分享:
分享到微信朋友圈
X
综述
增殖型肝细胞癌的MRI特征与研究进展
吕园园 于长江 朱绍成

Cite this article as: LÜ Y Y, YU C J, ZHU S C. MRI features and research progress of proliferative hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(6): 161-165.本文引用格式:吕园园, 于长江, 朱绍成. 增殖型肝细胞癌的MRI特征与研究进展[J]. 磁共振成像, 2023, 14(6): 161-165. DOI:10.12015/issn.1674-8034.2023.06.029.


[摘要] 肝细胞癌(hepatocellular carcinoma, HCC)的病理分型与特定的基因突变和致癌途径密切相关,有研究提出了一种侵袭性亚型:增殖型HCC,该亚型通常具有极差的细胞分化、高甲胎蛋白水平及频繁的微血管侵犯,相较于非增殖型HCC复发率高,预后极差。MRI能够无创性预测增殖型HCC,本文就增殖型HCC的相关MRI特征及基于MRI的影像组学与深度学习技术诊断增殖型HCC的研究进展进行综述,并探讨面临的挑战,为放射科医师识别增殖型HCC提供理论依据,实现临床应用中对增殖型HCC的早期诊断及预后评估。
[Abstract] Pathological subtypes of hepatocellular carcinoma are closely related to specific gene mutations and carcinogenic pathways. Studies have proposed an aggressive subtype: proliferative hepatocellular carcinoma, which usually has poor cell differentiation, high alpha-fetoprotein level and frequent microvascular invasion. Compared with non-proliferative hepatocellular carcinoma, this subtype has a high recurrence rate and a poor prognosis. MRI can noninvasively predict proliferative hepatocellular carcinoma. This paper reviews the MRI characteristics of proliferative hepatocellular carcinoma and the research progress of MRI based imaging omics and deep learning in the diagnosis of proliferative hepatocellular carcinoma, and discuss the challenges to provide theoretical basis for radiologists to identify proliferative hepatocellular carcinoma and to realize the early diagnosis and prognosis evaluation of proliferative hepatocellular carcinoma in clinical application.
[关键词] 增殖型肝细胞癌;细胞角蛋白19;粗梁-团块型肝细胞癌;诊断;影像组学;磁共振成像
[Keywords] proliferative hepatocellular carcinoma;cytokeratin 19;macrotrabecular-massive hepatocellular carcinoma;diagnosis;radiomics;magnetic resonance imaging

吕园园 1, 2   于长江 1, 2   朱绍成 1, 2*  

1 郑州大学人民医院医学影像科,郑州 450003

2 河南省人民医院医学影像科,郑州 450003

通信作者:朱绍成,E-mail:zsc2686@163.com

作者贡献声明:朱绍成设计本研究的方案,对稿件重要内容进行了修改,获得了河南省重点研发与推广专项(科技攻关)基金项目资助;吕园园起草和撰写稿件,获取、分析或解释本研究的数据;于长江获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河南省重点研发与推广专项(科技攻关) 212102310729
收稿日期:2023-01-18
接受日期:2023-05-18
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.06.029
本文引用格式:吕园园, 于长江, 朱绍成. 增殖型肝细胞癌的MRI特征与研究进展[J]. 磁共振成像, 2023, 14(6): 161-165. DOI:10.12015/issn.1674-8034.2023.06.029.

0 前言

       肝细胞癌(hepatocellular carcinoma, HCC)是我国最常见的肝脏原发性恶性肿瘤,也是全球第五大常见的恶性肿瘤以及第三常见的癌症死亡原因[1, 2]。既往在CALDERARO等[3]的研究中提出了HCC的综合分类,将HCC分为增殖型和非增殖型两大亚型,随后世界卫生组织(World Health Organization, WHO)发布的第五版《消化系统肿瘤分类》[4]中将细胞角蛋白19(cytokeratin 19, CK19)阳性表达的HCC、粗梁-团块型HCC(macrotrabecular-massive HCC, MTM-HCC)、肉瘤样HCC及硬化型HCC归类于增殖型HCC。增殖型HCC分化程度极差,常表现出微血管侵犯(microvascular invasion, MVI)、卫星结节等具有侵袭性的病理特征,在乙型病毒性肝炎导致的HCC中普遍存在,其主要分子特征是染色体不稳定性、抑癌基因肿瘤蛋白53(tumor protein 53, TP53)突变及与细胞增殖相关的各种基因组途径激活,包括蛋白激酶B(protein kinase B, Akt)/哺乳动物雷帕霉素靶蛋白(mammalian target ofrapamycin, mTOR)、转化生长因子β(transforming growth factor-β1, TGF-β)和胰岛素样生长因子途径等[5, 6, 7, 8]

