分享:
分享到微信朋友圈
X
临床研究
肺癌患者化疗前后脑脊液容量的变化及其临床意义
赵秋月 梁雪 荣萍 陈文倩 马一鸣 韩小伟

ZHAO Q Y, LIANG X, RONG P, et al. Changes of cerebrospinal fluid capacity in patients with lung cancer with or without chemotherapy and its clinical significance[J]. Chin J Magn Reson Imaging, 2023, 14(9): 33-38.引用本文:赵秋月, 梁雪, 荣萍, 等. 肺癌患者化疗前后脑脊液容量的变化及其临床意义[J]. 磁共振成像, 2023, 14(9): 33-38. DOI:10.12015/issn.1674-8034.2023.09.006.


[摘要] 目的 结合横向和纵向分析方法探讨肺癌(lung cancer, LC)及癌症化疗对患者颅内脑脊液(cerebrospinal fluid, CSF)总量以及各亚区CSF容量的影响。材料与方法 横向研究中,回顾性分析2019年5月至2021年12月期间于我院就诊的151例LC患者病例,其中38例接受化疗。同时招募39例健康对照(healthy control, HC)。利用单因素方差分析方法比较三组CSF总量以及各亚区CSF容量的差异,将显著差异的指标与各组LC患者癌症相关临床资料进行相关性分析。纵向研究中,回顾性分析2020年7月至2022年1月期间收治本院的另外20例LC患者病例,使用配对t检验方法比较其前后两次CSF容量的改变,将显著差异指标与随访时间间隔进行相关性分析。结果 横向研究中,未化疗和化疗LC患者组的第三脑室和右侧侧脑室CSF容量均显著高于HC组(P<0.05),并且在化疗组中,肿瘤大小与第三脑室CSF容量呈正相关关系(P<0.05)。纵向研究显示,与第一次颅脑扫描时相比,LC患者在第二次随访后颅内CSF总量、外周CSF以及左侧侧脑室CSF容量均显著增加(P<0.05),并且相应CSF差值与两次随访时间间隔呈正相关关系(P<0.05)。结论 LC及化疗导致患者多个脑室CSF容量发生异常改变,因此CSF容量变化可能为LC诊断提供新的神经影像学标记,并且协助指导癌症化疗。
[Abstract] Objective To explore the effects of lung cancer (LC) and chemotherapy on the total amount of intracranial cerebrospinal fluid (CSF) and the volume of CSF in various subregions in patients with LC by using both horizontal and vertical analysis methods.Materials and Methods In the horizontal study, 151 cases of patient with LC admitted to our hospital from May 2019 to December 2021 were retrospectively analyzed, of which 38 receivied chemotherapy. Meanwhile, 39 healthy controls (HC) were recruited. The differences of total CSF volume and CSF capacity in each subregion were compared among the three groups by one-way ANOVA. Then the correlations between the significantly different indicators and cancer-related clinical data in each group were carried out. In the longitudinal study, an additional 20 cases of LC patients admitted to our hospital between July 2020 and January 2022 were then retrospectively analyzed. The paired t-test method was used to compare the changes in CSF volume between the two times, and then, the correlation analyses were performed between the significantly different indexes and the follow-up interval.Results In the transverse study, the CSF volume in the third ventricle and right lateral ventricle of LC patients with chemotherapy and without chemotherapy were significantly higher than that of the HC group (P<0.05). And in the chemotherapy group, the tumor size was positively correlated with the CSF in the third ventricle (P<0.05). The longitudinal study showed that compared with the first brain scan, the volume of intracranial, peripheral and left lateral ventricle CSF in LC patients increased significantly after the second follow-up (P<0.05). And the CSF differences above were positively associated with the follow-up interval (P<0.05).Conclusions LC and chemotherapy lead to aberrant CSF volume in multiple ventricles,which may provide a new neuroimaging marker for LC diagnosis and assist in guiding cancer chemotherapy.
[关键词] 肺癌;化疗相关脑损伤;脑脊液;三维T1加权成像;磁共振成像;横断面研究;纵向研究
[Keywords] lung cancer;chemotherapy-related brain injury;cerebrospinal fluid;three-dimensional T1 weighted imaging;magnetic resonance imaging;cross-sectional study;longitudinal study

