分享:
分享到微信朋友圈
X
综述
MRI影像组学在乳腺癌新辅助化疗中的应用进展
赵青 欧阳祖彬

Cite this article as: ZHAO Q, OUYANG Z B. Application progress of MRI radiomics in breast cancer of neoadjuvant chemotherapy[J]. Chin J Magn Reson Imaging, 2023, 14(7): 171-175.本文引用格式:赵青, 欧阳祖彬. MRI影像组学在乳腺癌新辅助化疗中的应用进展[J]. 磁共振成像, 2023, 14(7): 171-175. DOI:10.12015/issn.1674-8034.2023.07.031.


[摘要] 乳腺癌是女性最常见的恶性肿瘤,其发病率和死亡率呈逐年上升趋势。新辅助化疗(neoadjuvant chemotherapy, NAC)已成为当前乳腺癌综合治疗中重要组成部分,不同类型乳腺癌对NAC治疗后的反应、预后不同。磁共振(magnetic resonance imaging, MRI)影像组学可以从MRI图像中提取大量定量特征,结合高通量计算对数据进行分析,获取全面的肿瘤信息并应用于乳腺癌NAC疗效的预测及评价。近年来有大量研究探讨了影像组学在乳腺癌NAC中的临床应用,包括预测乳腺癌分子亚型、对NAC的反应、预后因素及复发风险。由于缺乏统一的标准化定义及可重复性限制了影像组学的临床应用,但MRI影像组学仍具有广阔的发展前景。本文旨在将对MRI影像组学在乳腺癌NAC疗效和预后中的应用进展、面临的问题及应用前景进行综述,为乳腺癌精准化治疗决策提供新思路。
[Abstract] Breast cancer is the most common malignant tumor in women, with an increasing incidence and mortality rate. Neoadjuvant chemotherapy (NAC) has become an important component of comprehensive treatment for breast cancer, with different types of breast cancer exhibiting varying responses and prognoses after NAC. Magnetic resonance imaging (MRI) radiomics can extract a large number of quantitative features from MRI images and analyze the data using high-throughput computing, providing comprehensive tumor information for predicting and evaluating the efficacy of NAC in breast cancer. In recent years, numerous studies have explored the clinical applications of radiomics in breast cancer NAC, including predicting breast cancer molecular subtypes, NAC response, prognostic factors, and risk of recurrence. The lack of standardized definitions and limited reproducibility have hindered the clinical application of radiomics, but MRI radiomics still holds great potential for development. This article aims to review the progress, challenges, and prospects of applying MRI radiomics in the assessment of NAC efficacy and prognosis in breast cancer, providing new insights for precision treatment decision-making.
[关键词] 乳腺癌;新辅助化疗;磁共振成像;影像组学;分子分型;疗效预测;预后
[Keywords] breast cancer;neoadjuvant chemotherapy;magnetic resonance imaging;radiomics;molecular subtyping;predicting treatment efficacy;prognosis

赵青    欧阳祖彬 *  

重庆医科大学附属第一医院放射科,重庆 400016

通信作者:欧阳祖彬,E-mail:ouyangzubin@aliyun.com

作者贡献声明:欧阳祖彬指导综述的构思和设计,并对稿件重要内容进行了修改;赵青参与综述的起草和撰写;欧阳祖彬参与了国家重点研发计划并得到基金资助,获得重庆市卫生计生委医学科研项目基金资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家重点研发计划课题 2020YFA0714002 重庆市卫生计生委医学科研项目 2015MSXM011
收稿日期:2023-02-22
接受日期:2023-06-26
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.07.031
本文引用格式:赵青, 欧阳祖彬. MRI影像组学在乳腺癌新辅助化疗中的应用进展[J]. 磁共振成像, 2023, 14(7): 171-175. DOI:10.12015/issn.1674-8034.2023.07.031.

