990年被OGAWA等[17]首次提出。该技术通过探测脑组织血氧饱和水平间接反映各脑区神经元的激活程度及其相互之间的内在联系,因其简单易行,不需要被检者执行任务,现已广泛应用于认知神经科学和神经精神病学的研究中,如阿尔茨海默病、癫痫、卒中、抑郁症等疾病的脑功能改变,为临床早期诊断、治疗及预后评估提供了重要依据[18, 19, 20, 21]。当前,fMRI研究最常用的分析方法包括两大类:一类为局部脑区功能活动的研究方法,常用方法包括局部一致性(regional homogeneity, ReHo)[22]、低频振幅(amplitude of low frequency fluctuation, ALFF)[23];另一类为全脑各脑区之间功能活动整合的研究方法,如功能连接。

2.1 局部脑功能活动分析

       研究表明疼痛和抑郁涉及多个脑区功能及传导通路改变,且疼痛损伤感觉通路与情绪管理的大脑区域存在交叉。前额叶皮层(prefrontal cortex, PFC)是与许多高级认知功能相关的关键脑区,包括工作记忆、抽象、情感加工、行为决策和运动控制等都是PFC的功能[24, 25]。ACC是边缘系统的关键区域,主要负责情感处理,已有大量研究分别在抑郁症和疼痛人群中发现PFC及ACC功能发生改变[21,26, 27, 28]。研究显示抑郁症患者PFC、ACC ALFF值升高[21],ACC ReHo值降低[29, 30]。ALFF反映静息态下神经元自发活动水平的高低,即局部神经元活动的强弱,ReHo反映局部脑区神经活动的同步性。慢性疼痛可导致内侧前额叶皮层(medial prefrontal cortex, mPFC)神经元活性降低[31]、ACC活性升高[32],激活mPFC或降低ACC活性可改善疼痛导致的抑郁样行为,表明mPFC和ACC作为疼痛的关键脑区参与情绪调节[33, 34]。疼痛和抑郁研究都显示在PFC、ACC 存在神经元活动异常,推测这可能是疼痛-抑郁共病的潜在神经影像靶点。腹外侧眶皮层属于PFC亚区,与边缘系统关系密切,动物实验表明腹外侧眶皮层激活增加可以改善疼痛诱发焦虑抑郁[35],而抑郁症患者疼痛反应可改变前额叶皮层神经元活性,表现为疼痛减轻时前额叶皮层神经元活性增高[36, 37]。这些研究结果表明,疼痛-抑郁共病患者PFC神经元活性降低,从而影响了情绪管理及痛觉传导等功能,而激活PFC活性则可以改善共病症状。MALEJKO等[38]对重型抑郁患者进行相同热痛刺激分析,却发现PFC激活增加,与前述多项研究结果相反,其原因可能是研究人群(如年龄、病程、疾病严重程度及治疗情况)和研究方法不同。慢性疼痛和抑郁患者显示ACC 神经元活性升高,而降低ACC活性可以改善疼痛导致的抑郁样行为,但相关研究较少,未来可能需要更多大样本研究来进一步验证。

       位于中央后回(postcentral gyrus, PCG)的躯体感觉皮层主要的功能是整合躯体感觉信息并参与情绪调节。研究发现PCG在情绪处理的各个阶段发挥重要作用,并可能是某些精神障碍性疾病的治疗靶点[39]。此外,PCG结构和功能异常也被证明和躯体疼痛的神经病理改变密切相关[6,40]。HOU等[41]采用热刺激范式对疼痛-抑郁共病患者大脑激活进行研究,结果发现无痛性抑郁症患者较正常对照组PCG激活降低,疼痛-抑郁共病患者较无痛性抑郁患者PCG激活增加,表明PCG激活减少可能与抑郁患者特征性抑郁情绪有关,而较高的PCG激活则可能在促进抑郁患者疼痛的发生中发挥重要作用。另一项研究发现抑郁障碍伴躯体疼痛患者左侧PCG ReHo值显著高于不伴疼痛患者[42],并随疼痛程度加重而增加,提示左侧PCG 功能活动改变在抑郁障碍的躯体疼痛症状中有重要意义,并且可以作为衡量治疗反应的指标。这些研究表明PFC和PCG作为疼痛和抑郁共同的神经基质,PFC激活减少和PCG激活增加为解释抑郁症患者痛觉致敏的神经病理生理机制提供一定的见解。