赵秋月    梁雪    荣萍    陈文倩    马一鸣    韩小伟 *  

南京大学医学院附属鼓楼医院医学影像科,南京 210008

通信作者:韩小伟,E-mail:hxw2002hxw@163.com

作者贡献声明:韩小伟酝酿和设计试验,对文章的知识性内容作批评性审阅,获得了国家自然科学基金的资助;赵秋月参与试验设计,分析和解释本研究的数据,实施研究,统计分析,撰写文章;梁雪、荣萍、陈文倩、马一鸣参与设计试验,实施研究,采集数据,分析和解释本研究的数据;全体作者均同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金 82171908
收稿日期:2023-03-24
接受日期:2023-08-04
中图分类号:R445.2  R734.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.09.006
引用本文:赵秋月, 梁雪, 荣萍, 等. 肺癌患者化疗前后脑脊液容量的变化及其临床意义[J]. 磁共振成像, 2023, 14(9): 33-38. DOI:10.12015/issn.1674-8034.2023.09.006.

0 前言

       肺癌(lung cancer, LC)是患病率及死亡率均位居全球首位的癌症[1, 2]。近年来,随着人口老龄化的发展以及生活环境的改变,我国LC患者逐年增加,据统计2020年我国因LC死亡的人数高达81万,占全球LC死亡人数的40%[3]。预估到2025年,我国每年将有一百万人死于LC[4]

       除呼吸系统的症状外,多项神经影像学研究发现LC及化疗可导致患者多个脑区的结构及功能发生异常改变[5, 6]。一项横断面研究显示,LC患者大脑左侧楔前叶及右侧额上回等脑区的皮层厚度和灰质体积显著减小[7]。LIU等[8]和SIMÓ等[9]的研究证明,化疗前后LC患者大脑白质纤维微结构出现不同程度的紊乱。此外,与健康对照(healthy control, HC)组相比,LC患者脑功能网络连接减少,并且化疗后的LC患者降低程度更加显著[10]。上述研究利用MRI神经影像学分析方法证明LC及化疗造成患者大脑异常的神经影像学表现,但是目前尚缺乏具体研究来定量探讨LC患者化疗前后脑脊液(cerebrospinal fluid, CSF)容量的改变,因此本研究结合横向以及纵向分析方法,探讨LC及化疗对患者颅内CSF容量的影响。

1 材料与方法

1.1 研究对象

       在横断面研究中,回顾性分析2019年5月至2021年12月期间于我院就诊的151例LC患者病例,其中38例已接受化疗的肺癌(chemotherapy lung cancer, CLC)患者为CLC组,113例未接受化疗的肺癌(non-chemotherapy lung cancer, NCLC)患者为NCLC组,同时招募年龄、性别以及学历均相互匹配的HC 39例为HC组。LC诊断及分型依据金标准病理结果。LC患者和HC的共同纳入标准如下:(1)年龄<80岁;(2)无精神疾病及精神类药物使用史;(3)颅脑MRI检查未发现脑器质性病变及明显的脑萎缩;(4)慢性缺血缺氧性改变Fazekas分级<2级;(5)右利手。三组受试者的排除标准如下:(1)LC患者发生癌症脑转移;(2)CLC患者行非铂化疗。纵向研究中,回顾性分析在2020年7月至2022年1月期间收治本院的另外20例LC患者病例,且与横断面研究受试者无重复,其纳排除标准同横断面研究。该20例患者先后在一年内进行两次相同的颅脑MRI扫描,并且其中有5例患者经历3次扫描,2例患者接受4次扫描,1例患者共接受5次扫描。

       本研究遵守《赫尔辛基宣言》,并经南京大学附属鼓楼医院伦理委员会批准,免除受试者知情同意,批准文号:2020-379-01。

1.2 研究方法

1.2.1 临床基本信息、癌症相关数据采集

       回顾性分析所有受试者包括年龄、性别、学历在内的人口统计学信息,并记录LC患者癌症相关临床资料,包括病理类型、临床分期、化疗方案及疗程、肿瘤大小等。

1.2.2 MRI数据采集

       使用飞利浦 Ingenia CX 3.0 T磁共振仪并配有32通道dStream头部相控阵线圈对受试者行颅脑MRI扫描。扫描3D快速扰相梯度回波序列,采集受试者颅脑3D-T1WI高分辨率结构像。扫描参数如下:TR 6.6 ms,TE 3.0 ms,翻转角8°,FOV 250 mm×250 mm,矩阵250×250,体素大小1 mm×1 mm×1 mm,无间隔,信号激励次数1。