0 前言

       据2020年全球癌症数据统计,女性乳腺癌约有230万新发病例,已超过肺癌成为全球最常见的癌症,严重威胁着女性健康[1]。在我国,因乳腺癌死亡的人数增长最多,给我国医疗卫生造成了极大的负担[2]。而新辅助化疗(neoadjuvant chemotherapy, NAC)在当前乳腺癌综合治疗中承担重要作用[3],主要用于降期手术、保乳、保腋窝和观察体内药敏,精准指导后期治疗以改善患者预后[4]。但只有不足50%的乳腺癌患者行NAC后能达到病理完全缓解(pathological complete response, pCR),部分患者会在治疗期间出现疾病进展[5]。因此,寻找一种全面、无创、早期预测、准确评估患者对NAC治疗反应的方法,筛选出对NAC敏感的患者,以指导临床选择合适的治疗方案,具有重要临床意义。

       影像组学[6]由荷兰学者Lambin在2012年首次提出,是指从医学影像图像中高通量地提取图像特征、创建高维数据集,并对数据进行量化分析,从而预测或解码图像中可能隐藏的遗传和分子特征。其常规流程主要包括图像获取和重建、图像分割、图像特征提取、特征分析及模型的建立和验证[7]。目前影像组学广泛应用于肿瘤学相关研究中,如前列腺癌[8]、乳腺癌[9]、神经胶质瘤[10]、头颈部肿瘤[11]、结直肠癌[12]及肺癌[13],有助于疾病定性、肿瘤分期分型、疗效评估和预后预测等。影像组学可利用最先进的机器学习技术从各种成像方式中提取图像特征,包括CT、磁共振成像(magnetic resonance imaging, MRI)和超声等成像技术。乳腺MRI因其无辐射、高软组织分辨率、多方位、多序列及多功能成像等优势,临床上广泛应用于乳腺癌NAC的反应评估[14]。然而,MRI影像组学在临床实际应用中仍存在许多问题,难以将其转化为乳腺癌常规诊疗手段。因此,本文将对MRI影像组学在乳腺癌NAC中的应用进展进行综述,以期为MRI影像组学在乳腺癌精准化治疗的临床应用中提供新思路。

1 MRI影像组学在乳腺癌NAC中的应用基础

       乳腺癌是一种高度异质性肿瘤,包括肿瘤内异质性和肿瘤间异质性。肿瘤内异质性是指原发肿瘤的不同区域、原发肿瘤与转移灶之间或不同转移灶之间的异质性。而乳腺癌肿瘤间异质性则与不同组织学亚型、治疗敏感性和临床表现有关[15]。因此,在2019年St.Gallen会议中,多数专家认为不能仅凭穿刺活检结果选择是否进行NAC[16]。对于实施NAC的患者,我国专家共识推荐在基线、新辅助治疗中、治疗后进行影像学评估,有助于指导精准化治疗,以提高pCR率和保乳率。与临床查体、乳腺超声及乳腺X线摄影相比,MRI可提高肿瘤大小测量的精确性,准确评估NAC治疗反应,判断是否达到pCR[17]。影像组学通过提取并分析图像中肿瘤的纹理、强度、形态等肉眼无法识别的特征,定量分析乳腺癌肿瘤的异质性,有助于对乳腺癌NAC疗效的精准评估及预测[18]

2 MRI影像组学在乳腺癌NAC中的临床应用

2.1 预测乳腺癌分子分型

       目前根据雌激素受体(estrogen receptor, ER)和孕激素受体(progestrone receptor, PR)的表达状态、Ki-67增殖指数和HER-2表达情况,将乳腺癌分为管腔A型(ER+和/或PR+、Ki-67<20%、HER-2-)、管腔B-型(ER+和/或PR+、Ki-67≥20%、HER-2-)、管腔B+型(ER+和/或PR+、HER-2+)、HER-2+过表达型(ER-、PR-、HER-2+)和三阴性(ER-、PR-、HER-2-)乳腺癌[17]。不同分子亚型乳腺癌对NAC有不同的治疗反应及预后,在评估患者病情和预后时,需要考虑乳腺癌分子亚型、组织学分级、病灶大小、腋窝淋巴结转移(axillary lymph node metastasis, ALNM)等因素,其中分子亚型是最重要的指标之一[19]。然而,病理穿刺活检结果受肿瘤体积大小、穿刺定位准确性及免疫组织化学检测规范性等影响,可能无法全面准确反映肿瘤的分子亚型。因此,能否通过MRI影像组学来预测乳腺癌分子亚型与肿瘤分期已成为众多学者研究热点。一项包括259名NAC患者的回顾性研究分析了MRI影像组学特征区分乳腺癌亚型的可能性[20],结果显示肿瘤的中位体积、中位最长轴径和中位最长体积直径能有效区分HER-2+、管腔型和三阴性乳腺癌。LI等[21]的研究基于动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)图像提取的纹理、形态、动态灌注特征来鉴别肿瘤分型,结果显示这些影像组学特征对预测管腔A型、管腔B型、HER-2过表达型及三阴性型四个分子亚型的精准度可达到较高水平,精准度分别为0.91、0.89、0.83和0.87。多参数MRI(multiparametric MRI, mpMRI)是包含多个成像序列的检查技术。与乳腺癌相关的MRI扫描序列主要包括:T2WI,DCE-MRI,扩散加权成像(diffusion weighted imaging, DWI)等,上述序列目前常规用于乳腺癌诊断、术前分期和手术方式选择。有研究[22, 23]表明mpMRI影像组学特征结合临床特征模型对于乳腺癌分子亚型预测效果最佳。WANG等[24]进一步研究了肿瘤瘤周微环境与乳腺癌分子亚型相关性,该研究基于T2WI、增强T1WI和DWI图像提取肿瘤及瘤周2 mm范围的影像组学特征并建立相应预测模型,发现肿瘤+瘤周构建的联合模型对乳腺癌分子亚型的预测性能最佳。以上研究说明基于mpMRI等图像影像组学特征在预测分子分型中具有一定的价值,且提取并分析肿瘤内和瘤周异质性的影像组学模型可以更准确地识别乳腺癌亚型,影像组学在预测乳腺癌分子分型的临床应用价值或许是目前研究的一个新方向。