       ReHo和ALFF是衡量局部大脑活动的有效方法,其优点是分析简单,可以直观地反映大脑组织内在属性。在文献回顾过程中,ReHo和ALFF不仅可以用于疼痛-抑郁症共病的脑区定位,对疾病治疗及疗效也具有一定的预测价值。但人脑复杂功能的完成依赖于多个脑区间的紧密联系及相互协作,ReHo和ALFF不能提供区域间功能连接信息。未来可联合局部脑活动和功能连接、脑网络分析探索二者共病的神经影像学机制。

2.2 脑功能整合分析

       功能连接通过测量fMRI时间序列的共激活水平来反映脑区间功能交流[43],可以更好地揭示抑郁症发病机制及抑郁症患者痛觉致敏相关的神经解剖环路。分别对抑郁症和疼痛患者大脑功能连接进行分析,研究显示抑郁症患者PFC[44, 45]、PCG[46]与多个脑区功能连接降低。慢性腰痛患者mPFC与默认网络、中央控制网络间功能连接降低[47]。BILEK等[48]通过重复热痛刺激也发现重型抑郁患者在连接额叶、颞叶和枕叶区域的神经网络功能连通性显著降低,提示抑郁症患者疼痛感知和情绪调节通路功能障碍。ZHANG等[49]发现与慢性腰痛患者相比,共病抑郁症的慢性腰痛患者在左侧mPFC和右侧PCG之间的功能连接显著减少,右侧PCG到右侧顶上小叶、右侧顶下小叶等多个顶叶皮层区域的功能连接明显增加。这些脑区的功能连接值与抑郁自评量表分数呈负相关,但与疼痛强度无关,从而推测抑郁症状加重慢性腰痛患者疼痛矩阵功能发生改变。ZHOU等[50]通过动物及人类fMRI研究发现疼痛-抑郁共病患者中缝背核与杏仁中央核之间的功能连通性降低,而在单纯抑郁或单纯疼痛患者中没有发现降低,提示中缝背核、杏仁中央核和外侧缰核神经环路在调控疼痛伴抑郁行为中发挥重要作用,为药物不敏感患者提供深部脑刺激、经颅磁刺激等治疗新靶点。整体研究显示疼痛-抑郁症共病患者关键脑区(mPFC、PCG、中缝背核及杏仁中央核)间功能连接呈降低趋势,而慢性腰痛共病患者部分脑区间功能连接升高[49],推测不同疼痛亚型可能存在不同的神经传导通路,该部分还需进一步对比研究。

       静息态脑功能连接分析因其简单、直观的特性而被广泛运用于中枢神经系统的研究。然而目前关于疼痛-抑郁症共病功能连接的研究还相对较少,未来可以在增大样本量的同时,利用多种分析方法,如独立成分分析、图论分析,对比不同疼痛、抑郁症亚型对功能连接的影响,为临床个性化治疗提供帮助。

       总的来说,疼痛-抑郁共病fMRI研究证实了PFC、顶叶皮层、杏仁核、ACC、海马等脑区及脑区间协同活动功能改变,提示这些脑区可能是疼痛和抑郁共病的组织学结构基础[31,51]。这些脑区大多属于前额叶-边缘系统,该系统是中枢神经系统中涉及执行和情感功能的重要区域,其功能障碍可导致重度抑郁症,并且在慢性疼痛症状的感知和调节中发挥关键作用[52]。抑郁症发病机制及痛觉处理相关神经通路是目前研究热点,但多数疼痛-抑郁症共病研究依赖体外实验刺激构建共病模型,短暂刺激可能会导致大脑功能改变不显著。此外,研究发现由抑郁情绪和组织损伤产生的疼痛在丘脑-皮层存在不一样的神经环路基础,分别涉及丘脑的束旁核与后核[53],但两种病因导致病理性疼痛的病理生理基础仍不十分清楚,进一步探索两者间的联系,揭示它们之间的差异和分离,将有助于在临床实践中开发新的更有针对性的治疗方案。一项荟萃分析指出疼痛伴抑郁和抑郁伴疼痛分别涉及右侧杏仁核和左侧背外侧前额叶皮层[54],虽然疼痛和抑郁之间存在双向关系,互为因果,相互加剧,但现有研究很少提及两者发生的方向[55],其原因可能是疾病发生发展较复杂,不能准确界定二者发生的先后顺序。

