分享:
分享到微信朋友圈
X
基础研究
新生大鼠窒息后缺氧脑损伤模型的磁共振影像与病理对照研究
谢北辰 闫瑞芳 任继鹏 牛劲 李海明 杜朝阳

Cite this article as: XIE B C, YAN R F, REN J P, et al. Study of conventional MRI combined with SWI on brain damage after asphyxia in neonatal rats and compared with pathological[J]. Chin J Magn Reson Imaging, 2023, 14(7): 108-114.本文引用格式:谢北辰, 闫瑞芳, 任继鹏, 等. 新生大鼠窒息后缺氧脑损伤模型的磁共振影像与病理对照研究[J]. 磁共振成像, 2023, 14(7): 108-114. DOI:10.12015/issn.1674-8034.2023.07.019.


[摘要] 目的 探讨常规MRI联合磁敏感加权成像(susceptibility-weighted imaging, SWI)对单纯缺氧法建立新生大鼠窒息后缺氧脑损伤模型病理类型的研究,并从组织学探讨缺氧对皮层及海马的影响。材料与方法 将新生7日龄SD(Sprague Dawley)大鼠随机分为窒息组与对照组,窒息组幼鼠置于封闭小室内进行氧浓度为1%的缺氧5 min-氧浓度为21%的复氧3 min循环,累计缺氧30 min;对照组置于相同小室内相同时间。缺氧过程、缺氧后、造模后(1、3、7 d)进行行为学观察,并在扫描后1、3、7 d进行T1WI、T2WI及SWI序列扫描。根据MRI异常信号部位进行苏木素-伊红染色,观察异常信号区病理损伤类型。采用Nissl染色观察幼鼠皮层、海马齿状核(dentate grrus, DG)区、CA1(corn ammonis 1)及CA3(corn ammonis 3)区神经元存活情况;采用免疫组化染色检测凋亡相关蛋白Caspase-3的表达。结果 幼鼠在缺氧后1、3、7 d均出现癫痫发作。MRI及SWI显示脑损伤类型包括脑室扩大、脑软化灶形成、脑室及脑实质内出血及微血管扩张。Nissl染色显示皮层、海马DG区神经元在缺氧后1、3、7 d均较对照组减少(P<0.05),CA3区神经元在缺氧后7 d减少(P<0.05)。免疫组织化学染色显示,海马DG区Caspase-3表达在缺氧后1、3、7 d均较对照组增高(P<0.05),皮层表达在缺氧后3、7 d均较对照组增高(P<0.05);海马CA1区、CA3区表达在缺氧后7 d较对照组增高(P<0.05)。结论 MRI及SWI提示急性间歇性缺氧早期即可存在脑损伤,缺氧脑损伤可导致癫痫发作。提示临床将MRI及SWI作为有窒息病史且怀疑脑损伤患儿的常规检查,并应尽早进行临床干预。
[Abstract] Objective To investigate the pathological types of hypoxic brain injury in neonatal rats after asphyxia by conventional magnetic resonance imaging (MRI) and susceptibility-weighted imaging (SWI), and to explore the effects of hypoxia on the cortex and hippocampus.Materials and Methods Neonatal 7-day-old rats were randomly divided into asphyxiation and control groups. Pups in the asphyxiation group were placed in a closed chamber for a hypoxia with the oxygen concentration with 1% (5 min)-reoxygenation with the oxygen concentration of 21% (3 min) cycle for a cumulative hypoxia time of 30 min; control rats were placed in the same chamber with air for the same time. Behavioral changes and changes in general conditions of baby rats during and after hypoxia were observed during asphyxia. Abnormal behavioral observations were made and recorded at 1 d, 3 d and 7 d after hypoxia. T1WI, T2WI and SWI sequences were performed at 1 d, 3 d and 7 d after modelling. Hematoxylin-Eosin staining was performed according to the site of abnormal MRI signal to observe the type of pathological injury in the abnormal signal area. Neuronal survival in the cortical, dentate grrus (DG), CA1 (corn ammonis 1) and CA3 (corn ammonis 3) regions of the hippocampus of young rats was observed by Nissl staining; the expression of apoptosis-related protein Caspase-3 was detected by immunohistochemical staining.Results Seizures were observed in pups at 1 d, 3 d and 7 d after hypoxia. MRI and SWI showed types of brain injury including enlarged ventricles, foci of cerebral softening, intraventricular and parenchymal hemorrhage and microvascular dilatation. Nissl staining showed a decrease in neurons in the cortical and hippocampal DG regions at 1 d, 3 d and 7 d after hypoxia compared to the control group (P<0.05), and a decrease in neurons in the CA3 region at 7 d after hypoxia (P<0.05). Immunohistochemical staining showed that the expression of Caspase-3 in the DG region of the hippocampus was higher than that of the control group at 1 d, 3 d and 7 d after hypoxia (P<0.05), and the expression in the cortex was higher than that of the control group at 3 d and 7 d after hypoxia (P<0.05); the expression in the CA1 and CA3 regions of the hippocampus was higher than that of the control group at 7 d after hypoxia (P<0.05).Conclusions MRI and SWI show that brain damage can be present early in acute intermittent hypoxia and that hypoxic brain damage can lead to seizures. This suggests that MRI and SWI should be used as routine clinical investigations in children with a history of asphyxia and suspected brain injury, and that early clinical intervention should be undertaken.
[关键词] 缺氧;脑损伤;癫痫;新生大鼠;磁敏感加权成像;磁共振成像
[Keywords] hypoxia;brain injury;seizure;neonatal rats;magnetic sensitivity-wighted imaging;magnetic resonance imaging