       三阴性乳腺癌侵袭性高,与其他亚型相比,其预后更差,早期鉴别诊断尤为重要。MA等[25]基于乳腺癌患者DCE-MRI第三期图像,通过深度学习分割模型自动分割最大肿瘤病灶,结果发现基于15个影像组学特征的模型能够有效区分三阴性和非三阴性乳腺癌。此外,LI等[26]基于DWI和ADC图像提取肿瘤内及瘤周影像组学特征并建立预测HER-2过表达型乳腺癌模型,使用logistic回归模型计算Rad-score评分,结果发现基于瘤内及瘤周影像组学特征的联合模型Rad-score得分最高,训练集及验证集AUC分别为0.860、0.790。LAVCI等[27]发现从DCE-MRI中提取的影像组学特征,包括偏度、熵、共生矩阵、游程矩阵、邻域灰度差矩阵等能够区分乳腺癌管腔A和管腔B型。这表明纹理分析具有精准区分乳腺癌肿瘤亚型的潜力。有研究[28, 29]显示,在接受新辅助治疗的患者中,超过10%的患者受体状态和分子亚型发生改变,其中PR状态的阴性转换被认为是一个不良的预后指标,这表明在初始系统治疗后有必要重新评估乳腺癌分子标志物。LIU等[30]通过基线MRI影像组学信息建立预测乳腺癌行NAC后分子亚型转变概率的模型,该模型交叉验证AUC值为0.908。以上研究表明MRI影像组学有区分乳腺癌分子亚型及预测NAC后分子亚型转变的潜力,并有望作为一种影像生物标记物来区分乳腺癌分子亚型。目前多数研究将MRI影像组学应用于预测NAC前的分子亚型或激素受体表达状态,对于NAC后的分子亚型转变关注较少,而预测NAC后分子亚型的改变对临床医生及时调整乳腺癌患者后续治疗方案具有重要意义,因此需要更多的研究进一步探讨MRI影像组学在预测乳腺癌NAC后分子亚型转化方面的作用。

2.2 预测乳腺癌NAC治疗反应

       NAC后达到pCR的患者整体预后显著好于病理非完全缓解者,NAC治疗后pCR率偏低,约为10%~50%,部分患者仍难以从NAC中显著获益。目前已有研究应用MRI影像组学预测NAC效果。ZHUANG等[31]基于T2WI、DWI影像组学特征预测乳腺癌NAC后肿瘤消退模式,1型消退模式包括pCR和单灶回归;2型消退模式包括多个残留病灶、主要残留病灶伴卫星病灶、疾病稳定和疾病进展,而2型消退模式存在切缘阳性风险,不适合在NAC后选择保乳手术。研究表明基于影像组学特征和临床因素建立的联合模型预测性能较好(训练集AUC=0.902、验证集AUC=0.826),这可能对于术前治疗和手术方式的选择有一定帮助。LIU等[32]探究了联合mpMRI影像组学特征和临床信息来预测乳腺癌pCR的可能性,结果表明联合模型的预测效能(AUC=0.86)较影像组学模型(AUC=0.79)更好。这与CHEN等[33]的研究结果一致。最近发表的一项Meta分析[34]也表明,影像组学特征联合临床信息建立的联合模型对NAC的pCR预测会更精确。HERRERO VICENT等[35]在上述研究的基础上纳入MRI灌注参数,结果表明MRI灌注参数、影像组学特征以及临床变量的三者结合预测pCR的准确度高。NAC疗效受临床分期、组织学和基因信息等多种因素影响,多序列MRI图像及临床数据可以提供更多信息,有望建立更加完善的预测模型,提高对pCR的预测能力。