       青少年时期是大脑发育的特殊阶段,同时也是疼痛和抑郁的高发病期,而目前关于青少年疼痛-抑郁共病的神经影像学研究有限。分别针对青少年疼痛和抑郁患者的神经影像研究显示:特发性肌肉骨骼疼痛患者丘脑、中央前回和额中回激活较健康人减少[56],复杂性区域疼痛综合征、偏头痛、肠易激综合征等多种慢性疼痛中与疼痛相关网络(如默认网络、感觉运动网络、突显网络等)静息态功能连接增高[57] 多种疼痛亚型表现为类似的功能网络连接增高,推测它们可能累及相同的疼痛矩阵;既往研究也显示青少年抑郁症患者默认网络区域的功能连通性增加[58],前额叶-海马、前额叶-杏仁核[59, 60]等与情绪管理相关神经回路功能连接降低。既往研究结果提示这些受影响的脑区可能是青少年疼痛和抑郁症状发生发展的影像基础,但青少年疼痛-抑郁症共病神经影像学机制仍然不清楚,进一步探索成人及青少年共病患者神经影像学机制差异有助于为临床提供更有针对性治疗方案。

3 小结与展望

       从生理学机制和神经影像学的角度来看,疼痛和抑郁是密切相关的,目前研究证据表明,神经可塑性变化及炎症因子学说可能是导致疼痛和抑郁共病的重要原因,而前额叶-边缘系统功能障碍是目前较为公认的神经机制。疼痛-抑郁症共病涉及多个脑区功能改变,如PFC、顶叶皮层、杏仁核、ACC、海马等脑区以及他们构建的神经回路、功能连接,这些区域涉及大脑情绪管理、疼痛感知、认知调控,为疼痛-抑郁共病患者早期诊断和优化治疗提供神经影像学依据。但目前关于疼痛-抑郁共病研究的文献报道较少,可能导致不同研究结果的差异,未来可增大样本量,充分考虑年龄、病程、疾病严重程度以及不同疼痛、抑郁症亚型对大脑功能的影响,有助于为临床提供个性化治疗方案。目前,fMRI在探索疼痛-抑郁共病的发病机制研究中仍有较大的提升空间。随着影像学技术的提高、多模态MRI技术以及影像遗传学的发展和研究的深入,运用多种磁共振成像技术联合心理学、分子生物学等构建具有更高诊断和评估性能的生物标记物集,为临床治疗提供潜在的神经影像靶点。