       近年来随着影像诊断技术的不断发展,MRI以多参数、多序列、多方位成像及软组织分辨率高等优势,在识别HCC病灶上占据重要地位[9]。研究表明[10]钆塞酸二钠(gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid, Gd-EOB-DTPA)增强MRI的动脉期环形高强化征象是增殖型HCC的独立预测因子,HCC的综合分类(增殖型/非增殖型)是HCC患者总体生存率及肝内、外转移率的独立危险因素,因此早期诊断增殖型HCC能够有效改善患者预后,提高患者生存率。目前MRI诊断增殖型HCC已有了极大进展,尤其是肝细胞特异性对比剂的应用,瘤内特征(病灶内缺血或坏死、病灶内含脂等)、瘤周特征[肿瘤边缘不规则、动脉期环形强化、肝胆期(hepatobiliary phase, HBP)低信号等]及肿瘤表观扩散系数(apparent diffusion coefficient, ADC)值减低等其他影像学征象与增殖型HCC相关,本文总结了增殖型HCC的MRI特征及相关的研究进展,旨在加深增殖型HCC的认识,为临床中早期诊断增殖型HCC及术前评估患者预后提供有效帮助。

1 增殖型HCC共同的影像学征象

1.1 肿瘤边缘

       肿瘤边缘不规则在MRI表现为增强各期相边缘不光滑,局部伴有结节状突起,与周围正常肝实质分界欠清。CK19是胆管细胞和肝祖细胞的标志物[11],超过5%的肿瘤细胞表达CK19的HCC即为CK19阳性表达HCC,研究显示[12]CK19阳性表达的HCC中表现为不规则的肿瘤边缘,MULÉ等[13]研究证明在Gd-EOB-DTPA增强MRI上肿瘤边缘不规则,联合瘤内动脉显影、动脉期瘤周强化、HBP瘤周低信号任意两种以上的辅助征象诊断MTM-HCC的特异度高达94%~96%。当病灶内超过50%的肿瘤细胞区域排列成6层细胞厚度以上的粗梁结构,且被内皮细胞覆盖,周围可见扩张的血管腔,则为MTM-HCC[14],该类HCC常伴有CK19的表达。在组织学上,CK19阳性表达的HCC呈浸润性生长或多灶性结节融合的生长模式可能是MRI上肿瘤边缘不规则的原因,多项研究证明该种生长类型的HCC预后极差,与单结节型或结节外生长的单结节型相比,祖细胞标记物的表达更高[15, 16]。不规则的肿瘤边缘代表肿瘤的异质性,与肿瘤的侵袭性密切相关,常常提示该瘤体出现MVI[17],早期复发风险率高及预后不良[18],这也在增殖型HCC更具侵袭性[3]的研究中得到了理论支持。

1.2 动脉期高强化

       动脉期高强化(arterial phase hyperenhancement, APHE)定义为增强MRI动脉期肿瘤强化程度高于正常肝实质,呈部分或全部强化。在2018版肝脏影像报告和数据系统(Liver Imaging Reporting And Data System, LI-RADS)指南[19]中将APHE分为动脉期非环形高强化和动脉期环形高强化,其中动脉期非环形高强化是诊断HCC的主要影像学征象,也是分类为LI-RADS 5类HCC的必要条件,显示为动脉期环形高强化的HCC则归为LI-RADS M类,常见于非HCC的其他肝脏恶性肿瘤,包括混合型肝癌(combined hepatocellular carcinoma and cholangiocarcinoma, cHCC-CCA)和胆管细胞癌(intrahepatic cholangiocarcinoma, ICC)。KANG等[10]对经病理证实的158例HCC患者展开的研究显示,增殖型HCC表现出动脉期环形高强化,此征象诊断增殖型HCC敏感度、特异度分别为66.9%、88.8%,当动脉期环形高强化结合血清甲胎蛋白(alpha fetoprotein, AFP)水平超过100 ng/mL时,诊断增殖型HCC的特异性增加到98.3%,结果证明动脉期环形高强化是增殖型HCC的独立预测因子,与降低的总生存率和更高的肝内、外转移率有关,在预测增殖型HCC具有明显优势。有研究证明出现动脉期环形高强化的HCC在组织病理学上更具侵袭性的特征[20],包括微血管侵犯、粗梁-团块型、大范围的中央坏死以及肝祖细胞标志物的表达,这也与增殖型HCC表现出动脉期环形高强化的结论一致。LU等[21]的最新研究中对147例HCC患者进行Gd-EOB-DTPA增强MRI扫描,评价了增强各个期相的强化方式并计算代表病灶强化指数和肝实质的相对增强比值进行定量评估,结果表明AFP水平>400 ng/mL,动脉期环形高强化及相对增强比值降低是CK19阳性表达的独立预测因子。此外,CK19伴有胆道分化,可在肿瘤内引起促纤维增生的间质形成[22, 23],增殖型HCC的这种影像特征可能与丰富的纤维间质阻碍动脉期HCC的整体增强有关。