       此外,BRAMAN等[36]研究表明结合瘤内及瘤周特征建立的联合模型可有效预测NAC后pCR。LI等[37]进一步分析了NAC治疗前的mpMRI图像中肿瘤及瘤周体积影像组学特征,结果发现瘤内或瘤周影像组学特征集均能有效预测pCR,且二者的联合模型在训练组中达到最大AUC(0.98)。从基线mpMRI图像中提取的瘤周影像组学有助于预测pCR,提示瘤周影像组学模型在乳腺癌NAC疗效评估中的潜在价值。影像组学不仅可以早期预测NAC患者的pCR,也可预测患者对NAC的敏感性。XIONG等[38]将MP(Miller-Payne)分级1~2级病例认为是对NAC不敏感,研究通过mpMRI影像组学特征、HER-2状态和Ki-67指数构建的联合模型预测患者对NAC的敏感性,验证队列中的AUC为0.935。由此可见,mpMRI影像组学与临床信息的联合预测模型有较高的诊断效能,这或许将成为MRI影像组学预测乳腺癌NAC疗效的常用手段。目前虽有研究探讨瘤周微环境影像组学对NAC疗效的影响,但对乳腺癌瘤周范围的确定、周围血管及淋巴管浸润、瘤周水肿等分析较少,缺乏统一标准,这些内容的探讨还需更进一步研究分析。

2.3 预测乳腺癌NAC预后

       乳腺癌肿瘤大小、受累淋巴结数量和组织学分级、ER、PR、HER-2、抗原Ki-67、淋巴结转移、抗体D2-40、血小板内皮细胞黏附分子(CD31)是乳腺癌重要预后因子和预测因子[39]。其中腋窝淋巴结(axillary lymph node, ALN)状态以及Ki-67指数对评估预后和指导辅助治疗至关重要。LIU等[40]研究表明DCE-MRI图像的灌注参数及影像组学构建的联合模型在术前预测乳腺癌前哨淋巴结转移(sentinel lymph node metastasis, SLNM)效能最佳。ZHU等[41]也基于DCE-MRI图像证实了影像组学可以预测乳腺癌SLNM,并且基于所选特征,构建了支持向量机、随机森林、逻辑回归、梯度增强决策树和决策树五个机器学习模型,在验证集中,支持向量机学习模型的AUC(0.86)最高。同时,结合临床、病理信息的联合模型在预测SLNM方面具有较好性能,在验证集中获得了更高的AUC(0.88)。TANG等[42]研究结果证明多灶性、ALN的可触及性、MRI报告的淋巴结状态等临床特征与ALN状态相关,并且与临床模型相比,影像组学模型在验证队列中表现更好,AUC为0.858。此外,有研究[43, 44]表明从DCE-MRI图像中提取的瘤周影像组学特征有助于预测ALNM,并且瘤内联合瘤周影像组学模型的预测效能高于瘤内或瘤周影像组学模型。以上研究表明MRI影像组学可以作为一种无创检查方法来评估前哨淋巴结(sentinel lymph node, SLN)状态,有助于避免不必要的SLN切除和选择最佳的临床治疗方法。

       以往研究多关注肿瘤区域或ALN区域预测ALNM,而结合ALN和肿瘤区域的mpMRI影像组学特征的联合模型显示出了较高的预测能力,可用于精确预测ALN状态,为术前诊断和治疗决策提供了有用的信息。有助于临床决策的准确性和个体化治疗的选择。因此,MRI影像组学在预测乳腺癌ALNM方面显示出巨大的潜力,并在乳腺癌患者的诊断和治疗中具有极大的应用前景。