1.2.3 图像处理

       使用联影智能脑容量测量软件对3D-T1WI颅脑MRI数据进行分析,图像处理步骤如下:(1)图像灰度自适标准化;(2)头骨剥离。经过上述分析后,计算获得受试者全脑容积(脑灰质、白质及颅内脑脊液容积总和)、颅内CSF总量,各亚区(外周、第三脑室、第四脑室、左侧及右侧侧脑室、侧脑室下角)CSF容量以及侧脑室脉络丛体积,脑脊液及脉络丛位置示意见图1。为避免全脑容积差异造成的结果偏差,本研究使用相对CSF容量进行后续统计分析,公式如下:

图1  一例已接受化疗的肺癌患者脑脊液及脉络丛位置示意图。1A:右侧侧脑室;1B:左侧侧脑室;1C:右侧侧脑室下角;1D:左侧侧脑室下角;1E:右侧侧脑室脉络丛;1F:左侧侧脑室脉络丛;1G:第三脑室;1H:第四脑室;1I:外周脑脊液。
Fig. 1  Location diagram of cerebrospinal fluid and choroid plexus of a chemotherapy lung cancer patient. 1A: Right lateral ventricle; 1B: Left lateral ventricle; 1C: Inferior horn of right lateral ventricle; 1D: Lower horn of left lateral ventricle; 1E: Choroid plexus of right lateral ventricle; 1F: Choroid plexus of left lateral ventricle; 1G: Third ventricle; 1H: Fourth ventricle; 1I: Peripheral cerebrospinal fluid.

1.2.4 统计学分析

       采用SPSS 25.0对人口统计学信息及临床数据进行分析,横断面研究中,计量资料使用单因素方差分析,计数资料使用卡方检验比较组间差异,P<0.05认为差异具有统计学意义。以均数±标准差表示计量资料,以例(%)表示计数资料。

       横断面研究中,满足方差齐性的CSF指标使用单因素方差分析比较组间差异,并使用最小显著差异法(least significant difference, LSD)进行事后检验,对不满足方差齐性的数据进行数据转换,转换后若满足方差齐性则使用上述方法进行分析,否则使用非参数检验比较组间差异。对于有显著组间差异的CSF指标,分别在CLC和NCLC患者组与其癌症相关临床资料(临床分期、化疗周期、肿瘤大小)进行相关性分析。纵向分析中,两次随访CSF容量差值若满足正态分布则使用配对t检验比较差异性,否则进行数据转换,转换后仍不满足者则使用非参数检验法。将显著变化的CSF指标和随访时间间隔进行相关性分析。上述分析中,P<0.05认为差异具有统计学意义。

2 结果

2.1 人口统计学信息、癌症相关临床数据

       横断面研究中,NCLC组113例,CLC组38例,HC组39例;纵向研究中LC患者20例。受试者的人口统计学特征、癌症相关临床资料分析结果见表12。横断面研究中,三组受试者的年龄、性别及受教育年限相互匹配(P>0.05)。LC患者的主要病理分型为腺癌和鳞癌。

表1  横断面研究人口统计学特征、肺癌相关临床资料
Tab. 1  Demographic characteristics and clinical data related to lung cancer in the cross-sectional study
表2  纵向研究人口统计学特征、肺癌相关临床资料
Tab. 2  Demographic characteristics and clinical data related to lung cancer in the longitudinal study

2.2 横断面研究

       单因素方差分析结果显示,三组受试者的第三脑室(F=5.418,P=0.005)、右侧侧脑室(F=3.953,P=0.021)CSF容量以及右侧侧脑室脉络丛(F=7.913,P=0.001)体积存在显著组间差异。LSD事后检验发现,NCLC以及CLC组的第三脑室、右侧侧脑室CSF相对容量以及右侧侧脑室脉络丛相对体积均显著高于HC组(P<0.05),而NCLC和CLC组无组间差异(P>0.05),见图2。相关性分析结果显示,在CLC组中,肿瘤大小与第三脑室CSF相对容量呈正相关关系(r=0.329,P=0.044),而在NCLC组中,两者间相关性并不具有统计学意义(r=0.019,P=0.842),见图3