1.3 非周边廓清

       在门脉期和/或延迟期病灶相较于周围正常肝实质表现为低强化,则为非周边廓清,这是诊断HCC的另一主要征象,其主要机制是病灶门静脉供血减少,肿瘤细胞密度增大及纤维组织增生致细胞外间隙容积减低。有研究[24]采用2018版LI-RADS指南中的征象评估了肉瘤样HCC的影像特征,肉瘤样HCC是一种罕见的HCC类型,由具有浸润性生长模式的梭形细胞或间变性肿瘤细胞组成,早期复发率及肝外转移率极高,预后极差[25]。研究结果显示其MRI影像表现通常具有ICC的影像特征,比如动脉期环形高强化、非周边廓清,病灶中央延迟强化和胆道扩张。YOON等[26]和CHOI等[27]的研究显示,CK19阳性表达的HCC及硬化型HCC在延迟期未出现廓清,硬化型HCC的特征是超过50%的肿瘤区域具有明显的纤维间质和肿瘤细胞巢,该类HCC的肿瘤细胞类似于肝祖细胞,与CK19阳性表达的HCC的生物学行为相似[28],CK19阳性的HCC大量纤维组织增生导致对比剂留滞时间延长,这可能是在门脉期和/或延迟期未出现廓清的原因。KANG等[10]研究显示92.9%(39/42)的增殖型HCC显示非周边廓清,与以上研究基本一致。

1.4 肝胆特异期低信号

       HBP是应用肝细胞特异性对比剂Gd-EOB-DTPA增强后进行MRI扫描得到的特异期相。Gd-EOB-DTPA主要通过有机阴离子转运多(organic anionic transporting polypeptides, OATP)进行摄取,经过一种名叫多耐药相关蛋白(multidrug resistance-associated proteins, MRP)的细胞膜转运蛋白排泄,而OATP-MRP通道蛋白的表达不仅受多种转录因子的调控,还与肿瘤细胞的生物学行为密切相关[29]。增殖型HCC在HBP瘤体有显著的低信号[10],既往研究[12]显示,在HBP时CK19阳性表达HCC的肿瘤/肝脏实质的信号强度比(signal intensity, SI)明显低于CK19阴性表达的HCC,该征象预测CK19阳性表达HCC的敏感度、特异度分别为92.1%、59.3%。HCC发生过程中表达的OATP逐渐下降,HCC的组织学等级越高,在HBP表现出的SI值就越低[30],此外另有研究发现低SI的HCC预后极差,这些肿瘤在组织病理学上更容易出现MVI并且通常表现为多灶性、浸润性或弥漫性的生长模式[31],这也对应了增殖型HCC的病理特征。HBP低信号可分为瘤体低信号和瘤周低信号,HBP出现瘤周低信号的机制可解释为:肿瘤细胞在局部浸润周围正常肝组织的过程中导致该区域肝细胞缺氧、受损和代谢异常,进一步影响了肝细胞表面的有机阴离子转运多肽8的正常表达,从而导致瘤周肝细胞无法正常摄取Gd-EOB-DTPA[32]。已有部分研究证明该征象能够预测MVI[33, 34],但目前的研究还未将HBP瘤周低信号与增殖型HCC联合,我们期待未来能有更多相关研究。