       Ki-67是一种与乳腺癌预后及其对NAC反应相关的实体肿瘤增殖标志物[45]。Ki-67高表达提示预后不佳。由于乳腺癌的异质性,Ki-67在不同的瘤内区域表达水平存在差异,因此有必要对整个肿瘤进行评估。LIANG等[46]发现基于T2WI建立的影像组学分类器在训练集及验证集中对乳腺癌患者Ki-67状态均表现出良好的辨别能力。FAN等[47]从DCE-MRI和ADC图中提取包括纹理特征、统计特征和形态学特征在内的成像特征,并将多任务学习模型扩展应用于mpMRI影像组学,结果显示联合DCE和ADC图像的多任务学习模型预测Ki-67状态和肿瘤分级显著优于单任务模型。此研究为同时预测多个临床指标提供了一个可尝试的方法。此外,KAYADIBI等[48]基于增强T1WI及ADC图像建立的影像组学模型,发现基于ADC图提取影像学特征建模可能是确定乳腺癌Ki-67表达水平的一种有效手段,这与ZHANG等[49]的研究结果一致。以上研究表明MRI影像组学可以作为预测Ki-67表达的一种无创性方法,但是多数文献仅限于一种或两种MRI序列图像进行研究,目前就MRI序列的选择以及模型建立方法缺乏统一性,关于MRI影像组学在预测Ki-67表达应用有待进一步研究。

3 小结与展望

       综上所述,乳腺MRI在形态学和功能诊断方面有大量的定量数据,因此MRI影像组学在预测乳腺癌分子亚型、对NAC的反应、预后因素以及治疗精准化治疗中具有较大发展潜力[50],但影像组学的发展也有其局限性:(1)目前MRI影像组学对乳腺癌NAC疗效及预后的研究多为回顾性的小样本研究,可用于外部验证的数据也有限,容易出现选择偏倚,需要更大的前瞻性研究来验证这些研究结果;(2)大多研究对于MR图像采集的设备、采集序列、图像分割以及模型建立等方面有所不同,这些差异可能影响MRI影像组学所建立模型的稳定性,导致缺乏可重复性。这些问题使其在临床广泛应用中受到一定限制。