[1]
LU J, XU X, HUANG Y, et al. Prevalence of depressive disorders and treatment in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2021, 8(11): 981-990. DOI: 10.1016/s2215-0366(21)00251-0.
[2]
AVENEVOLI S, SWENDSEN J, HE J P, et al. Major depression in the national comorbidity survey-adolescent supplement: prevalence, correlates, and treatment[J/OL]. J Am Acad Child Adolesc Psychiatry, 2015, 54(1): 37-44 e2 [2022-12-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408277. DOI: 10.1016/j.jaac.2014.10.010.
[3]
HUSSAIN H, DUBICKA B, WILKINSON P. Recent developments in the treatment of major depressive disorder in children and adolescents[J]. Evid Based Ment Health, 2018, 21(3): 101-6. DOI: 10.1136/eb-2018-102937.
[4]
王薇, 刘忠纯. 性激素对青春期抑郁症的影响研究进展[J]. 临床精神医学杂志, 2021, 31(5): 419-421. DOI: 10.3969/j.issn.1005-3220.2021.05.025.
WANG W, LIU Z C. Research progress on the effects of sex hormones on adolescent depression[J]. Journal of Clinical Psychiatry, 2021, 31(5): 419-421. DOI: 10.3969/j.issn.1005-3220.2021.05.025.
[5]
COHEN S P, VASE L, HOOTEN W M. Chronic pain: an update on burden, best practices, and new advances[J]. Lancet, 2021, 397(10289): 2082-2097. DOI: 10.1016/s0140-6736(21)00393-7.
[6]
TU Y, CAO J, BI Y, et al. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers[J]. Sci China Life Sci, 2021, 64(6): 879-896. DOI: 10.1007/s11427-020-1822-4.
[7]
BAIR M J, ROBINSON R L, KATON W, et al. Depression and pain comorbidity: a literature review[J]. Arch Intern Med, 2003, 163(20): 2433-2445. DOI: 10.1001/archinte.163.20.2433.
[8]
ISHAK W W, WEN R Y, NAGHDECHI L, et al. Pain and Depression: A Systematic Review[J]. Harv Rev Psychiatry, 2018, 26(6): 352-363. DOI: 10.1097/HRP.0000000000000198.
[9]
MAALLO A M S, MOULTON E A, SIEBERG C B, et al. A lateralized model of the pain-depression dyad[J/OL]. Neurosci Biobehav Rev, 2021, 127: 876-883 [2022-12-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289740. DOI: 10.1016/j.neubiorev.2021.06.003.
[10]
CAMPOS A C P, ANTUNES G F, MATSUMOTO M, et al. Neuroinflammation, Pain and Depression: An Overview of the Main Findings[J/OL]. Front Psychol, 2020, 11: 1825 [2022-12-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412934. DOI: 10.3389/fpsyg.2020.01825.
[11]
ZHOU Y, WANG C, LAN X, et al. Plasma inflammatory cytokines and treatment-resistant depression with comorbid pain: improvement by ketamine[J/OL]. J Neuroinflammation, 2021, 18(1): 200 [2022-12-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444441. DOI: 10.1186/s12974-021-02245-5.
[12]
LIAO H Y, LIN Y W. Electroacupuncture Attenuates Chronic Inflammatory Pain and Depression Comorbidity through Transient Receptor Potential V1 in the Brain[J]. Am J Chin Med, 2021, 49(6): 1417-1435. DOI: 10.1142/s0192415x2150066x.
[13]
LEGAKIS L P, KARIM-NEJAD L, NEGUS S S. Effects of repeated treatment with monoamine-transporter-inhibitor antidepressants on pain-related depression of intracranial self-stimulation in rats[J]. Psychopharmacology (Berl), 2020, 237(7): 2201-2212. DOI: 10.1007/s00213-020-05530-y.
[14]
BURKE N N, FINN D P, ROCHE M. Neuroinflammatory Mechanisms Linking Pain and Depression[J/OL]. Mod Trends Pharmacopsychiatry, 2015, 30: 36-50 [2022-12-29]. https://www.frontiersin.org/articles/10.3389/fpsyg.2020.01825/full. DOI: 10.1159/000435931.
[15]
陈苑苑, 陈京红, 张许来, 等. 抑郁症伴慢性疼痛炎性机制的研究进展[J]. 神经疾病与精神卫生, 2021, 21(9): 636-641. DOI: 10.3969/j.issn.1009-6574.2021.09.006.
CHEN Y Y, CHEN J H, ZHANG X L, et al. Progress on inflammatory mechanism of depression comorbid with chronic pain[J]. Journal of Neuroscience and Mental Health, 2021, 21(9): 636-641. DOI: 10.3969/j.issn.1009-6574.2021.09.006.