谢北辰 1   闫瑞芳 1*   任继鹏 1   牛劲 1, 2   李海明 2   杜朝阳 2  

1 新乡医学院第一附属医院磁共振科,新乡 453100

2 新乡医学院第一附属医院河南省神经修复重点实验室,新乡 453100

通信作者:闫瑞芳,E-mail:yrf718@163.com

作者贡献声明:闫瑞芳设计本研究的方案,对稿件重要的学术内容进行了修改;谢北辰起草和撰写稿件,获取、分析或解释本研究的数据;任继鹏对本研究中影像扫描提供技术支持;牛劲、李海明、杜朝阳获取、分析或解释本研究的数据,对稿件的重要学术内容进行了修改;闫瑞芳获得河南省医学科技攻关计划项目资助。全体作者均同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河南省医学科技攻关计划项目 LHGJ20200519
收稿日期:2023-02-10
接受日期:2023-06-28
中图分类号:R445.2  R-332 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.07.019
本文引用格式:谢北辰, 闫瑞芳, 任继鹏, 等. 新生大鼠窒息后缺氧脑损伤模型的磁共振影像与病理对照研究[J]. 磁共振成像, 2023, 14(7): 108-114. DOI:10.12015/issn.1674-8034.2023.07.019.

0 前言

       出生窒息通常认为与分娩时发生缺氧缺血相关[1],产前或产后因素导致气体交换障碍时,出现低氧血症及代谢性酸中毒,重要器官部分或完全缺氧,甚至导致新生儿缺氧缺血性脑病(hypoxic-ischemic encephalopathy, HIE)的发生[2]。新生儿HIE的病理生理过程复杂,包括氧化应激、细胞内Ca2+蓄积、线粒体能量衰竭、兴奋性毒性及胶质细胞增生[3]。HIE发病率约为每1000例活产儿1.5~10.0例,其不良后果可导致永久性神经系统损伤,例如癫痫、智力障碍、行为障碍,甚至脑瘫[4]

       动物模型是用于研究HIE发生、发展及评价治疗的有效途径之一[5]。应用最广泛的是Rice-Vannucci模型及其改良版,该模型选择新生7日龄大鼠结扎单侧颈动脉后8%氧浓度低氧处理2 h,从而建立缺氧缺血性脑损伤,该模型被用于研究缺血缺氧后的损伤病理生理及各种治疗效果的评价[6, 7, 8]。近年来,以单纯缺氧的方式模拟缺氧脑损伤的方法也有所研究。将新生2日龄大鼠置于100%氮气中25 min模拟早产儿窒息后缺氧脑损伤[9],通过生化检测及行为测定验证了该模型的可行性。单纯缺氧可诱发新生11日龄大鼠癫痫发作[10],且癫痫发作与pH值变化程度相关,窒息后导致幼鼠空间、学习及记忆障碍。

       常规MRI技术,包括T1WI、T2WI、扩散加权成像(diffusion weighted imaging, DWI)等序列已被广泛应用于人体及动物的研究[11, 12],可以识别脑损伤的位置、范围、严重程度及病理损伤类型。磁敏感加权成像(susceptibility-weighted magnetic resonance imaging, SWI)可以显示及鉴别脑实质的微出血及扩张的血管[13, 14]

       本研究结合单纯缺氧的方式并加以改良,选择新生7日龄大鼠置于1%低氧环境中进行缺氧,于缺氧时、缺氧后、缺氧后1、3、7 d对其进行行为学观察,并进行MRI及SWI扫描,结合苏木素-伊红(hematoxylin and eosin, HE)染色、Nissl染色及cleaved-Caspase-3免疫组织化学染色对缺氧后脑损伤进行病理对照研究。本研究验证了急性缺氧可以导致脑损伤,模拟新生儿HIE,并且在缺氧后MRI可以发现脑损伤的异常信号。

1 材料与方法

       本研究获得新乡医学院第一附属医院医学伦理审查委员会审核批准(审批件编号:2020068、2019045)。

1.1 新生大鼠缺氧脑损伤模型的建立

       选择SP新生7日龄SD(Sprague Dawley)大鼠60只(新乡医学院实验动物中心提供)。体质量约11~15 g,雌雄均有。排除在实验前期受伤及发育异常的幼鼠,最终进行实验的幼鼠为51只。随机将新生大鼠分为窒息组(n=42)与对照组(n=9)。将窒息组新生大鼠置于半密封小室内,将氧气浓度检测仪(SMART SENSOR,AR8100)置于小室内,实时检测小室内氧气浓度及温度。(1)窒息组:模拟窒息诱导缺氧时,将幼鼠放入小室内,进气口连接100%氮气(N2),以5 L/min的流量通入小室内,待氧浓度降低至1%时,同时关闭进气口和出气口,开始计时5 min,期间观察幼鼠皮肤颜色,呼吸及活动程度;之后立即打开小室,将幼鼠移至正常环境中复氧3 min。以此缺氧(O2≤1%)5 min—复氧(O2=21%)3 min循环累计6个循环,总缺氧时间达30 min。(2)对照组:将大鼠置于实验小室内,通入室内空气持续30 min。

1.2 癫痫行为发作评估

       参考改良的Racine量表[15]对缺氧期间、缺氧-复氧过程中、缺氧-复氧后1 h、缺氧-复氧后1、3、7 d进行观察有无癫痫发作及癫痫发作的表现。该评分量表将癫痫发作分为Ⅰ~Ⅴ等级,癫痫程度越严重,分级越高,其中包括了一些阵发性的异常表现,被归为不能评级的癫痫发作症状(表1)。