       目前基因组学、转录组学、蛋白组学、代谢组学同样用于乳腺癌的研究,使患者的精准医疗成为可能。已有研究结合乳腺MRI影像组学[48]与蛋白组学预测Ki-67表达,也有研究[51]将基因转录数据与MRI影像组学结合建立多组学模型预测ALNM,上述研究表明MRI影像组学与其他多种组学的结合能够更精确地揭示乳腺癌的异质性。同时,基于机器学习的深度学习可以从原始数据学习到具体的特征,不需要指定预定义的特征,整个学习过程自动化,效率更高、结果更可靠。有研究[52]发现深度学习及影像组学的联合模型能更好地预测ALNM。总之,规范操作流程、整合临床及组织学数据、联合多组学及深度学习是未来MRI影像组学为乳腺癌患者提供精准化治疗的关键,并在此基础上有望提高MRI影像组学在乳腺癌中的临床应用价值。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[3]
«中国乳腺癌新辅助治疗专家共识年版»专家组, 邵志敏. 中国乳腺癌新辅助治疗专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(1): 80-88. DOI: CNKI:SUN:ZGAZ.0.2019-05-012.
Expert group of Chinese expert consensus on neoadjuvant therapy for breast cancer (Annual edition), SHAO Z M. Expert consensus on neoadjuvant treatment of breast cancer in China(2021 edition)[J]. China Oncol, 2022, 32(1): 80-88. DOI: CNKI:SUN:ZGAZ.0.2019-05-012.
[4]
中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
Chinese anti-Cancer Association guidelines and specifications for the diagnosis and treatment of breast cancer (2021 edition)[J]. China Oncol, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
[5]
CRIVELLI P, LEDDA R E, PARASCANDOLO N, et al. A new challenge for radiologists: radiomics in breast cancer[J/OL]. Biomed Res Int, 2018, 2018: 1-10 [2023-02-21]. https://www.hindawi.com/journals/bmri/2018/6120703/. DOI: 10.1155/2018/6120703.
[6]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[7]
ACHARYA UR, HAGIWARA Y, SUDARSHAN V K, et al. Towards precision medicine: from quantitative imaging to radiomics[J]. J Zhejiang Univ Sci B, 2018, 19(1): 6-24. DOI: 10.1631/jzus.B1700260.
[8]
FERRO M, DE COBELLI O, MUSI G, et al. Radiomics in prostate cancer: an up-to-date review[J/OL]. Ther Adv Urol, 2022, 14: 175628722211090 [2023-02-21]. https://journals.sagepub.com/doi/10.1177/17562872221109020. DOI: 10.1177/17562872221109020.
[9]
TAGLIAFICO A S, PIANA M, SCHENONE D, et al. Overview of radiomics in breast cancer diagnosis and prognostication[J/OL]. Breast, 2020, 49: 74-80 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/31739125/. DOI: 10.1016/j.breast.2019.10.018.
[10]
SINGH G, MANJILA S, SAKLA N, et al. Radiomics and radiogenomics in gliomas: a contemporary update[J]. Br J Cancer, 2021, 125(5): 641-657. DOI: 10.1038/s41416-021-01387-w.
[11]
BRUIXOLA G, REMACHA E, JIMÉNEZ-PASTOR A, et al. Radiomics and radiogenomics in head and neck squamous cell carcinoma: potential contribution to patient management and challenges[J/OL]. Cancer Treat Rev, 2021, 99: 102263 [2023-02-21]. https://www.cancertreatmentreviews.com/article/S0305-7372(21)00111-0/fulltext. DOI: 10.1016/j.ctrv.2021.102263.
[12]
BERTELLI E, MERCATELLI L, MARZI C, et al. Machine and deep learning prediction of prostate cancer aggressiveness using multiparametric MRI[J/OL]. Front Oncol, 2022, 11: 802964 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/35096605/. DOI: 10.3389/fonc.2021.802964.
[13]
WALLS G M, OSMAN S O S, BROWN K H, et al. Radiomics for predicting lung cancer outcomes following radiotherapy: a systematic review[J/OL]. Clin Oncol, 2022, 34(3): e107-e122 [2023-02-21]. https://www.clinicaloncologyonline.net/article/S0936-6555(21)00372-1/fulltext. DOI: 10.1016/j.clon.2021.10.006.
[14]
MCANENA P, MOLONEY B M, BROWNE R, et al. A radiomic model to classify response to neoadjuvant chemotherapy in breast cancer[J]. BMC Med Imaging, 2022, 22(1): 225 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/36564734/. DOI: 10.1186/s12880-022-00956-6.
[15]
FUMAGALLI C, BARBERIS M. Breast cancer heterogeneity[J/OL]. Diagnostics (Basel), 2021, 11(9): 1555 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/34573897/. DOI: 10.3390/diagnostics11091555.
[16]
BURSTEIN H J, CURIGLIANO G, THÜRLIMANN B, et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021[J]. Ann Oncol, 2021, 32(10): 1216-1235. DOI: 10.1016/j.annonc.2021.06.023.
[17]
HARBECK N, PENAULT-LLORCA F, CORTES J, et al. Breast cancer[J/OL]. Nat Rev Dis Primers, 2019, 5: 66 [2023-02-21]. https://www.nature.com/articles/s41572-019-0111-2. DOI: 10.1038/s41572-019-0111-2.
[18]
AVANZO M, STANCANELLO J, NAQA I EL. Beyond imaging: the promise of radiomics[J/OL]. Phys Med, 2017, 38: 122-139 [2023-02-21]. https://www.physicamedica.com/article/S1120-1797(17)30187-4/fulltext. DOI: 10.1016/j.ejmp.2017.05.071.
[19]