[16]
LI Y, ZHANG H, YANG J, et al. P2Y12 receptor as a new target for electroacupuncture relieving comorbidity of visceral pain and depression of inflammatory bowel disease[J/OL]. Chin Med, 2021, 16(1): 139 [2022-12-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686637. DOI: 10.1186/s13020-021-00553-9.
[17]
OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868.
[18]
AMINI M, PEDRAM M M, MORADI A, et al. Single and Combined Neuroimaging Techniques for Alzheimer's Disease Detection[J/OL]. Comput Intell Neurosci, 2021, 2021: 9523039 [2022-12-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292054. DOI: 10.1155/2021/9523039.
[19]
FU C, AISIKAER A, CHEN Z, et al. Different Functional Network Connectivity Patterns in Epilepsy: A Rest-State fMRI Study on Mesial Temporal Lobe Epilepsy and Benign Epilepsy With Centrotemporal Spike[J/OL]. Front Neurol, 2021, 12: 668856 [2022-12-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193721. DOI: 10.3389/fneur.2021.668856.
[20]
CROFTS A, KELLY M E, GIBSON C L. Imaging Functional Recovery Following Ischemic Stroke: Clinical and Preclinical fMRI Studies[J]. J Neuroimaging, 2020, 30(1): 5-14. DOI: 10.1111/jon.12668.
[21]
GONG J, WANG J, QIU S, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis[J/OL]. Transl Psychiatry, 2020, 10(1): 353 [2022-12-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573621. DOI: 10.1038/s41398-020-01036-5.
[22]
ZANG Y, JIANG T, LU Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[23]
ZANG Y F, HE Y, ZHU C Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29(2): 83-91. DOI: 10.1016/j.braindev.2006.07.002.
[24]
CHAFEE M V, HEILBRONNER S R. Prefrontal cortex[J/OL]. Curr Biol, 2022, 32(8): R346-R351 [2022-12-29]. https://pubmed.ncbi.nlm.nih.gov/35472417/. DOI: 10.1016/j.cub.2022.02.071.
[25]
KOLK S M, RAKIC P. Development of prefrontal cortex[J]. Neuropsychopharmacology, 2022, 47(1): 41-57. DOI: 10.1038/s41386-021-01137-9.
[26]
BULUBAS L, PADBERG F, MEZGER E, et al. Prefrontal resting-state connectivity and antidepressant response: no associations in the ELECT-TDCS trial[J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(1): 123-134. DOI: 10.1007/s00406-020-01187-y.
[27]
ATTAL N, POINDESSOUS-JAZAT F, DE CHAUVIGNY E, et al. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial[J]. Brain, 2021, 144(11): 3328-3339. DOI: 10.1093/brain/awab208.
[28]
JANG J H, SONG E M, DO Y H, et al. Acupuncture alleviates chronic pain and comorbid conditions in a mouse model of neuropathic pain: the involvement of DNA methylation in the prefrontal cortex[J]. Pain, 2021, 162(2): 514-530. DOI: 10.1097/j.pain.0000000000002031.
[29]
JIANG X, FU S, YIN Z, et al. Common and distinct neural activities in frontoparietal network in first-episode bipolar disorder and major depressive disorder: Preliminary findings from a follow-up resting state fMRI study[J/OL]. J Affect Disord, 2020, 260: 653-659 [2023-05-01]. https://doi.org/10.1016/j.jad.2019.09.063. DOI: 10.1016/j.jad.2019.09.063.
[30]
LAI C H. The regional homogeneity of cingulate-precuneus regions: The putative biomarker for depression and anxiety[J/OL]. J Affect Disord, 2018, 229: 171-176 [2023-05-01]. https://doi.org/10.1016/j.jad.2017.12.086. DOI: 10.1016/j.jad.2017.12.086.
[31]
KUMMER K K, MITRIC M, KALPACHIDOU T, et al. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain[J/OL]. Int J Mol Sci, 2020, 21(10): 3440 [2022-07-25]. https://doi.org/10.3390/ijms21103440. DOI: 10.3390/ijms21103440.
[32]