2 增殖型HCC子类的特异影像学征象

2.1 肿瘤ADC值减低

       扩散加权成像(diffusion-weighted imaging, DWI)是一种表现组织中水分子扩散运动的功能MRI技术,ADC值可以量化反映HCC的肿瘤分级和微血管侵犯[18,35, 36, 37]。陈玉莹等[38]研究了MRI影像特征在预测HCC CK19表达中的价值,结论显示动脉期信号、动脉期环形强化、DWI靶征和HBP靶征等征象与CK19的表达密切相关,其中DWI靶征是CK19表达阳性HCC的独立危险因素。CHOI等[12]评估了术前进行Gd-EOB-DTPA增强MRI及DWI的142例由慢性乙型病毒性肝炎进展而来的HCC患者,通过多因素分析发现不规则的肿瘤边缘、动脉期环形强化、HBP上肿瘤-肝脏信号强度比值≤0.52及肿瘤-肝脏ADC比值≤0.82是预测CK19阳性表达HCC的独立显著因素,四者联合诊断CK19阳性表达的HCC特异性高达99.5%,在该研究中CK19阳性表达HCC的肿瘤ADC值显著低于CK19阴性HCC,预示着复发风险提高。CHEN等[39]基于Gd-EOB-DTPA增强MRI探讨了MTM-HCC的成像特征,结果表明HCC患者的血小板计数升高(≥163.5×103 Ul-1)、肿瘤-肝脏ADC比值减低(≤1.05)和瘤内坏死或严重缺血是MTM-HCC的独立预测因素,基于以上特征构建的预测MTM-HCC模型的平均曲线下面积(area under the curve, AUC)为0.81。有研究[15]认为表达祖细胞标志物的HCC分化程度差,丰富的纤维基质和紧密堆积的肿瘤细胞导致水分子扩散运动受限,从而表现为肿瘤的ADC值减低。但目前的研究都是基于DWI与ADC值来预测增殖型HCC中CK19表达阳性的HCC与MTM-HCC,这一影像学征象是否普遍适于增殖型HCC的诊断还尚无定论。

2.2 病灶内含脂

       病灶内含脂是指化学位移成像中反相位较同相位局灶性信号减低,该征象常提示早期HCC或癌前病变[40],相较于不含脂肪的HCC进展周期长,转移风险低。研究显示[10]非增殖型HCC在Gd-EOB-DTPA增强MRI上表现为病灶内含脂,非增殖型HCC保留了肝细胞分化标志物的表达,具有染色体稳定性,显示出与正常肝脏非常相似的基因表达谱,是一种侵袭性较低的表型[5, 6, 7, 8],其中有一个子类为脂肪性肝炎型HCC,这可能是容易出现病灶内含脂的原因。而李晓明等[41]的研究显示病灶内含脂、瘤内坏死或缺血是MTM-HCC的独立预测因子,构建模型预测MTM-HCC的AUC值、敏感度和特异度分别为0.799、73.7%和76.8%,这与MTM-HCC更具侵袭性的病理特征相反,尚需大量样本验证。

2.3 病灶内坏死或缺血

       病灶内坏死或缺血表现为在最大横截面直径水平上≥20%的肿瘤区域在增强各个期相均无强化,是诊断MTM-HCC的重要影像学征象。MULÉ等[13]对152例HCC的研究显示,病灶内坏死、AFP>100 ng/mL和巴塞罗那分期(Barcelona Clinic Liver Cancer stage, BCLC)B或C期能够独立预测MTM-HCC,病灶内坏死诊断MTM-HCC的敏感度、特异度分别为65%、93%,而CHEN等[39]与李晓明等[41]的研究也得到了相似结果。MTM-HCC特征性的组织病理学特征包括缺氧微环境和大量坏死,其遗传图谱显示MTM-HCC与缺氧相关基因表达密切相关,包括碳酸酐酶9(carbonic anhydrase Ⅸ, CAⅨ)、促红细胞生成素和血管内皮生长因子A(vascular endothelial growth factor, VEGFA)[42]。病灶内坏死或缺血的病理机制可以解释为MTM-HCC肿瘤微环境中的血管生成素2破坏血管的稳定性和促进血管再生,同时破坏内皮细胞和周围内皮细胞之间的相互作用,对VEGFA的敏感性增加[43, 44],基质内皮细胞特异性分子1(endothelial specific molecule 1, ESM1)、VEGFA与血管生成素2三者共同作用使肿瘤周围的新血管形成,导致中央灌注迅速减低进而发生坏死。