ÖZTÜRK V S, POLAT Y D, SOYDER A, et al. The relationship between MRI findings and molecular subtypes in women with breast cancer[J]. Curr Probl Diagn Radiol, 2020, 49(6): 417-421. DOI: 10.1067/j.cpradiol.2019.07.003.
[20]
SADIA, CHOUDHERY, MD, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J/OL]. Acad Radiol, 2022, 29: S145-S154 [2023-02-21]. https://www.academicradiology.org/article/S1076-6332(20)30607-3/fulltext. DOI: 10.1016/j.acra.2020.10.020.
[21]
LI W, YU K, FENG C L, et al. Molecular subtypes recognition of breast cancer in dynamic contrast-enhanced breast magnetic resonance imaging phenotypes from radiomics data[J/OL]. Comput Math Methods Med, 2019, 2019: 1-14 [2023-02-21]. https://www.hindawi.com/journals/cmmm/2019/6978650/. DOI: 10.1155/2019/6978650.
[22]
HUANG Y H, WEI L H, HU Y L, et al. Multi-parametric MRI-based radiomics models for predicting molecular subtype and androgen receptor expression in breast cancer[J/OL]. Front Oncol, 2021, 11: 706733 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/34490107/. DOI: 10.3389/fonc.2021.706733.
[23]
WU Z, QIU J, MU Z, et al. Multiparameter MR-based radiomics for the classification of breast cancer molecular subtypes[J/OL]. Int J Radiat Oncol, 2020, 108(3): e786 [2023-02-21]. https://www.redjournal.org/article/S0360-3016(20)31672-2/fulltext. DOI: 10.1016/j.ijrobp.2020.07.253.
[24]
WANG X, WANG X Y, ZHANG Y J, et al. Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer[J/OL]. Ann Transl Med, 2022, 10(13): 749 [2023-02-21]. https://atm.amegroups.com/article/view/97717/html. DOI: 10.21037/atm-22-2844.
[25]
MA M M, GAN L Y, JIANG Y, et al. Radiomics analysis based on automatic image segmentation of DCE-MRI for predicting triple-negative and nontriple-negative breast cancer[J/OL]. Comput Math Methods Med, 2021, 2021: 1-7 [2023-02-21]. https://www.hindawi.com/journals/cmmm/2021/2140465/. DOI: 10.1155/2021/2140465.
[26]
LI C L, YIN J D. Radiomics nomogram based on radiomics score from multiregional diffusion-weighted MRI and clinical factors for evaluating HER-2 2+ status of breast cancer[J/OL]. Diagnostics, 2021, 11(8): 1491 [2023-02-21]. https://www.mdpi.com/2075-4418/11/8/1491. DOI: 10.3390/diagnostics11081491.
[27]
LAFCI O, CELEPLI P, SEHER ÖZTEKIN P, et al. DCE-MRI radiomics analysis in differentiating luminal A and luminal B breast cancer molecular subtypes[J]. Acad Radiol, 2023, 30(1): 22-29. DOI: 10.1016/j.acra.2022.04.004.
[28]
AHN S, KIM H J, KIM M, et al. Negative conversion of progesterone receptor status after primary systemic therapy is associated with poor clinical outcome in patients with breast cancer[J]. Cancer Res Treat, 2018, 50(4): 1418-1432. DOI: 10.4143/crt.2017.552.
[29]
GAHLAUT R, BENNETT A, FATAYER H, et al. Effect of neoadjuvant chemotherapy on breast cancer phenotype, ER/PR and HER2 expression–Implications for the practising oncologist[J/OL]. Eur J Cancer, 2016, 60: 40-48 [2023-02-21]. https://www.ejcancer.com/article/S0959-8049(16)00173-8/fulltext. DOI: 10.1016/j.ejca.2016.03.006.
[30]
LIU H Q, LIN S Y, SONG Y D, et al. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy[J/OL]. Eur Radiol, 2023, 33(4): 2965-2974. DOI: 10.1007/s00330-022-09264-7.
[31]
ZHUANG X S, CHEN C, LIU Z Y, et al. Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy[J/OL]. Transl Oncol, 2020, 13(11): 100831 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/32759037/. DOI: 10.1016/j.tranon.2020.100831.
[32]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[33]
CHEN S J, SHU Z Y, LI Y F, et al. Machine learning-based radiomics nomogram using magnetic resonance images for prediction of neoadjuvant chemotherapy efficacy in breast cancer patients[J/OL]. Front Oncol, 2020, 10: 1410 [2023-02-21]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2020.01410/full. DOI: 10.3389/fonc.2020.01410.
[34]
LIANG X H, YU X Y, GAO T H. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2022, 150: 110247 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/35290910/. DOI: 10.1016/j.ejrad.2022.110247.
[35]
HERRERO VICENT C, TUDELA X, MORENO RUIZ P, et al. Machine learning models and multiparametric magnetic resonance imaging for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer[J/OL]. Cancers, 2022, 14(14): 3508 [2023-02-21]. https://www.mdpi.com/2072-6694/14/14/3508. DOI: 10.3390/cancers14143508.