BLISS T V, COLLINGRIDGE G L, KAANG B K, et al. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain[J]. Nat Rev Neurosci, 2016, 17(8): 485-496. DOI: 10.1038/nrn.2016.68.
[33]
DAI W, HUANG S, LUO Y, et al. Sex-Specific Transcriptomic Signatures in Brain Regions Critical for Neuropathic Pain-Induced Depression[J/OL]. Front Mol Neurosci, 2022, 15: 886916 [2022-12-29]. https://doi.org/10.3389/fnmol.2022.886916. DOI: 10.3389/fnmol.2022.886916.
[34]
TAN L L, KUNER R. Neocortical circuits in pain and pain relief[J]. Nat Rev Neurosci, 2021, 22(8): 458-471. DOI: 10.1038/s41583-021-00468-2.
[35]
SHENG H Y, LV S S, CAI Y Q, et al. Activation of ventrolateral orbital cortex improves mouse neuropathic pain-induced anxiodepression[J/OL]. JCI Insight, 2020, 5(19): e133625 [2022-12-29]. https://doi.org/10.1172/jci.insight.133625. DOI: 10.1172/jci.insight.133625.
[36]
GRAFF-GUERRERO A, PELLICER F, MENDOZA-ESPINOSA Y, et al. Cerebral blood flow changes associated with experimental pain stimulation in patients with major depression[J]. J Affect Disord, 2008, 107(1-3): 161-168. DOI: 10.1016/j.jad.2007.08.021.
[37]
王晓明,唐雷,丁祥洪, 等. 伴疼痛性躯体症状抑郁症的神经影像学研究进展[J]. 中华精神科杂志, 2018, 51(1): 61-64. DOI: 10.3760/cma.j.issn.1006-7884.2018.01.013.
WANG X M, TANG L, DING X H, et al. Advances in neuroimaging studies of depression with painful physical symptoms[J]. Chinese Journal of Psychiatry, 2018, 51(1): 61-64. DOI: 10.3760/cma.j.issn.1006-7884.2018.01.013
[38]
MALEJKO K, BROWN RC, PLENER PL, et al. Differential neural processing of unpleasant sensory stimulation in patients with major depression[J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(3): 557-565. DOI: 10.1007/s00406-020-01123-0.
[39]
KROPF E, SYAN S K, MINUZZI L, et al. From anatomy to function: the role of the somatosensory cortex in emotional regulation[J]. Braz J Psychiatry, 2019, 41(3): 261-269. DOI: 10.1590/1516-4446-2018-0183.
[40]
WEI X, SHI G, TU J, et al. Structural and Functional Asymmetry in Precentral and Postcentral Gyrus in Patients With Unilateral Chronic Shoulder Pain[J/OL]. Front Neurol, 2022, 13: 792695 [2023-01-04]. https://doi.org/10.3389/fneur.2022.792695. DOI: 10.3389/fneur.2022.792695.
[41]
HOU Q, WANG C, HOU C, et al. Individual differences in pain sensitivity in drug-naive patients with major depressive disorder: an fMRI study[J]. Brain Imaging Behav, 2021, 15(3): 1335-1343. DOI: 10.1007/s11682-020-00332-4.
[42]
梁嘉权, 陆小兵, 徐彩霞, 等. 首发抑郁障碍伴躯体疼痛患者的感觉运动区功能改变[J]. 国际精神病学杂志, 2020, 47(2): 257-261. DOI: 10.13479/j.cnki.jip.2020.02.020.
LIANG J Q, LU X B, XU C X, et al. Functional changes of sensorimotor areas in first-episode major depressive disorder with somatic pain[J]. Journal of International Psychiatry, 2020, 47(2): 257-261. DOI: 10.13479/j.cnki.jip.2020.02.020.
[43]
SHAHHOSSEINI Y, MIRANDA M F. Functional Connectivity Methods and Their Applications in fMRI Data[J/OL]. Entropy (Basel), 2022, 24(3): 390 [2022-12-29]. https://doi.org/10.3390/e24030390. DOI: 10.3390/e24030390.
[44]
ROLLS E T, CHENG W, DU J, et al. Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression[J]. Soc Cogn Affect Neurosci, 2020, 15(1): 75-86. DOI: 10.1093/scan/nsaa014.
[45]
WANG L, ZHAO Y, EDMISTON E K, et al. Structural and Functional Abnormities of Amygdala and Prefrontal Cortex in Major Depressive Disorder With Suicide Attempts[J/OL]. Front Psychiatry, 2019, 10: 923 [2023-05-02]. https://doi.org/10.3389/fpsyt.2019.00923. DOI: 10.3389/fpsyt.2019.00923.
[46]
HU L, XIAO M, AI M, et al. Disruption of resting-state functional connectivity of right posterior insula in adolescents and young adults with major depressive disorder[J/OL]. J Affect Disord, 2019, 257: 23-30 [2023-05-02]. https://doi.org/10.1016/j.jad.2019.06.057. DOI: 10.1016/j.jad.2019.06.057.
