分享:
分享到微信朋友圈
X
临床研究
三维伪连续式动脉自旋标记成像联合自动分割技术在海马硬化型颞叶内侧癫痫中的应用
闫梦楠 李健 王一婷 摆玉财 李金芹 陈兵

YAN M N, LI J, WANG Y T, et al. Application of three-dimensional pseudo-continuous arterial spin labeling combined with automatic segmentation technology in hippocampal sclerotic medial temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2023, 14(9): 26-32.引用本文:闫梦楠, 李健, 王一婷, 等. 三维伪连续式动脉自旋标记成像联合自动分割技术在海马硬化型颞叶内侧癫痫中的应用[J]. 磁共振成像, 2023, 14(9): 26-32. DOI:10.12015/issn.1674-8034.2023.09.005.


[摘要] 目的 研究三维伪连续式动脉自旋标记成像(three-dimensional pseudo-continuous arterial spin labeling, 3D-pCASL)联合海马自动分割技术在海马硬化型颞叶内侧癫痫(hippocampal sclerotic medial temporal lobe epilepsy, MTLE-HS)中的应用价值。材料与方法 回顾性分析2021年1月至2022年12月经术后病理或MRI诊断为海马硬化(hippocampal sclerosis, HS)的40例单侧MTLE-HS患者病例,招募性别、年龄相匹配的30例健康志愿者作为对照组,均在3.0 T磁共振仪上行轴位T1加权三维磁化强度预备梯度回波(T1WI three dimensional magnetization prepared rapid acquisition gradient echo sequence, 3D-T1WI-MPRAGE)序列及3D-pCASL序列扫描。使用FreeSurfer软件对3D-T1WI-MPRAGE图像行海马亚区分割,通过将分割的海马亚区与灌注定量图融合的方法,进行配准后测量亚区脑血流量(cerebral blood flow, CBF)。采用配对t检验比较对照组左、右两侧、MTLE-HS组患侧与对侧之间海马亚区CBF值的差异性;采用独立样本t检验分别比较对照组与MTLE-HS组患侧、对照组与MTLE-HS组对侧之间海马亚区CBF值的差异性。采用受试者工作特征(receiver operating characteristic, ROC)曲线及曲线下面积(area under the curve, AUC)评价各亚区CBF值检测MTLE-HS的诊断效能。结果 对照组左、右两侧海马各亚区CA1、CA2-3、CA4、齿状回颗粒细胞层(granular cell layer of dentate gyrus, GC-DG)的CBF值差异无统计学意义(P>0.05);MTLE-HS组患侧CA1区与对侧相应亚区CBF值差异无统计学意义(t=1.075,P=0.289),其余亚区有显著性差异(P均<0.001);MTLE-HS组患侧、对侧分别与对照组比较,海马各亚区CBF值差异均有统计学意义(P<0.001)。ROC曲线分析结果显示海马CA1、CA2-3、CA4、GC-DG亚区CBF值诊断MTLE-HS的AUC分别为0.746、0.831、0.837、0.830。结论 针对局灶性颞叶内侧癫痫患者测量海马亚区的血流灌注对术前准确定位致痫灶及其影响区域有一定的意义,为术前了解MTLE-HS亚区的血流灌注变化提供了影像学依据。
[Abstract] Objective To study the application value of three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) combined with automatic hippocampal segmentation technology in hippocampal sclerotic medial temporal lobe epilepsy (MTLE-HS).Materials and Methods A retrospective analysis was made of 40 cases of patients with unilateral MTLE-HS diagnosed with hippocampal sclerosis (HS) by pathology or MRI from January 2021 to December 2022, and 30 healthy volunteers matched with sex and age were included as the control group. All patients were scanned with axial T1 weighted three-dimensional magnetization intensity preparation gradient echo (3D-T1WI-MPRAGE) sequence and 3D-pCASL sequence on 3.0 T MRI. We used FreeSurfer software to segment the hippocampal subregions of 3D-T1WI images. By fusing the segmented hippocampal subregions with perfusion quantitative maps, we registered and measured the subarea cerebral blood flow (CBF). Compare the differences in CBF values in the hippocampus subregion between the left and right sides of the control group, and the affected and contralateral sides of the MTLE-HS group through paired t-tests. Independent samples t-test was used to compare the variability of CBF values in hippocampal subregions between the control group and the affected side of the MTLE-HS group, and between the control group and the contralateral side of the MTLE-HS group. The diagnostic efficacy of CBF value in each subregion in detecting MTLE-HS was evaluated by using the receiver operating characteristic (ROC) curve and the area under the curve (AUC).Results There was no significant difference in the CBF values of the left and right hippocampal subregions CA1, CA2-3, CA4, granular cell layer of dentate gyrus (GC-DG) in the control group (P>0.05). In the MTLE-HS group, there was no statistical difference in CBF values between the affected and contralateral CA1 (t=1.075, P=0.289), but there were significant differences in other subregions (all P<0.001). The CBF values of the affected and contralateral sides of MTLE-HS group were significantly different from those of the control group (P<0.001). ROC curve analysis results showed that the AUC of CBF values in hippocampal CA1, CA2-3, CA4 and GC-DG subregions were 0.746, 0.831, 0.837 and 0.830.Conclusions For patients with focal medial temporal lobe epilepsy, the measurement of blood perfusion in the hippocampal subregion is of certain significance to accurately locate the epileptogenic zone and its affected area before surgery, and provide imaging basis for understanding the blood perfusion changes in the MTLE-HS subregion before surgery.
[关键词] 颞叶内侧癫痫;海马硬化;磁共振成像;动脉自旋标记;海马亚区;自动分割
[Keywords] medial temporal lobe epilepsy;hippocampal sclerosis;magnetic resonance imaging;arterial spin labeling;hippocampus subregion;automatic segmentation