3 基于影像组学与深度学习技术预测增殖型HCC

       作为近年来HCC影像方面的应用热点,影像组学可以从多模态医学图像中提取高通量的影像特征,结合人工智能或机器学习等计算机算法,进而揭示某些特征与HCC诊断、病理和预后的相关性[45, 46],为个体化治疗提供重要信息。CHEN等[47]基于MRI组学特征联合临床参数和影像学生物标志物计算CK19阳性表达的HCC在T2WI、增强各个期相及ADC值对应的直方图参数,进而得到HBP上的肿瘤-肝脏ADC比值及肿瘤/肝脏的SI值,结论表明AFP≥155 ng/mL,肿瘤边缘不规则、靶样外观及无马赛克结构是HCC表达祖细胞标志物的重要预测因素。WANG等[48]在对227例HCC患者的研究中提取了17个影像组学特征,在训练组和验证组的AUC值分别为0.951、0.822,将组学特征联合AFP、动脉期环形高强化、肿瘤边缘不规则构建的最终模型在训练组的敏感度、特异度为81.8%、97.4%,在验证组的敏感度、特异度为76.9%、81.8%,在两组间均显示出良好性能。YANG等[49]采用多元逻辑回归、支持向量机、随机森林和人工神经网络(artificial neural network, ANN)四种不同的机器学习算法构建了具有最优特征的影像组学模型,利用受试者工作特征(receiver operating characteristic, ROC)曲线评价相应组学模型的诊断性能,结果显示包含12个组学特征的ANN衍生组合模型显示出最佳的诊断性能,训练组和A、B验证组的AUC值分别为0.857、0.726和0.790,因此认为基于多序列MRI影像组学特征的组合模型可用于CK19阳性表达HCC的准确预测,从而帮助临床医师制订个性化的治疗策略。ZHU等[50]使用影像组学列线图对MTM-HCC进行预测,结果显示该列线图预测MTM-HCC的AUC值为0.75,影像组学评分(Rad-score)和瘤内脂质信号是MTM-HCC的独立预测因子。但是影像组学仍处于起步阶段,还存在部分局限性,不仅对感兴趣区的选择尚无统一标准,而且精确的图像分割大多依赖于人工勾画,前期对于图像的处理需耗费大量精力,更易受操作者影响。

       CHEN等[51]在此研究基础上联合深度学习技术构建的DLR模型解决了这一难题,深度学习技术能够自动提取MRI影像特征,构建训练模型后可以实现影像的全自动分析[52, 53],结论显示DLR模型结合AFP预测CK19阳性表达HCC的敏感度高达96%,并表现出显著的稳定性。