表1  新生大鼠窒息的不同类型癫痫发作和用于划分癫痫严重程度的发作评分系统
Tab. 1  Different types of neonatal seizures in neonatal rats with asphyxia and seizure scoring system used for grading seizure severity

1.3 MRI及图像处理

       将窒息组分别于造模后1、3、7 d各抽取14只进行MRI扫描;对照组于相同时间点各取3只进行扫描。扫描前、中采用异氟烷持续吸入麻醉。

       扫描仪器:GE DISCOVERY MR750 3.0 T MR扫描仪,线圈:8通道小动物专用线圈(苏州众志)。扫描序列:T1WI(TR 786 ms,TE 12 ms,层厚1.0 mm,间隔0 mm,FOV 4.0 cm×3.6 cm,矩阵256×192,NEX 4),扫描时间4 min 35 s;T2WI(TR 3000 ms,TE 105 ms,层厚1.0 mm,间隔0 mm,FOV 6.0 cm×6.0 cm,矩阵288×288,NEX 4),扫描时间3 min 48 s;DWI(TR 6000 ms,TE 62 ms,层厚1.0 mm,间隔0 mm,FOV 6.0 cm×6.0 cm,矩阵284×248,NEX 4),扫描时间3 min 12 s;SWI(TR 8115 ms,TE 44 ms,层厚0.8 mm,间隔-0.4 mm,FOV 11 cm×0.8 cm,矩阵384×320,NEX 0.69),扫描时间6 min 22 s。SWI序列扫描完成后生成SWI幅度图、相位图,传输至ADW 2.6工作站生成最小密度投影图。

1.4 HE染色、Nissl染色

       MRI扫描完成后观察幼鼠是否存活,如已死亡则排除。存活幼鼠在麻醉状态下立即心脏灌流后解剖取脑,使用4%多聚甲醛固定样本48 h后进行石蜡包埋,制成蜡块。

       石蜡切片以冠状位修片至侧脑室层面后开始切片,切片厚度为5 μm。结合MRI图像,如有异常信号区域,定位后选择异常信号区域进行切片,连续切10张片,摊片、展片、于载玻片上烤片。其余用于计数统计的切片选择海马各区显示良好的层面连续10张冠状切片,载玻片烘干后以备HE染色、Nissl染色及免疫组织化学检测。

       (1)HE染色:65℃烤片90 min后二甲苯、乙醇复水。苏木素染色3 min,伊红染色2 min。晾干、封片。光镜下观察异常信号区细胞形态,选择海马CA1(corn ammonis 1)、CA3(corn ammonis 3)、齿状核(dentate grrus, DG)区及皮层作为感兴趣区(region of interest, ROI)并观察神经元形态。

       (2)Nissl染色:载玻片放置65℃烤片机90 min后二甲苯浸泡3次,5 min/次,100%、90%、70%乙醇浸泡各2 min,蒸馏水浸泡2 min,37℃恒温下Nissl液染色30 min,自来水洗净晾干、封片。400倍光镜下观察并统计各ROI神经元数目,每个ROI选择5个视野并采集图像,使用Image-J对正常神经元计数,取平均值并统计分析。

1.5 免疫组织化学检测

       石蜡切片65℃烤片后复水(步骤同HE染色至苏木素染色前)。枸橼酸钠抗原修复15 min,3%双氧水去除内源性过氧化物酶10 min,0.2% Triton通透10 min,山羊血清封闭1 h。以1∶200比例稀释Caspase-3抗体,放入湿盒中保持4℃孵育抗体过夜。室温复温30 min后回收一抗,PBS洗5次,每次5 min。孵育抗兔IgG二抗30 min,PBS洗3次,每次5 min。3,3'-二氨基联苯胺显色终止反应,苏木素染色细胞核后晾干、封片。光镜下观察各ROI中Caspase-3蛋白表达情况,采用Image Pro Plus软件测定各ROI的积分光密度值(integrated optical density, IOD)值,取平均值进行统计分析。

1.6 统计学分析

       采用SPSS 22.0软件进行统计学处理。计量资料以均值±标准差(x¯±s)表示,对照组与窒息组造模后1、3、7 d皮层及海马DG、CA1、CA3各区Nissl阳性细胞数及Caspase-3 IOD值之间的差异,采用独立样本t检验,不符合正态分布时采用非参数检验(Mann-Whitney U检验)。P<0.05时表示差异有统计学意义。

2 结果

2.1 缺氧-复氧过程中新生大鼠一般情况改变

       缺氧开始后新生大鼠先出现烦躁、呼吸急促,皮肤逐渐出现紫绀,1.5~2.0 min期间活动逐渐减少,皮肤再由紫绀变苍白,之后偶有单次张口呼吸,频率逐渐减低。复氧3 min,新生大鼠先出现单次张口呼吸,频率逐渐加快,而后皮肤逐渐恢复血色,偶有肢体活动。造模结束后,幼鼠逐渐恢复活动,皮肤恢复粉红色。缺氧-复氧共42只幼鼠,其中死亡8只,存活34只,死亡率为19.05%(图1)。

图1  新生大鼠缺氧-复氧过程变化。1A:缺氧开始后出现紫绀;1B:继续缺氧后皮肤紫绀变为苍白,运动明显减少,偶有张口呼吸;1C:复氧后皮肤逐渐恢复呈粉红色,可自主呼吸。
Fig. 1  Changes in the hypoxia-reoxygenation process in neonatal rats. 1A: Cyanosis appeared after the start of hypoxia; 1B: Cyanosis changed to pallor after continued hypoxia, movement is significantly reduced, and occasional open-mouth breathing; 1C: Skin gradually recover to pink after reoxygenation, and breathe spontaneously.