闫梦楠 1   李健 2   王一婷 1   摆玉财 1   李金芹 1   陈兵 2*  

1 宁夏医科大学临床医学院,银川 750004

2 宁夏医科大学总医院放射科,银川 750003

通信作者:陈兵,E-mail:chenbing135501@163.com

作者贡献声明:陈兵设计本研究方案,对稿件重要部分进行修改;闫梦楠起草和撰写稿件,参与资料的分析与解释;李健、王一婷、摆玉财、李金芹参与数据收集、整理与资料的分析解释,对论文学术内容的重要方面进行修改,其中李健获得了宁夏回族自治区重点研发计划项目和宁夏自然科学基金的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性及诚信。


基金项目: 宁夏回族自治区重点研发计划项目 2020BEG03026 宁夏自然科学基金 2023AAC03611
收稿日期:2023-03-21
接受日期:2023-08-04
中图分类号:R445.2  R742.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.09.005
引用本文:闫梦楠, 李健, 王一婷, 等. 三维伪连续式动脉自旋标记成像联合自动分割技术在海马硬化型颞叶内侧癫痫中的应用[J]. 磁共振成像, 2023, 14(9): 26-32. DOI:10.12015/issn.1674-8034.2023.09.005.

0 前言

       癫痫是一种由脑部神经元异常放电引起的神经慢性疾病,其中海马硬化型颞叶内侧癫痫(hippocampal sclerotic medial temporal lobe epilepsy, MTLE-HS)是最常见的成人药物难治性癫痫[1],以神经元丢失和胶质细胞增生为主要特征[2],目前手术切除是治疗的有效方法,可以减少70%~90%患者的发作症状[3]。因此,术前准确定位致痫灶及其影响区域对尽可能保留非致痫组织和减少术后神经功能缺损至关重要。

       临床上应用正电子发射断层成像(positron emission tomography, PET)和单光子发射计算机断层成像(single-photon emission computed tomography, SPECT)作为脑代谢及灌注的金标准,该技术在MTLE-HS致痫灶的血流变化对术前定位及术后结果的预测方面具有很高的敏感性[4],是目前术前预估致痫灶切除范围的常用方案。但因其时间和空间分辨率较差,具有侵入性,需要辐射暴露且费用昂贵,未能造福更多患者。近几年新兴的磁共振三维伪连续式动脉自旋标记(three-dimensional pseudo-continuous arterial spin labeling, 3D-pCASL)成像提供了一种无创性定量观察血流灌注的方法[5]。该技术利用标记成像水平上流动脉血中氢质子作为内源性示踪剂,通过被标记氢质子和组织进行交换来定量血流灌注,形成脑血流量(cerebral blood flow, CBF)信息图[6],具有无创、无须注射对比剂、无辐射等优势。目前研究表明PET/SPECT与ASL在病灶的侧化方面有较高的一致性[7, 8],具有潜在的临床应用价值。既往有利用3D-pCASL研究MTLE-HS患者双侧海马区血流灌注改变[9],但鲜有人关注亚区的灌注情况。因此本研究利用3D-pCASL联合海马自动分割技术探讨MTLE-HS患者在海马亚区级别的血流灌注变化。

1 材料与方法

1.1 研究对象

       本研究遵循《赫尔辛基宣言》,经宁夏医科大学总医院伦理审查委员会批准(伦理审批号:KYLL-2021-0295),所有纳入研究人员均签署知情同意书。以2021年1月至2022年12月因疑似癫痫在本院行癫痫一体化扫描的545例患者病例为总样本,经筛选后纳入病理诊断(3例)和MRI诊断(37例)的共40例单侧MTLE-HS的患者病例。其中左侧MTLE-HS 29例,右侧MTLE-HS 11例;女23例,男17例,年龄18~60(34.70±12.34)岁;MTLE-HS的诊断参考国际抗癫痫联盟(International League Against Epilepsy, ILAE)2014年诊断标准。招募30例健康志愿者,其中女14例、男16例,年龄(32.90±10.33)岁。两组受试者的年龄和性别差异无统计学意义(年龄:t=0.647,P=0.520;性别:χ2=0.807,P=0.268)。

       病例组纳入标准:(1)症状学及脑电图符合局灶性颞叶内侧癫痫;(2)MRI检查单侧海马硬化(hippocampal sclerotic, HS)阳性表现;(3)年龄范围18~60岁之间;(4)均在癫痫发作间期行MRI检查。排除标准:(1)有神经系统及精神方面疾病或者家族史;(2)有引起癫痫症状的其他疾病,如肿瘤、外伤、炎症、皮层发育不良等;(3)有大脑先天性发育畸形;(4)MRI图像质量差、不能进行自动分割或分割不匹配及灌注测量融合不匹配。

       对照组纳入标准:年龄、性别与病例组相匹配。排除标准:(1)癫痫及其他神经系统疾病的家族史;(2)神经系统疾病,如脑肿瘤、脑外伤、炎症等;(3)存在MRI检查禁忌;(4)MRI图像质量差、不能进行自动分割或分割不匹配及灌注测量融合不匹配。