4 总结与展望

       近年来基于MRI相关研究的无创性影像诊断方法在临床得到了广泛应用,MRI多序列、多模态成像,以及基于MRI的影像组学和深度学习技术为术前诊断增殖型HCC提供了广阔的发展前景。但目前各项研究也存在着缺乏客观统一的标准规范、样本量小且大部分为单中心、回顾性研究等问题。因此,未来应侧重于向多中心、大样本、前瞻性研究的发展,我们也期待未来能有更规范统一的量化标准,联合人工智能等高新技术从临床图像中提取隐藏的定性和定量影像特征数据以构建新的模型,进而实现对增殖型HCC更精确的预测,为临床个体化治疗方案提供依据。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Global Burden of Disease Cancer Collaboration, FITZMAURICE C, ABATE D, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2019, 5(12): 1749-1768. DOI: 10.1001/jamaoncol.2019.2996.
[3]
CALDERARO J, ZIOL M, PARADIS V, et al. Molecular and histological correlations in liver cancer[J]. J Hepatol, 2019, 71(3): 616-630. DOI: 10.1016/j.jhep.2019.06.001.
[4]
NAGTEGAAL I D, ODZE R D, KLIMSTRA D, et al. The 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188. DOI: 10.1111/his.13975.
[5]
NAULT J C, GALLE P R, MARQUARDT J U. The role of molecular enrichment on future therapies in hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1): 237-247. DOI: 10.1016/j.jhep.2018.02.016.
[6]
ZUCMAN-ROSSI J, VILLANUEVA A, NAULT J C, et al. Genetic landscape and biomarkers of hepatocellular carcinoma[J/OL]. Gastroenterology, 2015, 149(5): 1226-1239.e4 [2023-05-02]. https://www.gastrojournal.org/article/S0016-5085(15)00869-0/fulltext. DOI: 10.1053/j.gastro.2015.05.061.
[7]
NAULT J C, MARTIN Y, CARUSO S, et al. Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 164-182. DOI: 10.1002/hep.30811.
[8]
KRINSKY G, SHANBHOGUE K. Proliferative versus nonproliferative hepatocellular carcinoma: clinical and imaging implications[J]. Radiology, 2021, 300(3): 583-585. DOI: 10.1148/radiol.2021211316.
[9]
SHIM J H, HAN S, SHIN Y M, et al. Prognostic performance of preoperative gadoxetic acid-enhanced MRI in resectable hepatocellular carcinoma[J]. J Magn Reson Imaging, 2015, 41(4): 1115-1123. DOI: 10.1002/jmri.24660.
[10]
KANG H J, KIM H, LEE D H, et al. Gadoxetate-enhanced MRI features of proliferative hepatocellular carcinoma are prognostic after surgery[J]. Radiology, 2021, 300(3): 572-582. DOI: 10.1148/radiol.2021204352.
[11]
TANG W Q, XUE J, LUO L, et al. Kangxianruangan Granule-containing serum mediated inhibition of hepatic oval cell differentiation into hepatocellular carcinoma cells via the Wnt-1/β-catenin signaling pathway[J/OL]. Mol Med Rep, 2022, 25(2): 55 [2023-01-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8711029/. DOI: 10.3892/mmr.2021.12571.
[12]
CHOI S Y, KIM S H, PARK C K, et al. Imaging features of gadoxetic acid-enhanced and diffusion-weighted MR imaging for identifying cytokeratin 19-positive hepatocellular carcinoma: a retrospective observational study[J]. Radiology, 2018, 286(3): 897-908. DOI: 10.1148/radiol.2017162846.
[13]
MULÉ S, GALLETTO PREGLIASCO A, TENENHAUS A, et al. Multiphase liver MRI for identifying the macrotrabecular-massive subtype of hepatocellular carcinoma[J]. Radiology, 2020, 295(3): 562-571. DOI: 10.1148/radiol.2020192230.
[14]
CALDERARO J, COUCHY G, IMBEAUD S, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification[J]. J Hepatol, 2017, 67(4): 727-738. DOI: 10.1016/j.jhep.2017.05.014.
[15]
JEONG H T, KIM M J, KIM Y E, et al. MRI features of hepatocellular carcinoma expressing progenitor cell markers[J]. Liver Int, 2012, 32(3): 430-440. DOI: 10.1111/j.1478-3231.2011.02640.x.
[16]
MURAKATA A, TANAKA S, MOGUSHI K, et al. Gene expression signature of the gross morphology in hepatocellular carcinoma[J]. Ann Surg, 2011, 253(1): 94-100. DOI: 10.1097/SLA.0b013e3181f9bc00.
[17]
CHEN J B, ZHOU J, KUANG S C, et al. Liver imaging reporting and data system category 5: MRI predictors of microvascular invasion and recurrence after hepatectomy for hepatocellular carcinoma[J]. AJR Am J Roentgenol, 2019, 213(4): 821-830. DOI: 10.2214/AJR.19.21168.
[18]
朱永健, 冯冰, 王炳智, 等. 钆塞酸二钠增强磁共振成像联合磁共振扩散加权成像对肝细胞癌微血管侵犯和预后的预测价值[J]. 中华肿瘤杂志, 2021, 43(3): 312-317. DOI: 10.3760/cma.j.cn112152-20191009-00652.
ZHU Y J, FENG B, WANG B Z, et al. Value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging and diffusion-weighted MR imaging in predicting microvascular invasion in hepatocellular carcinoma and the prognostic significance[J]. Chin J Oncol, 2021, 43(3): 312-317. DOI: 10.3760/cma.j.cn112152-20191009-00652.
[19]
林斌, 周智鹏. 肝脏影像报告和数据系统在肝细胞癌诊断中的研究进展[J]. 国际医学放射学杂志, 2020, 43(6): 686-692. DOI: 10.19300/j.2020.Z18143.