[47]
TU Y, JUNG M, GOLLUB R L, et al. Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain[J]. Pain, 2019, 160(6): 1308-1318. DOI: 10.1097/j.pain.0000000000001507.
[48]
BILEK E, ZANG Z, WOLF I, et al. Neural network-based alterations during repetitive heat pain stimulation in major depression[J]. Eur Neuropsychopharmacol, 2019, 29(9): 1033-1040. DOI: 10.1016/j.euroneuro.2019.06.011.
[49]
ZHANG G, MA J, LU W, et al. Comorbid depressive symptoms can aggravate the functional changes of the pain matrix in patients with chronic back pain: A resting-state fMRI study[J/OL]. Front Aging Neurosci, 2022, 14: 935242 [2022-08-10]. https://doi.org/10.3389/fnagi.2022.935242. DOI: 10.3389/fnagi.2022.935242.
[50]
ZHOU W, JIN Y, MENG Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10): 1649-1658. DOI: 10.1038/s41593-019-0468-2.
[51]
SHENG J, LIU S, WANG Y, et al. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain[J/OL]. Neural Plasticity, 2017, 2017: 1-10 [2022-12-29]. https://doi.org/10.1155/2017/9724371. DOI: 10.1155/2017/9724371.
[52]
SERAFINI R A, PRYCE K D, ZACHARIOU V. The Mesolimbic Dopamine System in Chronic Pain and Associated Affective Comorbidities[J]. Biol Psychiatry, 2020, 87(1): 64-73. DOI: 10.1016/j.biopsych.2019.10.018.
[53]
ZHU X, TANG H D, DONG W Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states[J]. Nat Neurosci, 2021, 24(4): 542-553. DOI: 10.1038/s41593-021-00811-x.
[54]
ZHENG C J, VAN DRUNEN S, EGOROVA-BRUMLEY N. Neural correlates of co-occurring pain and depression: an activation-likelihood estimation (ALE) meta-analysis and systematic review[J/OL]. Transl Psychiatry, 2022, 12(1): 196 [2023-01-04]. https://doi.org/10.1038/s41398-022-01949-3. DOI: 10.1038/s41398-022-01949-3.
[55]
VIANA M C, LIM C C W, GARCIA PEREIRA F, et al. Previous Mental Disorders and Subsequent Onset of Chronic Back or Neck Pain: Findings From 19 Countries[J]. J Pain, 2018, 19(1): 99-110. DOI: 10.1016/j.jpain.2017.08.011.
[56]
MOLINA J, AMARO E, ROCHA L G S DA, et al. Functional resonance magnetic imaging (fMRI) in adolescents with idiopathic musculoskeletal pain: a paradigm of experimental pain[J/OL]. Pediatr Rheumatol Online J, 2017, 15(1): 81 [2022-12-29]. https://doi.org/10.1186/s12969-017-0209-6. DOI: 10.1186/s12969-017-0209-6.
[57]
BHATT R R, GUPTA A, MAYER E A, et al. Chronic pain in children: structural and resting-state functional brain imaging within a developmental perspective[J]. Pediatr Res, 2020, 88(6): 840-849. DOI: 10.1038/s41390-019-0689-9.
[58]
ZHANG S, CHEN J M, KUANG L, et al. Association between abnormal default mode network activity and suicidality in depressed adolescents[J/OL]. BMC Psychiatry, 2016, 16(1): 337 [2022-12-29]. DOI: . DOI: 10.1186/s12888-016-1047-7.
[59]
WU F, TU Z, SUN J, et al. Abnormal Functional and Structural Connectivity of Amygdala-Prefrontal Circuit in First-Episode Adolescent Depression: A Combined fMRI and DTI Study[J/OL]. Front Psychiatry, 2019, 10: 983 [2022-12-29]. https://doi.org/10.3389/fpsyt.2019.00983. DOI: 10.3389/fpsyt.2019.00983.
[60]
BENDEZÚ J J, THAI M, WIGLESWORTH A, et al. Adolescent stress experience-expression-physiology correspondence: Links to depression, self-injurious thoughts and behaviors, and frontolimbic neural circuity[J/OL]. J Affect Disord, 2022, 300: 269-279 [2022-12-29]. https://doi.org/10.1016/j.jad.2021.12.098. DOI: 10.1016/j.jad.2021.12.098.

上一篇 基于弥散张量成像及图论分析法的孤独症谱系障碍患者脑结构网络研究进展
下一篇 功能磁共振成像在中西医治疗睡眠障碍中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2