1.2 MRI扫描方案

       使用GE SIGNA Architect 3.0 T磁共振仪,48通道相控阵头颅线圈,上述纳入研究者均行我院癫痫一体化MRI扫描方案,主要扫描序列参数如下:(1)轴位3D-pCASL序列,标记后延迟时间为1525 ms,TR 4642 ms,TE 53.5 ms,层厚4 mm,激励次数3,带宽62.5 Hz;(2)轴位3D T1WI-MPRAGE序列,等体素(1.0 mm×1.0 mm×1.0 mm),FOV 256 mm×256 mm,TR 7.7 ms,TE 3.1 ms,翻转角8°,激励次数1,带宽1.25 Hz;(3)垂直于海马体部斜冠状位T2WI,TR 2601 ms,TE 85 ms,层厚2.0 mm,层间距1.0 mm,翻转角111°,激励次数4,带宽50 Hz。

1.3 图像分析

       所有图像先由两位副高及以上职称且具有10年以上神经放射影像工作经验的神经放射医师采用单盲法独立分析,通过斜冠状位高分辨率T2WI图像对海马形态、信号、内部结构等特征进行视觉评估,MRI-HS诊断标准为:(1)直接征象为海马总体积减小,T2WI或T2液体衰减反转恢复(T2 fluid attenuated inversion recovery, T2-FLAIR)信号增高;(2)间接表现为海马内部结构消失,条纹模糊或消失,指状突起变平,同侧侧脑室颞角扩大、同侧穹窿萎缩、乳头体萎缩、颞叶萎缩等[10],重点关注海马大小及T2信号。意见不一致时,由另一名高级放射科医师(主任医师)重新评估,三者协商取得一致意见。

1.4 图像后处理

1.4.1 自动分割海马亚区

       本研究使用美国MIT Health Sciences & Technology和 Massachusetts General Hospital 共同开发的FreeSurfer软件将海马亚区进行分割,该方法使用海马解剖概率图谱,该图谱源自39个体内T1WI MRI(1 mm各向同性体素)与15个离体MRI(0.10~0.20 mm各向同性)的数据集组合,体内使用(Caviness, Filipek & Kennedy, 1989)解剖标准,离体主要基于(Rosene & Van Hoesen, 1987)组织学和形态学的标准手动勾画海马亚区,通过一种贝叶斯推理的图谱构建算法,将体内和体外数据合并成一个单一的海马结构计算图谱[11]。由此产生的图谱可以用于自动分割结构化MRI图像中的海马亚区(https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields)。分割具体步骤如下:先将3D T1WI图像经MRI cron软件把DICOM文件格式转换为.nii/.nii.gz格式,传入Linux系统中FreeSurfer软件7.3.2版进行全脑分割(recon-all),包括头动校正、非均匀强度标准化处理等31个步骤,上述步骤均使用recon-all脚本实现自动化处理(http://ftp.nmr.mgh.harvard.edu/fswiki/recon-all)。在recon-all基础上,使用segmentHA_T1.sh对海马亚区分割,将双侧海马分割为以下亚区:CA1、CA2-3、CA4、齿状回颗粒细胞层(granular cell layer of dentate gyrus, GC-DG)等[12]。由于CA2、CA3在MRI上信号缺乏对比度且CA2体积小,故该软件将其合并未做区分。

1.4.2 海马亚区CBF值测量

       首先经GE 4.7工作站上应用READY VIEW软件将CBF图导出,经上述操作转换格式后传入Linux系统,使用FreeSurfer软件中freeview界面打开,配准至受试者3D-T1WI图像上,后将FreeSurfer分割的海马亚区感兴趣区(region of interest, ROI)映射到CBF图上[13, 14],得出海马亚区的CBF值。为了保证测量海马亚区时所有被试者的ROI位置相对一致,本研究采用如下测量方案:根据FreeSurfer分割出HBT模板即头、体、尾模板,选取海马头、体部中线作为亚区测量的基线,海马尾部被定义为海马的最后部,其中无法区分各亚区且体积较小,故在亚区统计时应排除在外[15]。利用FS60模板即亚区模板,在海马头、体部基线及基线前后各2个层面内找寻能完整显示海马亚区且亚区体积占比较多的层面作为亚区(CA1、CA2-3、CA4、GC-DG)测量的层面(图1),求取头、体两部分海马亚区CBF平均值,以两次测量的平均值作为亚区CBF值最终结果。

图1  海马亚区CBF值测量方法。FreeSurfer分割:最上方两幅图为HBT模板即头、体、尾模板,HP_head(红色):海马头;HP_body(绿色):海马体;HP_tai(淡紫色):海马尾。下方四幅图为FS60模板即亚区模板,分为CA1(红色)、CA2-3(深绿色)、CA4(土黄色)、GC-DG(蓝色)。左侧三幅图以海马头部中线为基线显示测量海马亚区CBF值层面,右侧三幅图为海马体部基线测量海马亚区CBF值层面。HBT:FreeSurfer软件以海马头、体、尾作为标准的一种分割模板缩写;FS60:FreeSurfer软件以海马亚区作为标准的一种分割模板缩写;CBF:脑血流量;GC-DG:齿状回颗粒细胞层。
Fig. 1  Measurement method of cerebral blood flow (CBF) value in hippocampal subregion. FreeSurfer segmentation: the top two images are HBT templates (head, body and tail), HP_head (red): hippocampus head; HP_body (green): hippocampus body; HP_tail (mauve): hippocampus tail. And the bottom four images are FS60 templates (subregions). Hippocampal subregion is divided into CA1 (red), CA2-3 (dark green), CA4 (earthy yellow), GC-DG (blue). The three images on the left vertical row take the midline of the hippocampus head as the baseline to show the CBF value of the hippocampus subregion. The three vertical graphs on the right show the level of CBF value of hippocampal subregion measured at the baseline of hippocampus body. HBT: a segmentation template abbreviation for FreeSurfer software using hippocampal head, body, and tail as a standard; FS60: a segmentation template abbreviation for FreeSurfer software using hippocampal subregions as a standard; GC-DG: dentate gyrus granule cell layer.