LIN B, ZHOU Z P. Research progress of Liver Imaging Reporting and Data System in the diagnosis of hepatocellular carcinoma[J]. Int J Med Radiol, 2020, 43(6): 686-692. DOI: 10.19300/j.2020.Z18143.
[20]
RHEE H, AN C, KIM H Y, et al. Hepatocellular carcinoma with irregular rim-like arterial phase hyperenhancement: more aggressive pathologic features[J]. Liver Cancer, 2019, 8(1): 24-40. DOI: 10.1159/000488540.
[21]
LU M T, QU Q, XU L, et al. Prediction for aggressiveness and postoperative recurrence of hepatocellular carcinoma using gadoxetic acid-enhanced magnetic resonance imaging[J]. Acad Radiol, 2023, 30(5): 841-852. DOI: 10.1016/j.acra.2022.12.018.
[22]
黄召弟, 向颖, 孟祥水, 等. 肝细胞癌MRI延迟强化特征与纤维组织分布的关系[J]. 中华放射学杂志, 2017, 51(3): 183-187. DOI: 10.3760/cma.j.issn.1005?1201.2017.03.006.
HUANG Z D, XIANG Y, MENG X S, et al. MRI features of hepatocellular carcinomas with different fibrotic stroma and their relationships with findings of delayed contrast-enhancement[J]. Chin J Radiol, 2017, 51(3): 183-187. DOI: 10.3760/cma.j.issn.1005?1201.2017.03.006.
[23]
HU X X, WANG W T, YANG L, et al. MR features based on LI-RADS identify cytokeratin 19 status of hepatocellular carcinomas[J]. Eur J Radiol, 2019, 113: 7-14. DOI: 10.1016/j.ejrad.2019.01.036.
[24]
SEO N, KIM M J, RHEE H. Hepatic sarcomatoid carcinoma: magnetic resonance imaging evaluation by using the liver imaging reporting and data system[J].Eur Radiol, 2019, 29(7): 3761-3771. DOI: 10.1007/s00330-019-06052-8.
[25]
LIAO S H, SU T H, JENG Y M, et al. Clinical manifestations and outcomes of patients with sarcomatoid hepatocellular carcinoma[J]. Hepatology, 2019, 69(1): 209-221. DOI: 10.1002/hep.30162.
[26]
YOON J K, CHOI J Y, RHEE H, et al. MRI features of histologic subtypes of hepatocellular carcinoma: correlation with histologic, genetic, and molecular biologic classification[J]. Eur Radiol, 2022, 32(8): 5119-5133. DOI: 10.1007/s00330-022-08643-4.
[27]
CHOI S Y, KIM Y K, MIN J H, et al. Added value of ancillary imaging features for differentiating scirrhous hepatocellular carcinoma from intrahepatic cholangiocarcinoma on gadoxetic acid-enhanced MR imaging[J]. Eur Radiol, 2018, 28(6): 2549-2560. DOI: 10.1007/s00330-017-5196-y.
[28]
HUANG S C, LIAO S H, SU T H, et al. Clinical manifestations and outcomes of patients with scirrhous hepatocellular carcinoma[J].Hepatol Int, 2021, 15(2): 472-481. DOI: 10.1007/s12072-021-10146-1.
[29]
WANG F Q, NUMATA K, NIHONMATSU H, et al. Intraprocedurally EOB-MRI/US fusion imaging focusing on hepatobiliary phase findings can help to reduce the recurrence of hepatocellular carcinoma after radiofrequency ablation[J]. Int J Hyperthermia, 2020, 37(1): 1149-1158. DOI: 10.1080/02656736.2020.1825837.
[30]
KITAO A, MATSUI O, YONEDA N, et al. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging[J]. Eur Radiol, 2011, 21(10): 2056-2066. DOI: 10.1007/s00330-011-2165-8.
[31]
CHOI J W, LEE J M, KIM S J, et al. Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced MR Images and their value as an imaging biomarker[J]. Radiology, 2013, 267(3): 776-786. DOI: 10.1148/radiol.13120775.
[32]
ZHU Y J, FENG B, WANG B Z, et al. Value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging and diffusion-weighted MR imaging in predicting microvascular invasion in hepatocellular carcinoma and the prognostic significance[J]. Chin J Oncol, 2021, 43(3): 312-317. DOI: 10.3760/cma.j.cn112152-20191009-00652.
[33]
HU H Y, QI S, ZENG S L, et al. Importance of microvascular invasion risk and tumor size on recurrence and survival of hepatocellular carcinoma after anatomical resection and non-anatomical resection[J/OL]. Front Oncol, 2021, 11: 621622 [2023-01-31]. https://www.frontiersin.org/articles/10.3389/fonc.2021.621622/full. DOI: 10.3389/fonc.2021.621622.
[34]
SHIMADA S, KAMIYAMA T, KAKISAKA T, et al. Impact of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging on the prognosis of hepatocellular carcinoma after surgery[J]. JGH Open, 2021, 5(1): 41-49. DOI: 10.1002/jgh3.12444.
[35]
JIANG H Y, CHEN J, XIA C C, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis[J]. World J Gastroenterol, 2018, 24(22): 2348-2362. DOI: 10.3748/wjg.v24.i22.2348.
[36]