[36]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 80 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/28693537/. DOI: 10.1186/s13058-017-0862-1.
[37]
LI C C, LU N, HE Z F, et al. ASO visual abstract: a noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Ann Surg Oncol, 2022, 29(12): 7694-7695. DOI: 10.1245/s10434-022-12078-y.
[38]
XIONG Q, ZHOU X, LIU Z, et al. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J/OL]. Breast, 2019, 44: S68 [2023-02-21]. https://www.thebreastonline.com/article/S0960-9776(19)30256-5/pdf. DOI: 10.1016/s0960-9776(19)30256-5.
[39]
FENG W, GAO Y, LU X R, et al. Correlation between molecular prognostic factors and magnetic resonance imaging intravoxel incoherent motion histogram parameters in breast cancer[J/OL]. Magn Reson Imaging, 2022, 85: 262-270 [2023-02-21]. https://www.sciencedirect.com/science/article/abs/pii/S0730725X21001946?via%3Dihub. DOI: 10.1016/j.mri.2021.10.027.
[40]
LIU M J, MAO N, MA H, et al. Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Cancer Imaging, 2020, 20(1): 65 [2023-02-21]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-020-00342-x. DOI: 10.1186/s40644-020-00342-x.
[41]
ZHU Y D, YANG L, SHEN H L. Value of the application of CE-MRI radiomics and machine learning in preoperative prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2021, 11: 757111 [2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/34868967/. DOI: 10.3389/fonc.2021.757111.
[42]
TANG Y Q, CHEN L, QIAO Y T, et al. Radiomic signature based on dynamic contrast-enhanced MRI for evaluation of axillary lymph node metastasis in breast cancer[J/OL]. Comput Math Methods Med, 2022, 2022: 1-12 [2023-02-21]. https://www.hindawi.com/journals/cmmm/2022/1507125/. DOI: 10.1155/2022/1507125.
[43]
MA M M, JIANG Y Y, QIN N S, et al. A radiomics model for preoperative predicting sentinel lymph node metastasis in breast cancer based on dynamic contrast-enhanced MRI[J/OL]. Front Oncol, 2022, 12: 884599 [2023-02-21]. https://doi.org/10.3389/fonc.2022.884599. DOI: 10.3389/fonc.2022.884599.
[44]
LIU Y, LI X, ZHU L N, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral DCE-MRI radiomics nomogram[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 1-10 [2023-02-21]. https://www.hindawi.com/journals/cmmi/2022/6729473/. DOI: 10.1155/2022/6729473.
[45]
DIRICAN E, KILIÇ E. A machine learning approach for the association of Ki-67 scoring with prognostic factors[J/OL]. J Oncol, 2018, 2018: 1-7 [2023-02-21]. https://www.hindawi.com/journals/jo/2018/1912438/. DOI: 10.1155/2018/1912438.
[46]
LIANG C S, CHENG Z X, HUANG Y Q, et al. An MRI-based radiomics classifier for preoperative prediction of Ki-67 status in breast cancer[J]. Acad Radiol, 2018, 25(9): 1111-1117. DOI: 10.1016/j.acra.2018.01.006.
[47]
FAN M, YUAN W, ZHAO W R, et al. Joint prediction of breast cancer histological grade and Ki-67 expression level based on DCE-MRI and DWI radiomics[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1632-1642. DOI: 10.1109/JBHI.2019.2956351.
[48]
KAYADIBI Y, KOCAK B, UCAR N, et al. Radioproteomics in breast cancer: prediction of Ki-67 expression with MRI-based radiomic models[J/OL]. Acad Radiol, 2022, 29: S116-S125 [2023-02-21]. https://www.academicradiology.org/article/S1076-6332(21)00063-5/fulltext. DOI: 10.1016/j.acra.2021.02.001.
[49]
ZHANG Y, ZHU Y F, ZHANG K, et al. Invasive ductal breast cancer: preoperative predict Ki-67 index based on radiomics of ADC maps[J]. La Radiol Med, 2020, 125(2): 109-116. DOI: 10.1007/s11547-019-01100-1.
[50]
SATAKE H, ISHIGAKI S, ITO R, et al. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence[J]. Radiol med, 2022, 127(1): 39-56. DOI: 10.1007/s11547-021-01423-y.
[51]
CHEN H F, LAN X S, YU T, et al. Development and validation of a radiogenomics model to predict axillary lymph node metastasis in breast cancer integrating MRI with transcriptome data: a multicohort study[J/OL]. Front Oncol, 2022 [2023-02-21]. https://doi.org/10.3389/fonc.2022.1076267. DOI: 10.3389/fonc.2022.1076267.
[52]
LI X, YANG L F, JIAO X. Comparison of traditional radiomics, deep learning radiomics and fusion methods for axillary lymph node metastasis prediction in breast cancer[J]. Acad Radiol, 2023, 30(7): 1281-1287. DOI: 10.1016/j.acra.2022.10.015.

上一篇 基于磁共振成像的影像组学在肺癌中的研究进展
下一篇 MRI影像组学在乳腺癌腋窝淋巴结转移预测中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2