1.5 统计学分析

       使用SPSS26.0软件和MedCalc 20.11.5软件进行统计学分析。对符合正态分布的计量资料采用均数±标准差表示,不符合的以MQ1,Q3)表示。采用配对t检验(正态分布数据)或两相关样本Wilcoxon检验(非正态分布数据)比较对照组左、右两侧以及MTLE-HS组患侧、对侧之间海马亚区CBF值的差异性;采用独立样本t检验(正态分布数据)或两样本Mann-Whitney U检验(非正态分布数据)分别比较对照组与MTLE-HS患侧组,对照组与MTLE-HS对侧组之间海马亚区CBF值的差异性;采用受试者工作特征(receiver operating characteristic, ROC)曲线及曲线下面积(area under the curve, AUC)评价各亚区CBF值对MTLE-HS的诊断效能。P<0.05认为差异具有统计学意义。

2 结果

2.1 一致性分析

       两位神经放射医师诊断HS的一致性较好(Kappa=0.817,P<0.05),海马亚区CBF值两次结果重测信度的一致性良好(组内ICC=0.768,ICC在0.75~0.90之间为一致性良好)。

2.2 对照组左、右侧海马亚区的差异性

       健康对照组左、右侧海马亚区CA1、CA2-3、CA4、GC-DG的CBF值存在相关性且服从正态分布,使用配对t检验发现左、右两侧CBF值无显著差异(CA1:t=-0.467,P=0.644;CA2-3:t=1.625,P=0.115;CA4:t=1.273,P=0.213;GC-DG:t=0.966,P=0.342)。因此,本研究将健康对照组的左、右两侧海马视为一组,得出对照组海马亚区CA1、CA2-3、CA4、GC-DG的平均CBF值(表1)。

表1  正常对照组、MTLE-HS组海马各亚区CBF值差异性比较
Tab. 1  Comparison of CBF values in different hippocampal subregions between normal control group and MTLE-HS group

2.3 MTLE-HS组患侧、MTLE-HS组对侧与对照组海马亚区的差异性

       MTLE-HS组患侧、对侧之间海马亚区CA1、CA2-3、CA4、GC-DG的CBF值见表1,采用配对t检验得出MTLE-HS组患侧CA1与对侧CA1的CBF值差异无统计学意义(t=1.075,P=0.289),其他亚区与对侧相应亚区差异有统计学意义(P均<0.001)。

       对照组分别与MTLE-HS患侧组、MTLE-HS对侧组采用独立样本t检验进行差异性比较,发现无论患侧还是对侧与对照组相比,上述亚区CBF值差异均有统计学意义(P<0.001)。

图2  海马CA1、CA2-3、CA4、GC-DG各亚区CBF值诊断HS的ROC曲线及其AUC。CBF:脑血流量;HS:海马硬化;GC-DG:齿状回颗粒细胞层。
Fig. 2  ROC curve and AUC of CBF value in CA1, CA2-3, CA4 and GC-DG regions of hippocampus for diagnosis of HS. CBF: cerebral blood flow; HS: hippocampal sclerosis; GC-DG: dentate gyrus granule cell layer.
图3  男,18岁,癫痫病史3年,行“海马杏仁核+标准前颞叶切除手术”,经病理证实为左侧海马硬化,预后良好。3A:斜冠状位高清T2WI显示左侧海马体积缩小,信号增高,颞角增宽,局部条纹模糊;3B:分割后海马亚区感兴趣区(ROI);3C:脑血流量(CBF)图与结构像T1配准,后将海马亚区ROI映射到CBF图像上,得出患侧海马CA1、CA2-3、CA4、齿状回颗粒细胞层(GC-DG)区的CBF值分别为43.21 mL/(100 g·min)、40.81 mL/(100 g·min)、36.77 mL/(100 g·min)和40.61 mL/(100 g·min),血流灌注均比对侧低;3D:左侧海马神经元染色阳性,海马CA4区神经元丢失显著,CA2-3区局部神经元排列紊乱,呈结节样改变。
Fig. 3  Male, 18 years old, with a 3-year history of epilepsy, underwent "hippocampal amygdala and standard anterior temporal lobectomy", which was proved to be left hippocampal sclerosis by pathology, with a good prognosis. 3A: The left hippocampal volume decreased, the signal increased, the temporal horn widened, and the local fringe blurred on oblique coronal high-definition T2WI; 3B: The segmented hippocampal subregion ROIs are shown; 3C: The cerebral blood flow (CBF) map is registered with the structural image T1, and then the hippocampal subregion ROI is mapped to the CBF image, the CBF values of CA1, CA2, CA4 and dentate gyrus granule cell layer (GC-DG) regions in hippocampus are 43.21 mL/(100 g·min), 40.81 mL/(100 g·min), 36.77 mL/(100 g·min) and 40.61 mL/(100 g·min), and the blood perfusion is lower than that on the side; 3D: Positive staining of neurons in the left hippocampus, the loss of CA4 neurons is significant, and the arrangement of local neurons in CA2-3 region is disordered, appearing as nodules.