2.2 窒息后癫痫发作观察

       缺氧过程中及缺氧后1 h未观察到任何癫痫发作行为。缺氧后1 d观察到连续点头(n=2)、单侧肢体痉挛(n=1)、翻正反射消失(n=1);缺氧后3 d观察到连续点头(n=2)、频繁整理毛发(n=3)、旋转(n=2)、单侧肢体痉挛(n=2);缺氧后7 d后观察到连续点头(n=1)、频繁整理毛发(n=1)、旋转(n=1)、单侧肢体痉挛(n=2)。

2.3 新生大鼠窒息后脑损伤常规MRI及SWI表现及HE病理对照

       排除MRI前麻醉、扫描过程中或扫描结束时死亡幼鼠,窒息组幼鼠在缺氧后1、3、7 d得到有效MRI图像数量分别为6、6、12。扫描完成后将存活幼鼠断头取脑进行石蜡固定。HE染色结合MR异常信号显示脑损伤类型包括脑室扩大、脑软化灶形成、脑实质出血;SWI显示异常信号表示出血或扩张血管(表2图2)。

图2  缺氧脑损伤MRI与苏木素-伊红(HE)染色病理对照(×4)。2A、2F为缺氧后7 d幼鼠,2B、2G为缺氧后3 d幼鼠,冠状位T2WI,表现为双侧、单侧侧脑室扩张,长T2脑脊液信号明显增多(红色箭头);HE染色提示为脑室扩张。2C、2D、2H、2I:缺氧后7 d幼鼠,冠状位T2WI,表现为皮层、嗅球内条片状长T2信号,双侧侧脑室正常,呈细线状长T2信号(白色箭头);HE染色提示为软化灶。2E、2J:缺氧后7 d幼鼠,冠状位磁敏感加权成像图,侧脑室区点状低信号(黄色箭头、红点);HE证实为脑室周围的出血。
Fig. 2  MRI of hypoxic brain injury with hematoxylin-eosin (HE) staining pathology control (×4). 2A、2B、2F、2G: 3 d and 7 d post-hypoxia pups (2A and 2F for 7 d, 2B and 2G for 3 d), Coronal T2WI showing bilateral and unilateral lateral ventricular dilatation with significantly increased long T2 cerebrospinal fluid signal (red arrows); HE staining suggests ventricular dilatation. 2C、2D、2H、2I: 7 d post-hypoxia pups, coronal T2WI showing striped long T2 signal in the cortex and olfactory bulb, and normal bilateral lateral ventricles with thin linear long T2 signal (white arrows); HE staining suggests softening foci. 2E、2J: 7d post-hypoxia pups, coronal susceptibility-weighted magnetic resonance imaging image, punctate hyposignal in the lateral ventricular area (yellow arrows, red dots); HE confirms periventricular hemorrhage.
表2  常规MRI及 SWI异常信号表现
Tab. 2  Abnormal signal performance of conventional MRI and SWI

2.4 新生大鼠窒息后神经元数量变化

       Nissl染色结果显示,窒息组新生大鼠皮层神经元在缺氧后1、3、7 d均较对照组减少(P<0.05);海马DG区神经元在缺氧后1、3、7 d均较对照组减少(P<0.05);海马CA3区神经元在缺氧后7 d较对照组减少(P<0.05)(图3)。

图3  对照组与窒息组皮层及海马各区神经元形态及存活情况(HE ×400)。3A:对照组各区神经元形态饱满,Nissl小体清晰可见,细胞排列紧密;缺氧后1 d,皮层及海马DG区神经元轮廓模糊、形态消失、Nissl小体显示不清;缺氧后3、7 d神经元不同程度减少,排列疏松、紊乱。3B:各兴趣区缺氧后不同时间段神经元计数对比。*P<0.05;**P<0.01;***P<0.005。DG区:齿状回区;CA1:海马体CA1区;CA3:海马体CA3区。
Fig. 3  Morphology and survival of neurons in various regions of the cortex and hippocampus in the control and asphyxiation groups (HE ×400). 3A: The neuronal morphology of each area in the control group is full, Nissl vesicles are clearly visible, and cells are closely arranged; 1 d after hypoxia, the neuronal outline of cortical and hippocampal DG areas is blurred, morphology disappeared, and Nissl vesicles are poorly displayed; 3 d and 7 d after hypoxia, neurons are reduced to different degrees, and the arrangement is sparse and disorganized. 3B: Comparison of neuronal counts in different time periods after hypoxia in each area of interest. *P<0.05; **P<0.01; ***P<0.005. DG:dentate gyrus; CA1: cornu ammonis 1; CA3: cornu ammonis 3.