KIM J G, JIANG K M, MIN G S, et al. Questionable correlation of the apparent diffusion coefficient with the histological grade and microvascular invasion in small hepatocellular carcinoma[J/OL]. Clin Radiol, 2019, 74(5): 406.e19-406.e27 [2023-01-31]. https://linkinghub.elsevier.com/retrieve/pii/S0009-9260(19)30081-9. DOI: 10.1016/j.crad.2019.01.019.
[37]
LV X L, CHEN M J, KONG C L, et al. Construction of a novel radiomics nomogram for the prediction of aggressive intrasegmental recurrence of HCC after radiofrequency ablation[J/OL]. Eur J Radiol, 2021, 144: 109955 [2023-01-31]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(21)00436-8. DOI: 10.1016/j.ejrad.2021.109955.
[38]
陈玉莹, 蔡华崧, 杨艳红, 等. Gd-EOB-DTPA增强MRI预测肝细胞癌CK19表达[J]. 中山大学学报(医学科学版), 2019, 40(6): 866-874. DOI: 10.1259/bjr.20180017.
CHEN Y Y, CAI H S, YANG Y H, et al. Preoperative prediction of the expression of CK19 in hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI[J]. J Sun Yat Sen Univ Med Sci, 2019, 40(6): 866-874. DOI: 10.1259/bjr.20180017.
[39]
CHEN J, XIA C C, DUAN T, et al. Macrotrabecular-massive hepatocellular carcinoma: imaging identification and prediction based on gadoxetic acid-enhanced magnetic resonance imaging[J]. Eur Radiol, 2021, 31(10): 7696-7704. DOI: 10.1007/s00330-021-07898-7.
[40]
NIENDORF E, SPILSETH B, WANG X, et al. Contrast enhanced MRI in the diagnosis of HCC[J]. Diagnostics, 2015, 5(3): 383-398. DOI: 10.3390/diagnostics5030383.
[41]
李晓明, 蔡萍, 程琳, 等. 钆塞酸二钠增强磁共振成像检查术前诊断粗梁-团块型肝细胞肝癌的临床价值[J]. 中华消化外科杂志, 2021, 20(11): 1218-1226. DOI: 10.3760/cma.j.cn115610-20210809-00385.
LI X M, CAI P, CHENG L, et al. Clinical value of gadolinium ethoxybenzyl diethylanetriaminepentaacetic acid enhanced MRI in the preoperative diagnosis of macrotrabecular-massive hepatocellular carcinoma[J]. Chin J Dig Surg, 2021, 20(11): 1218-1226. DOI: 10.3760/cma.j.cn115610-20210809-00385.
[42]
CALDERARO J, MEUNIER L, NGUYEN C T, et al. ESM1 as a marker of macrotrabecular-massive hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(19): 5859-5865. DOI: 10.1158/1078-0432.CCR-19-0859.
[43]
VILLA E, CRITELLI R, LEI B, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study[J]. Gut, 2016, 65(5): 861-869. DOI: 10.1136/gutjnl-2014-308483.
[44]
LOY L M, LOW H M, CHOI J Y, et al. Variant hepatocellular carcinoma subtypes according to the 2019 WHO classification: an imaging-focused review[J]. AJR Am J Roentgenol, 2022, 219(2): 212-223. DOI: 10.2214/AJR.21.26982.
[45]
GONG X Q, TAO Y Y, WU Y K, et al. Progress of MRI radiomics in hepatocellular carcinoma[J/OL]. Front Oncol, 2021, 11: 698373 [2023-01-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488263/. DOI: 10.3389/fonc.2021.698373.
[46]
LV K, CAO X, DU P, et al. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(20): 2176-2183. DOI: 10.3748/wjg.v28.i20.2176.
[47]
CHEN J, WU Z R, XIA C C, et al. Noninvasive prediction of HCC with progenitor phenotype based on gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(2): 1232-1242. DOI: 10.1007/s00330-019-06414-2.
[48]
WANG W T, GU D S, WEI J W, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5): 3004-3014. DOI: 10.1007/s00330-019-06585-y.
[49]
YANG F, WAN Y D, XU L, et al. MRI-radiomics prediction for cytokeratin 19-positive hepatocellular carcinoma: a multicenter study[J/OL]. Front Oncol, 2021, 11: 672126 [2023-01-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406635/. DOI: 10.3389/fonc.2021.672126.
[50]
ZHU Y M, WENG S P, LI Y M, et al. A radiomics nomogram based on contrast-enhanced MRI for preoperative prediction of macrotrabecular- massive hepatocellular carcinoma[J]. Abdom Radiol (NY), 2021, 46(7): 3139-3148. DOI: 10.1007/s00261-021-02989-x.
[51]
CHEN Y Y, CHEN J, ZHANG Y, et al. Preoperative prediction of cytokeratin 19 expression for hepatocellular carcinoma with deep learning radiomics based on gadoxetic acid-enhanced magnetic resonance imaging[J]. J Hepatocell Carcinoma, 2021, 8: 795-808. DOI: 10.2147/JHC.S313879.
[52]
OESTMANN P M, WANG C J, SAVIC L J, et al. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver[J]. Eur Radiol, 2021, 31(7): 4981-4990. DOI: 10.1007/s00330-020-07559-1.
[53]
CALDERARO J, SERAPHIN T P, LUEDDE T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma[J]. J Hepatol, 2022, 76(6): 1348-1361. DOI: 10.1016/j.jhep.2022.01.014.

上一篇 MRI及影像组学评估不同分子亚型乳腺癌新辅助治疗疗效的研究进展
下一篇 mpMRI影像组学在前列腺癌诊疗中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2