2.4 海马各亚区CBF值ROC曲线及曲线下面积

       ROC曲线分析结果(表2图2)、DeLong检验结果显示海马亚区CA1与CA2-3、CA4、GC-DG之间AUC差异有统计学意义(P<0.05),CA2-3、CA4、GC-DG的AUC高于CA1,CA2-3、CA4、GC-DG之间AUC两两比较差异无统计学意义(P>0.05)。

表2  海马各亚区CBF值对HS的诊断效能
Tab. 2  Diagnostic efficacy of hippocampal subregion CBF values in hippocampal sclerosis

3 讨论

       本研究利用3D-pCASL联合海马自动分割技术主要探讨了MTLE-HS患者海马亚区的血流灌注改变。正常对照组左、右两侧CBF值在亚区级别血流灌注基本一致;对照组分别与MTLE-HS患侧组、对侧组海马各亚区CBF值比较,差异均有统计学意义;MTLE-HS组患侧CA1区与对侧相应亚区的CBF值差异无统计学意义。

3.1 海马亚区概述及ROI勾画方法的比较

       海马为双皮层结构,其内部主要由阿蒙角和齿状回组成。根据不同皮质发育差异及纤维排列的不同,将海马分为四个亚区,即CA1~CA4。海马本部为CA1~CA4,主要由锥体细胞构成,GC-DG则主要由颗粒细胞构成[16]。ILAE关于HS的共识分类中定义HS分型:(1)1型,各亚区均有细胞丢失,以CA1和CA4亚区中神经元丢失为主(>80%),是临床中最常见一种类型;(2)2型,以CA1亚区中神经元丢失为主,其他区丢失不明显;(3)3型,以CA4亚区中神经元丢失为主(>50%)[17, 18]

       目前,针对海马ROI勾画的方法分为手动勾画和自动分割[19]。手动勾画耗时长,且不同测量者易造成较大的数值偏差,可重复性较差。因此本研究采用先进的脑部分割FreeSurfer软件对海马进行亚区级别的精细分割,其分割结果与手工分割相似[14, 20, 21, 22],且比手动勾画更精细。GRIMM等[23]比较了手动勾画与自动分割相关性,结果表明在海马区,FreeSurfer自动分割与手动勾画的相关性较高,但依然存在一些差异,其原因与分割协议有关。亦有学者[24, 25, 26]报道,基于此方法可为难治性MTLE-HS患者手术前提供精确的定量分析。

3.2 海马CA1区纤维投射及双侧海马之间联系

       根据海马内部纤维的走形,CA1区传入通路主要包括两部分:(1)内嗅皮层Ⅱ层神经元轴突纤维通过穿质通路投射至海马GC-DG区分子层,与GC-DG颗粒细胞建立突触联系,GC-DG颗粒细胞的轴突纤维通过苔藓纤维通路投射至CA3区,CA3区锥体神经元通过Schaffer侧支通路投射至CA1区;(2)内嗅皮层Ⅲ层神经元纤维直接投射到CA1区,其传出通路也包括两部分,一条通路为CA1的神经元轴突直接通过海马槽和海马伞输出,第二条通路为CA1的轴突产生投射到下托的侧支,从而直接再沿海马槽和海马伞走形,或者再投射至内嗅皮层深层(Ⅴ、Ⅵ层),并与浅层建立联系[16, 27, 28]。海马内部纤维沿海马槽走形在内后方聚集形成一条狭窄的海马伞,海马伞向后上延伸为穹窿脚,在穹窿脚之间有大量互相向对侧投射的交叉纤维即穹窿连合或海马连合,从而连接双侧海马结构[16],因此CA1区既是海马内部纤维投射的交通枢纽,同时也是双侧海马之间产生联系的关键;ROMERO-GUERRERO等[29]在研究中提及癫痫样活动的一些形式特别依赖于海马CA1锥体神经元的放电,故CA1区在癫痫发作及纤维传导过程中具有重要作用。

3.3 MTLE-HS患者血流灌注变化

       CBF值反映了脑中的血液灌注量,通常定义为每100克脑组织内每分钟的血液毫升数[mL/(100 g·min)]。目前关于致痫灶的血流灌注变化,多数认同癫痫患者在急性发作期,由于病理性神经元活动性增高,细胞耗氧量增加,CBF通常会增加;而在慢性发作间期,CBF通常会减小,因为此时与正常脑组织相比,致痫灶区域的功能和活动较低[30, 31, 32]。本研究均收集发作间期HS患者的CBF值,得出正常对照组左、右两侧CBF值在亚区级别差异无统计学意义,与既往手动勾画海马头、体、尾测量海马CBF值的结果一致[33];摆玉财等[34]按照Coan的研究方法手动勾画测量出正常海马CBF值约为(53.78±7.19)mL/(100 g·min),本研究得出正常海马CA1、CA2-3、CA4、GC-DG区CBF值分别为(50.444±6.683)mL/(100 g·min)、(58.926±9.188)mL/(100 g·min)、(55.911±8.985)mL/(100 g·min)和(55.117±8.332)mL/(100 g·min),两者之间略有差异,这可能与样本量的差异或ROI面积有关;ZHANG等[35]利用SPM软件中ASL toolbox测量MTLE患者海马区CBF值,结果显示HS患者血流灌注明显低于对照组,HS组患侧与对侧之间血流灌注不对称;LI等[9]通过3D-pCASL技术手动勾画海马ROI测量整体CBF值,证明了HS患侧组、健侧组海马区CBF值均低于正常对照组,与本次研究中对照组与MTLE-HS组患侧、对侧在海马各亚区CBF值比较结果一致。