2.5 缺氧后新生大鼠皮层及海马Caspase-3表达

       免疫组织化学染色显示,Caspase-3表达于皮层、海马DG区、CA1区、CA3区神经元胞质内;海马DG区Caspase-3表达于缺氧后1、3、7 d均较对照组增高(P<0.05),皮层Caspase-3表达于缺氧后3、7 d均较对照组增高(P<0.05);海马CA1区、CA3区Caspase-3表达于缺氧后7 d较对照组增高(P<0.05)(图4)。

图4  各组新生大鼠造模后7 d皮层及海马各区Caspase-3表达(免疫组化,HE ×400)。4A:缺氧后7 d Caspase-3在对照组及窒息组中均有表达,且表达于神经元胞质内。4B:各感兴趣区缺氧后不同时间段Caspase-3表达IOD值对比。*P<0.05;**P<0.01;***P<0.005。IOD:积分光密度值;DG区:齿状回区。CA1:海马体CA1区;CA3:海马体CA3区。
Fig. 4  Caspase-3 expression in various cortical and hippocampal regions 7 d after modeling in each group of neonatal rats (immunohistochemistry, HE ×400). 4A: Caspase-3 is expressed in both control and asphyxiated groups at 7 d after hypoxia and is expressed in the neuronal cytoplasm. 4B: Comparison of Caspase-3 expression IOD values at different time periods after hypoxia in each region of interest. *P<0.05;**P<0.01;***P<0.005. IOD:integrated optical density; DG: dentate gyrus; CA1: Cornu Ammonis 1; CA3: Cornu Ammonis 3.

3 讨论

       本研究通过单纯缺氧的方法,建立了新生大鼠窒息后缺氧脑损伤的模型,填补了MRI对缺氧脑损伤的早期病理研究,MRI可观察到脑软化灶形成,脑实质及脑室内出血及脑室扩大。本研究发现新生大鼠在缺氧后癫痫发作,癫痫的发作可能与皮层及海马神经元减少或出血相关。缺氧后皮层神经元与海马DG区神经元减少。

3.1 单纯缺氧模型可模拟新生大鼠脑损伤并引起神经元减少

       围产期窒息引起的脑损伤是足月儿和早产儿发病及死亡最常见的原因之一,啮齿类动物由于其大脑发育与人类相似,常用于模拟新生儿HIE及创伤性脑损伤[16]。急性和慢性缺氧对新生儿脑损伤的类型和损伤程度有所不同。缺氧后不同生化途径发生异常引起神经元损伤,其中包括Ca2+蓄积、兴奋性毒性、氧化应激、炎症反应及线粒体损伤[17, 18, 19]。KUMAR等[20]和TAKADA等[21]将新生2日龄大鼠置于通入100% N2的缺氧箱内模拟早产儿窒息脑损伤,研究表明缺氧后的幼鼠在60 d时海马区神经元减少,75 d时进行MRI测量海马体积缩小,且提出海马神经元的减少可以引起空间记忆障碍和焦虑行为障碍。同时提出,雄性大鼠更容易遭受缺氧引起的组织行为学变化,性别的差异可以引起海马不同亚区的损伤,雄性大鼠DG区及CA1区神经元损伤更为突出。本研究采用新生7日龄大鼠进行缺氧处理,由于日龄较大的幼鼠对缺氧耐受程度小,连续缺氧25 min会造成幼鼠100%死亡,故本研究采用间歇性缺氧降低死亡率。早产儿与足月儿神经发育不同,缺氧后的损伤类型也不同,但在本研究中观察到缺氧后早期即可观察到神经元损伤,皮层与海马DG区神经元在缺氧后1、3、7 d均较对照组减少,说明皮层与海马DG区神经元对缺氧十分敏感,容易受损。缺氧后神经元的损伤即已开始,在缺氧后1、3、7 d cleaved-caspase3在不同区域有不同程度的增高。海马DG区的表达于缺氧后1、3、7 d较对照组增高,皮层神经元在缺氧后3、7d表达增高,CA1、CA3区神经元在缺氧后7 d表达增高。Caspase-3作为细胞凋亡的标志性蛋白可以间接反映细胞凋亡的情况[22],诱导凋亡导致蛋白质底物降解和激活,最终细胞死亡[23]。说明在缺氧后皮层及海马DG区的凋亡首先出现差异,并且持续至第7 d,海马CA3区Caspase-3表达增高及神经元减少均出现在缺氧后7 d,说明细胞凋亡与神经元减少同步发生。而CA1区虽有Caspase-3表达增高,但未出现神经元的减少,可能由于CA1区神经元对缺氧不敏感或发生迟发性的细胞凋亡,而此时神经元尚未出现明显形态学变化。