       当一侧海马病变血流减低时,对侧海马早期由于代偿机制血流灌注会有所增加,但随着患侧HS病情的加重,对侧海马也会出现因失代偿致血流灌注减低。本研究中MTLE-HS组患侧和对侧、对侧和正常对照组之间比较海马各亚区CBF值证实了双侧海马之间存在联系;我们发现当一侧海马血流灌注异常时,对侧海马CA1区CBF值降低得更为明显,其原因可能与上述重要的纤维连接通路有关,同时VAN STAALDUINEN等[27]在研究中提及CA1区对缺氧具有特定的敏感性,被称为“易损区”,故本研究认为对侧海马CA1区CBF值降低可能与其特定属性也有一定关联。在40例MTLE-HS患者中,患侧各亚区CBF值均低于对侧的有15例,我们认为这类HS的患者致痫灶局限在患侧,未通过纤维传导影响到对侧,手术结果更为理想;以对侧CA1区减低为主的有14例,我们猜想该类患者已通过纤维传导影响对侧海马,使其在功能学上发生改变,以CA1区CBF值变化最为显著,这种患者手术切除后可能会影响其预后癫痫发作的频率。

3.4 海马亚区CBF值对HS的诊断效能

       本研究还对海马各亚区CBF值对HS的诊断效能进行分析,ROC曲线分析结果显示CA1区CBF值诊断HS特异度最高,约91.67%,但其敏感度仅为50.00%,CA2-3、CA4、GC-DG区的诊断效能之间差异无统计学意义,AUC分别为0.831、0.837、0.830,其中当CA4 CBF值截断值为50.11 mL/(100 g·min)时,其特异度为73.33%,敏感度为80.00%,阳性预测值为66.70%,阴性预测值为84.60%。

3.5 3D-pCASL联合海马自动分割技术在不同诊断标准中的差异性

       本研究收集的由病理证实为HS的3例患者中患侧海马亚区存在血流灌注的减低,其中患侧各亚区血流灌注全部显著减低的有2例;由“临床症状学+脑电图+MRI”三者联合诊断为HS的37例中,28例存在海马亚区血流灌注减低,且以CA1亚区减低最显著,以CA4区减低的频数最多。由此可见无论是病理证实的HS还是临床诊断的HS,均存在患侧海马血流灌注减低的表现,二者之间具有一定的一致性。

3.6 本研究的局限性

       本研究存在一定的局限性。首先,本研究中只有3例经病理证实为HS,其余37例为“临床症状学+脑电图+MRI”三者联合诊断为HS,需在今后纳入更多经病理证实的样本数据来进一步验证研究结果;其次,样本量偏少,可能存在样本数据偏倚问题,今后需纳入更多研究对象来减少此类问题发生。

4 结论

       综上所述,本研究认为针对局灶性颞叶内侧癫痫患者,测量其海马亚区血流灌注对术前准确定位致痫灶及其影响区域有一定的意义,可为术前了解HS亚区的血流灌注变化提供影像学依据。

[1]
姚媛, 王芳, 赵斌. 海马正常解剖、发育变异及常见病变的MRI表现[J]. 医学影像学杂志, 2021, 31(8): 1426-1929.
YAO Y, WANG F, ZHAO B. The normal anatomy of the hippocampus, developmental variations and common pathological changes of MRI manifestations[J]. J Med Imaging, 2021, 31(8): 1426-1929.
[2]
VOS S B, WINSTON G P, GOODKIN O, et al. Hippocampal profiling: Localized magnetic resonance imaging volumetry and T2 relaxometry for hippocampal sclerosis[J]. Epilepsia, 2020, 61(2): 297-309. DOI: 10.1111/epi.16416.
[3]
BLUMCKE I, SPREAFICO R, HAAKER G, et al. Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery[J]. N Engl J Med, 2017, 377(17): 1648-1656. DOI: 10.1056/NEJMoa1703784.
[4]
YOGANATHAN K, MALEK N, TORZILLO E, et al. Neurological update: structural and functional imaging in epilepsy surgery[J]. J Neurol, 2023, 270(5): 2798-2808. DOI: 10.1007/s00415-023-11619-z.
[5]
LINDNER T, BOLAR D S, ACHTEN E, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[6]
杨永贵, 陈芳, 吴秀芬, 等. 3.0 T磁共振脑部快速动脉自旋标记成像的可行性研究[J]. 磁共振成像, 2023, 14(1): 116-123. DOI: 10.12015/issn.1674-8034.2023.01.021.
YANG Y G, CHEN F, WU X F, et al. Feasibility study of 3.0T magnetic resonance imaging with rapid arterial spin labeling in brain[J]. Chin J Magn Resonimaging, 2023, 14(1): 116-123. DOI: 10.12015/issn.1674-8034.2023.01.021.
[7]
WANG Y H, AN Y, FAN X T, et al. Comparison between simultaneously acquired arterial spin labeling and (18)F-FDG PET in mesial temporal lobe epilepsy assisted by a PET/MR system and SEEG[J]. Neuroimage Clin, 2018, 19: 824-830. DOI: 10.1016/j.nicl.2018.06.008.
[8]
SONE D, MAIKUSA N, SATO N, et al. Similar and Differing Distributions Between (18)F-FDG-PET and Arterial Spin Labeling Imaging in Temporal Lobe Epilepsy[J/OL]. Front Neurol, 2019, 10: 318 [2023-03-20]. https://doi.org/10.3389/fneur.2019.00318. DOI: 10.3389/fneur.2019.00318
[9]
LI J, BAI Y C, WU L H, et al. Synthetic relaxometry combined with MUSE DWI and 3D-pCASL improves detection of hippocampal sclerosis[J/OL]. Eur J Radiol, 2022, 157: 110571 [2023-03-20]. https://doi.org/10.1016/j.ejrad.2022.110571. DOI: 10.1016/J.EJRAD.2022.110571.
[10]
KUBOTA B Y, COAN A C, YASUDA C L, et al. T2 hyperintense signal in patients with temporal lobe epilepsy with MRI signs of hippocampal sclerosis and in patients with temporal lobe epilepsy with normal MRI[J]. Epilepsy Behav, 2015, 46: 103-108. DOI: 10.1016/j.yebeh.2015.04.001.
[11]
IGLESIAS J E, AUGUSTINACK J C, NGUYEN K, et al. A computational atlas of the hippocampal formation using ex vivo , ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI[J]. NeuroImage, 2015, 115: 117-137. DOI: 10.1016/j.neuroimage.2015.04.042
[12]
MENZLER K, HAMER H, MROSS P, et al. Validation of automatic MRI hippocampal subfield segmentation by histopathological evaluation in patients with temporal lobe epilepsy[J]. Seizure, 2021, 87: 94-102. DOI: 10.1016/j.seizure.2021.03.007
[13]
Wu J J, Shahid S S, Lin Q X, et al. Multimodal magnetic resonance imaging reveals distinct sensitivity of hippocampal subfields in asymptomatic stage of Alzheimer's disease[J/OL]. Front Aging Neurosci, 2022, 14: 901140 [2023-03-20]. https://doi.org/10.3389/fnagi.2022.901140. DOI: 10.3389/fnagi.2022.901140.
[14]
PARK Y, CHOI Y, KIM S, et al. Radiomics features of hippocampal regions in magnetic resonance imaging can differentiate medial temporal lobe epilepsy patients from healthy controls[J/OL]. Sci Rep, 2020, 10(1): 19567 [2023-03-20]. https://doi.org/10.1038/s41598-020-76283-z. DOI: 10.1038/s41598-020-76283-z.
[15]
SHAH P, BASSETT D, WISSE L, et al. Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: A 7T MRI study[J].Hum Brain Mapp, 2019, 40(8): 2390-2398. DOI: 10.1002/hbm.24530.
[16]
DUVERNOY H M, CATTIN F, RISOLD P Y. The human hippocampus: functional anatomy, vascularization and serial sections with MRI[M]. Springer, 2005. DOI: 10.1007/978-3-642-33603-4.
[17]
Hasimoglu O, Barut O, Kapar M O, et al. Relation Between ILAE Hippocampal Sclerosis Classification and Clinical Findings in Temporal LobeEpilepsy[J]. Turk Neurosurg, 2021, 31(3): 404-411. DOI: 10.5137/1019-5149.JTN.32026-20.1.
[18]
BLÜMCKE I, THOM M, ARONICA E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods[J]. Epilepsia, 2013, 54(7): 1315-1329. DOI: 10.1111/epi.12220.
[19]
AKHIL M, AISHWARYA R, LAL V, et al. Comparison and Evaluation of Segmentation Techniques for Brain MRI using Gold Standard[J]. Indian J Sci and Technol, 2016, 9(46): 1-5. DOI: 10.17485/ijst/2016/v9i46/106495.
[20]
SÄMANN P, IGLESIAS J, GUTMAN B, et al. FreeSurfer-based segmentationof hippocampal subfields: A review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts[J]. Hum Brain Mapp, 2022, 43(1): 207-233. DOI: 10.1002/hbm.25326.