3.2 缺氧可诱发癫痫发作

       近年来,越来越多的研究发现单纯缺氧法可模拟新生儿癫痫发作[24, 25],出生后天数较小的幼鼠在缺氧时及缺氧后更容易发生癫痫。JOHNE等[15]及ALA-KURIKKA等[10]用新生11日龄大鼠建立缺氧模型,将幼鼠暴露于氧浓度为9%(7 min)和5%(3 min)的小室内缺氧3周期,通过皮层脑电图观察,窒息后恢复过程中癫痫发作(Racine scale:RS Ⅲ-Ⅴ级),癫痫发作与血pH值迅速升高有关。在本研究中,新生大鼠缺氧后癫痫未在缺氧-复氧过程中发作,而是在缺氧24 h以后才观察到癫痫症状的发作,且程度较轻,表现为连续点头(Racine scale:RSⅡ)、单侧肢体痉挛(RSⅡ)、频发梳理毛发及旋转。癫痫发作的时间不同,可能由于缺氧的方式不同,上述研究中采用不同低氧浓度持续性缺氧,而本研究采用缺氧程度更重的1%氧浓度缺氧,复氧时在21%氧浓度下复氧,整体的缺氧时间可能较长,间歇性缺氧与持续性低氧浓度缺氧的损伤程度也不同。此外,上述研究中观察到皮层出现了异常脑电波,未对海马区进行电生理及病理学研究;而本研究中的组织学检查中观察到皮层、海马的神经元均有所减少,考虑为不同的缺氧方式可能造成损伤的部位不同,尤其是复氧方式不同,血pH值变化程度也不同,导致癫痫发作的时间与程度不相同;而皮层与海马损伤对缺氧的敏感程度不同,故损伤程度也表现不同。JUSTICE等[26]将P10新生大鼠置于小室内进行渐进性缺氧,氧浓度降低的速率保持每分钟减低1%,氧浓度降至6%~7%时开始计时4 min,再继续降至5%~6%持续8 min,整个缺氧过程为12 min。在缺氧后1~2 min,幼鼠表现为肌阵挛性抽搐。而强直阵挛性发作出现在缺氧后的2~6 min不等,并且发作与脑电图异常相关。在复氧过程中,快速恢复的血pH值可以诱发癫痫,这可以解释缺氧-复氧过程中癫痫发作的原因[27]。本研究中缺氧及缺氧-复氧过程中未发现癫痫发作,癫痫发作是在缺氧后1、3、7 d观察到,此时皮层及海马区神经元均受到缺氧损伤、凋亡蛋白表达增多,神经元减少。这与JOHNE等[15]和GAILUS等[28]的研究相一致,窒息导致癫痫发作的模型在缺氧14个月后仍可观察到海马区神经元的损伤,尤其是DG区;并且海马不可逆损伤可以导致认知障碍、焦虑及持续性癫痫发作。

3.3 多模态MRI对缺氧脑损伤的诊断价值

       MRI对新生儿缺氧缺血性损伤的诊断已比较成熟,不同类型的影像表现代表不同程度的脑损伤,如脑白质损伤、基底神经节/丘脑或内囊后肢损伤、脑室内出血,甚至全脑损伤[29, 30]。在本研究中常规MRI发现了缺氧脑损伤后出现了脑室扩大、脑软化灶形成及脑室出血。结合组织学研究,我们认为脑室扩张是由于缺氧后大脑弥漫性损伤,皮层及海马神经元减少导致脑实质缩小,而皮层及嗅球软化灶是选择性神经元丢失所造成。本研究进行MRI是在缺氧后24 h,T2WI序列上未观察到明显的脑水肿或弥漫性高信号,反而出现了脑室扩张的征象,这也符合HIE的病理发展过程[3],缺氧后数小时内供氧不足、血供减少,导致原发性能量衰竭[31],导致细胞毒性水肿,DWI呈高信号,ADC值减低[32];而后的6~15 h期间,发生继发性能量衰竭,即迟发性神经元死亡,其与脑病和癫痫发作活动增加相关。该阶段涉及的机制包括兴奋性毒性、细胞凋亡和小胶质细胞激活[33]。此外近期有研究[34]表明,患儿发生围产期窒息可造成长期神经损伤。通过对有围产期窒息病史的10岁患儿进行神经发育评估及MRI体积测量,发现乳头体及海马体积缩小,神经认知和情景记忆能力减低,通过MR扩散张量的研究,发现海马体积较小的患儿分数各向异性值减低。但常规MRI对早期或轻度脑损伤诊断能力较差,需要结合其他功能序列,如SWI评估血管及出血。本研究中SWI序列发现了微血管扩张及脑室旁的出血,考虑出血也是引起短暂癫痫样放电的原因之一。出血发生在皮层内时,皮层损伤及铁沉积可以观察到大鼠癫痫的发作[35]。缺氧导致微血管损伤进一步引起血管通透性增加,缺氧后潜水反射代偿期脑供血增多,血管压力增加,进一步加重出血的可能性。一项关于高海拔缺氧性脑损伤的研究表明[36],小鼠暴露于缺氧条件下再复氧后出现脑微出血灶,MRI T2*序列显示在嗅球发生的微出血最为明显,微出血是由于血管内皮紧密连接蛋白被破坏导致。故推测,在本实验的缺氧复氧后,该过程破坏血管内皮进而发生微血管的扩张。

3.4 局限性

       本研究也存在不足之处。由于幼鼠脑较小,空气伪影导致DWI产生严重变形,故未能从扩散上判断早期是否存在细胞水肿导致的水分子扩散运动受限。同时幼鼠较小,容易死亡,导致本研究样本量较小。此外,缺氧后血氧水平发生变化,本研究尚未结合血或脑pH值进行研究。目前的研究是对该模型早期研究,后续将完善缺氧长期脑损伤的行为学及扩散张量成像、fMRI对脑功能的进一步评估。

4 结论

       综上所述,本研究证实了单纯缺氧模拟急性间歇性缺氧可以导致脑损伤,进一步验证了这种无创性的实验方法模拟新生儿HIE的可行性。MRI联合SWI可以在缺氧脑损伤的早期发现病变,表现为脑室扩张、脑软化灶形成、脑实质内脑室出血及微血管扩张。缺氧后皮层及海马神经元减少,可能与细胞凋亡相关。皮层及海马神经元的减少以及脑内微出血与癫痫发作相关。本研究完善了MRI及SWI对缺氧脑损伤的早期评估,提示在怀疑有缺氧脑损伤的患儿应进行MRI及SWI扫描,及时发现脑微出血灶并提早进行临床干预,尽早进行抗细胞凋亡的治疗手段可能减缓缺氧脑损伤。