[21]
王颖, 钱天翼, 苏壮志, 等. 对比QBrain与FreeSurfer软件自动测量海马体积[J]. 中国医学影像技术, 2021, 37(2): 174-178. DOI: 10.13929/j.issn.1003-3289.2021.02.004.
WANG Y, QIAN T Y, SU Z Z, et al. Comparison between QBrain and FreeSurfer software for automatic measurement of hippocampal volume[J]. Chin J Med Imaging Technol, 2021, 37(2): 174-178. DOI: 10.13929/j.issn.1003-3289.2021.02.004.
[22]
徐玉玉, 钱学华, 邓玲, 等. Freesurfer与VBM测量海马体积的一致性[J]. 中国医学影像学杂志, 2017, 25(9): 646-650.
XU Y Y, QIAN X H, DENG L, et al. Consistency of Freesurfer and VBM measurements of hippocampal volume[J]. Chin J Med Imaging, 2017, 25(9): 646-650.
[23]
GRIMM O, POHLACK S, CACCIAGLIA R, et al. Amygdalar and hippocampal volume: A comparison between manual segmentation, Freesurfer and VBM[J]. J Neurosci Methods, 2015, 253: 254-261. DOI: 10.1016/j.jneumeth.2015.05.024.
[24]
张旭妃, 石林, 朱明旺, 等. 基于MRI自动化定量海马体积诊断颞叶癫痫患者海马硬化[J]. 中国介入影像与治疗学, 2022, 19(1): 40-43. DOI: 10.13929/j.issn.1672-8475.2022.01.009.
ZHANG X F, SHI L, ZHU M W, et al. Diagnosis of hippocampal sclerosisin temporal lobe epilepsy based on MRI automatic quantification of hippocampal volume[J]. Chinese Journal of Interventional Imaging and Therapy, 2022, 19(1): 40-43. DOI: 10.13929/j.issn.1672-8475.2022.01.009.
[25]
胡洁, 申博兴, 李延静, 等. MR自动化测量对颞叶癫痫合并海马硬化的定量分析[J].影像诊断与介入放射学, 2022, 31(3): 205-210. DOI: 10.3969/j.issn.1005-8001.2022.03.008.
HU J, SHEN B X, LI Y J, et al. Quantitative analysis of temporal lobe epilepsy complicated with hippocampal sclerosis by automated MR Measurement[J]. Chin J Interv Imaging Ther, 2022, 31(3): 205-210. DOI: 10.3969/j.issn.1005-8001.2022.03.008.
[26]
GRANADOS SÁNCHEZ A M, OREJUELA ZAPATA J F. Hippocampal sclerosis: Volumetric evaluation of the substructures of the hippocampus by magnetic resonance imaging[J]. Radiologia (Engl Ed), 2018, 60(5): 404-412. DOI: 10.1016/j.rx.2018.03.007.
[27]
VAN STAALDUINEN E K, ZEINEH M M. Medial Temporal Lobe Anatomy[J]. Neuroimaging Clin N Am, 2022, 32(3): 475-489. DOI: 10.1016/j.nic.2022.04.012.
[28]
ZEINEH M M, PALOMERO-GALLAGHER N, AXER M, et al. Direct Visualization and Mapping of the Spatial Course of Fiber Tracts at Microscopic Resolution in the Human Hippocampus[J]. Cereb Cortex, 2017, 27(3): 1779-1794. DOI: 10.1093/cercor/bhw010.
[29]
ROMERO-GUERRERO C, GUEVARA M A, HERNANDEZ-GONZALEZ M, et al. Pentylenetetrazol-induced seizures are followed by a reduction in the multiunitary activity of hippocampal CA1 pyramidal neurons in adult rats[J/OL]. Epilepsy Behav, 2022, 137(Pt A): 108922 [2023-03-20]. https://doi.org/10.1016/j.yebeh.2022.108922. DOI: 10.1016/j.yebeh.2022.108922.
[30]
郝科技, 王茜, 李原, 等. 癫痫不同时期脑血流灌注显像动态观察在致痫灶定位诊断中的应用[J]. 中国医学影像学杂志, 2021, 29(2): 126-130. DOI: 10.3969/j.issn.1005-5185.2021.02.007.
HAO K J, WANG Q, LI Y, et al. Application of dynamic observation of cerebral blood perfusion imaging in the localization and diagnosis of epileptic foci at different stages of epilepsy[J]. Chin J Med Imaging, 2021, 29(2): 126-130. DOI: 10.3969/j.issn.1005-5185.2021.02.007.
[31]
NAGESH C, KUMAR S, MENON R, et al. The Imaging of Localization Related Symptomatic Epilepsies:The Value of Arterial Spin Labelling Based Magnetic Resonance Perfusion[J]. Korean J Radiol, 2018, 19(5): 965-977. DOI: 10.3348/kjr.2018.19.5.965.
[32]
ALGAHTANY M, ABDRABOU A, ELHADDAD A, et al. Advances in Brain Imaging Techniques for Patients With Intractable Epilepsy[J/OL]. Front Neurosci, 2021, 15: 699123 [2023-03-20]. https://doi.org/10.3389/fnins.2021.699123. DOI: 10.3389/fnins.2021.699123.
[33]
何明远, 赵蕊, 刘鹏飞. 磁共振动脉自旋标记(ASL)技术对颞叶癫痫患者海马灌注情况的研究[J]. 医学研究杂志, 2017, 46(3): 82-86. DOI: 10.11969/j.issn.1673-548X.2017.03.021.
HE M Y, ZHAO R, LIU P F. Study on hippocampal perfusion in patients with temporal lobe epilepsy by magnetic resonance arterial spin labeling (ASL)[J]. Journal of Medical Research, 2017, 46(3): 82-86. DOI: 10.11969/j.issn.1673-548X.2017.03.021.
[34]
摆玉财, 李健, 马耀兴, 等. 集成MRI与3D-pCASL成像在颞叶内侧癫痫患者海马硬化诊断中的应用[J]. 放射学实践, 2022, 37(8): 960-965. DOI: 10.13609/j.cnki.1000-0313.2022.08.007.
BAI Y C, LI J, MA Y X, et al. Application of synthtic magnetic resonance imaging and 3D-pCASL in the diagnosis of hippocampal sclrosis inpatients withmedial temporal lobe epilepsy[J]. Radiol Practice, 2022, 37(8): 960-965. DOI: 10.13609/j.cnki.1000-0313.2022.08.007.
[35]
ZHANG Y, DOU W, ZUO Z, et al. Brain volume and perfusion asymmetry in temporal lobe epilepsy with and without hippocampal sclerosis[J]. Neurol Res, 2021, 43(4): 299-306. DOI: 10.1080/01616412.2020.1853988.

上一篇 带状疱疹后神经痛患者的脑自发活动改变:一项基于rs-fMRI数据的ALE元分析
下一篇 肺癌患者化疗前后脑脊液容量的变化及其临床意义
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2