[1]
MOSHIRO R, MDOE P, PERLMAN J M. A global view of neonatal asphyxia and resuscitation[J/OL]. Front Pediatr, 2019, 7: 489 [2022-05-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902004/pdf/fped-07-00489.pdf. DOI: 10.3389/fped.2019.00489.
[2]
WOOD S, CRAWFORD S, HICKS M, et al. Hospital-related, maternal, and fetal risk factors for neonatal asphyxia and moderate or severe hypoxic-ischemic encephalopathy: a retrospective cohort study[J]. J Matern Fetal Neonatal Med, 2021, 34(9): 1448-1453. DOI: 10.1080/14767058.2019.1638901.
[3]
GRECO P, NENCINI G, PIVA I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future[J]. Acta Neurol Belg, 2020, 120(2): 277-288. DOI: 10.1007/s13760-020-01308-3.
[4]
ZHANG S, LI B B, ZHANG X L, et al. Birth asphyxia is associated with increased risk of cerebral palsy: a meta-analysis[J/OL]. Front Neurol, 2020, 11: 704 [2022-05-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902004/pdf/fped-07-00489.pdf. DOI: 10.3389/fneur.2020.00704.
[5]
YAGER J Y. Animal models of hypoxic-ischemic brain damage in the newborn[J]. Semin Pediatr Neurol, 2004, 11(1): 31-46. DOI: 10.1016/j.spen.2004.01.006.
[6]
TORRES-CUEVAS I, CORRAL-DEBRINSKI M, GRESSENS P. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation[J/OL]. Free Radic Biol Med, 2019, 142: 3-15 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/31226400/. DOI: 10.1016/j.freeradbiomed.2019.06.011.
[7]
TUCKER L D, LU Y J, DONG Y, et al. Photobiomodulation therapy attenuates hypoxic-ischemic injury in a neonatal rat model[J]. J Mol Neurosci, 2018, 65(4): 514-526. DOI: 10.1007/s12031-018-1121-3.
[8]
ZHANG Z H, LIU W H, SHEN M L, et al. Protective effect of GM1 attenuates Hippocampus and cortex apoptosis after ketamine exposure in neonatal rat via PI3K/AKT/GSK3β pathway[J]. Mol Neurobiol, 2021, 58(7): 3471-3483. DOI: 10.1007/s12035-021-02346-5.
[9]
TAKADA S H, SAMPAIO C A, ALLEMANDI W, et al. A modified rat model of neonatal anoxia: development and evaluation by pulseoximetry, arterial gasometry and Fos immunoreactivity[J]. J Neurosci Methods, 2011, 198(1): 62-69. DOI: 10.1016/j.jneumeth.2011.03.009.
[10]
ALA-KURIKKA T, POSPELOV A, SUMMANEN M, et al. A physiologically validated rat model of term birth asphyxia with seizure generation after, not during, brain hypoxia[J]. Epilepsia, 2021, 62(4): 908-919. DOI: 10.1111/epi.16790.
[11]
CHEN S J, LIU X L, MEI Y J, et al. Early identification of neonatal mild hypoxic-ischemic encephalopathy by amide proton transfer magnetic resonance imaging: a pilot study[J/OL]. Eur J Radiol, 2019, 119: 108620 [2022-05-18]. https://www.ejradiology.com/article/S0720-048X(19)30263-3/fulltext. DOI: 10.1016/j.ejrad.2019.07.021.
[12]
ROUMES H, DUMONT U, SANCHEZ S, et al. Neuroprotective role of lactate in rat neonatal hypoxia-ischemia[J]. J Cereb Blood Flow Metab, 2021, 41(2): 342-358. DOI: 10.1177/0271678X20908355.
[13]
VAN DEN BROECK C, HIMPENS E, VANHAESEBROUCK P, et al. Influence of gestational age on the type of brain injury and neuromotor outcome in high-risk neonates[J]. Eur J Pediatr, 2008, 167(9): 1005-1009. DOI: 10.1007/s00431-007-0629-2.
[14]
KIM H G, CHOI J W, HAN M R, et al. Texture analysis of deep medullary veins on susceptibility-weighted imaging in infants: evaluating developmental and ischemic changes[J]. Eur Radiol, 2020, 30(5): 2594-2603. DOI: 10.1007/s00330-019-06618-6.
[15]
JOHNE M, RÖMERMANN K, HAMPEL P, et al. Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective[J]. Epilepsia, 2021, 62(4): 920-934. DOI: 10.1111/epi.16778.
[16]
SEMPLE B D, BLOMGREN K, GIMLIN K, et al. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species[J]. Prog Neurobiol, 2013, 106/107(1): 1-16. DOI: 10.1016/j.pneurobio.2013.04.001.
[17]
BERNIS M E, ZWEYER M, MAES E, et al. Neutrophil extracellular traps release following hypoxic-ischemic brain injury in newborn rats treated with therapeutic hypothermia[J/OL]. Int J Mol Sci, 2023, 24(4): 3598 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/36835009/. DOI: 10.3390/ijms24043598.
[18]
TONNI G, LEONCINI S, SIGNORINI C, et al. Pathology of perinatal brain damage: background and oxidative stress markers[J]. Arch Gynecol Obstet, 2014, 290(1): 13-20. DOI: 10.1007/s00404-014-3208-6.
[19]
NOVAK C M, OZEN M, BURD I. Perinatal brain injury: mechanisms, prevention, and outcomes[J]. Clin Perinatol, 2018, 45(2): 357-375. DOI: 10.1016/j.clp.2018.01.015.
[20]
KUMAR A J, MOTTA-TEIXEIRA L C, TAKADA S H, et al. Behavioral, cognitive and histological changes following neonatal anoxia: male and female rats' differences at adolescent age[J/OL]. Int J Dev Neurosci, 2019, 73: 50-58 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/30562544/. DOI: 10.1016/j.ijdevneu.2018.12.002.
[21]
TAKADA S H, DOS SANTOS HAEMMERLE C A, MOTTA-TEIXEIRA L C, et al. Neonatal anoxia in rats: Hippocampal cellular and subcellular changes related to cell death and spatial memory[J/OL]. Neuroscience, 2015, 284: 247-259 [2022-05-18]. https://www.ibroneuroscience.org/article/S0306-4522(14)00824-0/fulltext. DOI: 10.1016/j.neuroscience.2014.08.054.
[22]
BEROSKE L, VAN DEN WYNGAERT T, STROOBANTS S, et al. Molecular imaging of apoptosis: the case of caspase-3 radiotracers[J/OL]. Int J Mol Sci, 2021, 22(8): 3948 [2022-05-18]. https://www.mdpi.com/1422-0067/22/8/3948. DOI: 10.3390/ijms22083948.
[23]
STECKLER T, RISBROUGH V. Pharmacological treatment of PTSD - established and new approaches[J]. Neuropharmacology, 2012, 62(2): 617-627. DOI: 10.1016/j.neuropharm.2011.06.012.
[24]
ZANELLI S, GOODKIN H P, KOWALSKI S, et al. Impact of transient acute hypoxia on the developing mouse EEG[J/OL]. Neurobiol Dis, 2014, 68: 37-46 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/24636798/. DOI: 10.1016/j.nbd.2014.03.005.
[25]
REMZSŐ G, NÉMETH J, VARGA V, et al. Brain interstitial pH changes in the subacute phase of hypoxic-ischemic encephalopathy in newborn pigs[J/OL]. PLoS One, 2020, 15(5): e0233851 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/32470084/. DOI: 10.1371/journal.pone.0233851.
[26]
JUSTICE J A, SANCHEZ R M. A rat model of perinatal seizures provoked by global hypoxia[J/OL]. Methods Mol Biol, 2018, 1717: 155-159 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/29468591/. DOI: 10.1007/978-1-4939-7526-6_13.
[27]
POSPELOV A S, PUSKARJOV M, KAI K L, et al. Endogenous brain-sparing responses in brain pH and PO2 in a rodent model of birth asphyxia[J/OL]. Acta Physiol, 2020, 229(3) [2022-05-18]. https://onlinelibrary.wiley.com/doi/10.1111/apha.13467. DOI: 10.1111/apha.13467.
[28]
GAILUS B, NAUNDORF H, WELZEL L, et al. Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: cognitive impairment, anxiety, epilepsy, and structural brain alterations[J]. Epilepsia, 2021, 62(11): 2826-2844. DOI: 10.1111/epi.17050.
[29]
BANO S, CHAUDHARY V, GARGA U C. Neonatal hypoxic-ischemic encephalopathy: a radiological review[J]. J Pediatr Neurosci, 2017, 12(1): 1-6. DOI: 10.4103/1817-1745.205646.
[30]
MACHIE M, WEEKE L, DE VRIES L S, et al. MRI score ability to detect abnormalities in mild hypoxic-ischemic encephalopathy[J/OL]. Pediatr Neurol, 2021, 116: 32-38 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/33412459/. DOI: 10.1016/j.pediatrneurol.2020.11.015.
[31]
LUPTAKOVA D, BACIAK L, PLUHACEK T, et al. Membrane depolarization and aberrant lipid distributions in the neonatal rat brain following hypoxic-ischaemic insult[J/OL]. Sci Rep, 2018, 8(1): 6952 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/29725040/. DOI: 10.1038/s41598-018-25088-2.
[32]
LODYGENSKY G A, INDER T E, NEIL J J. Application of magnetic resonance imaging in animal models of perinatal hypoxic-ischemic cerebral injury[J]. Int J Dev Neurosci, 2008, 26(1): 13-25. DOI: 10.1016/j.ijdevneu.2007.08.018.
[33]
YILDIZ E P, EKICI B, TATLI B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment[J]. Expert Rev Neurother, 2017, 17(5): 449-459. DOI: 10.1080/14737175.2017.1259567.
[34]
ANNINK K V, DE VRIES L S, GROENENDAAL F, et al. Mammillary body atrophy and other MRI correlates of school-age outcome following neonatal hypoxic-ischemic encephalopathy[J/OL]. Sci Rep, 2021, 11: 5017 [2022-05-18]. https://www.nature.com/articles/s41598-021-83982-8. DOI: 10.1038/s41598-021-83982-8.
[35]
GERMONPRÉ C, PROESMANS S, BOUCKAERT C, et al. Seizures and interictal epileptiform activity in the rat collagenase model for intracerebral hemorrhage[J/OL]. Front Neurosci, 2021, 15: 682036 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/34220437/. DOI: 10.3389/fnins.2021.682036.
[36]
HOFFMANN A, KUNZE R, HELLUY X, et al. High-field MRI reveals a drastic increase of hypoxia-induced microhemorrhages upon tissue reoxygenation in the mouse brain with strong predominance in the olfactory bulb[J/OL]. PLoS One, 2016, 11(2): e0148441 [2022-05-18]. https://pubmed.ncbi.nlm.nih.gov/26863147/. DOI: 10.1371/journal.pone.0148441.

上一篇 磁共振扩散张量成像对多发性肌炎/皮肌炎的临床应用价值
下一篇 MRI 3D-Vibe联合T2 mapping成像对腕关节三角纤维软骨复合体损伤的评价及定量分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2