图2  脑脊液相对容量组间差异比较。NCLC或者CLC组患者第三脑室脑脊液相对容量(2A)、右侧侧脑室脑脊液相对容量(2B)、右侧侧脑室脉络丛相对体积(2C)显著高于HC组。*表示P<0.05;**表示P<0.001;NCLC:未接受化疗的肺癌患者;CLC:已接受化疗的肺癌患者;HC:健康对照。
Fig. 2  Comparison of the relative capacity of cerebrospinal fluid (CSF) among groups. The relative capacity of CSF in the third ventricle (2A) and the right ventricle (2B) and the relative volume of choroid plexus in the right ventricle (2C) of NCLC or CLC patients are significantly higher than those of HC. * means P<0.05; ** means P<0.001; NCLC: non-chemotherapy lung cancer; CLC: chemotherapy lung cancer; HC: healthy control.
图3  肿瘤大小和第三脑室CSF相对容量的相关性。3A:CLC患者组中,肿瘤大小和第三脑室CSF相对容量间的相关性;3B:NCLC患者组中,肿瘤大小和第三脑室CSF相对容量间的相关性。CSF:脑脊液;CLC:已接受化疗的肺癌患者;NCLC:未接受化疗的肺癌患者。
Fig. 3  Correlation between tumor size and the relative capacity of cerebrospinal fluid (CSF) in the third ventricle. 3A: The correlation between tumor size and the relative capacity of CSF in the third ventricle in chemotherapy lung cancer (CLC) patients; 3B: The correlation between tumor size and the relative capacity of CSF in the third ventricle in non-chemotherapy lung cancer (NCLC) patients.
图4  随访时间间隔和脑脊液相对容量改变的相关性。4A~4C 分别为肺癌患者中,随访时间间隔分别和脑脊液总量相对容量(4A)、外周脑脊液相对容量(4B)以及左侧侧脑室脑脊液相对容量(4C)改变间的相关性。
Fig. 4  Correlations between follow-up time interval and changes of the relative capacity of cerebrospinal fluid (CSF) in lung cancer patients. 4A-4C are correlations between follow-up interval and changes of the relative capacity of total CSF (4A), peripheral CSF (4B) and left lateral ventricular CSF (4C).

2.3 纵向研究

       配对t检验结果显示,与首次行颅脑MRI扫描时相比,LC患者颅内CSF总量(t=2.228,P=0.038)、外周CSF相对容量(t=2.243,P=0.037)以及左侧侧脑室CSF相对容量(t=2.456,P=0.024)均显著增加。并且相关性分析结果显示,两次扫描的CSF总量(r=0.477,P=0.034)、外周CSF相对容量(r=0.512,P=0.021)以及左侧侧脑室外周CSF相对容量(r=0.492,P=0.027)差值与随访时间间隔之间呈显著的正相关性,见图4

       在长期纵向随访过程中,有5例LC患者行3次相同的颅脑MRI扫描,2例患者行4次MRI扫描,并且有1例患者共经5次MRI扫描。其相关CSF指标变化趋势图如图5

图5  肺癌患者脑脊液总量、外周脑脊液以及左侧侧脑室脑脊液相对容量变化趋势图。5A:5例肺癌患者接受3次颅脑MRI扫描;5B:2例肺癌患者接受4次颅脑MRI扫描;5C:1例肺癌患者接受5次颅脑MRI扫描。lung cancer patients received brain MRI scanning for 4 times; 5C: One lung cancer patient received brain MRI scanning for 5 times.
Fig. 5  Trend of changes of the relative capacity of total cerebrospinal fluid (CSF), peripheral CSF and left lateral ventricular CSF of lung cancer patients. 5A: Five lung cancer patients received brain MRI scanning for 3 times; 5B: Two lung cancer patients received brain MRI scanning for 4 times; 5C: One lung cancer patient received brain MRI scanning for 5 times.

3 讨论

       本研究基于受试者颅脑3D-T1WI序列图像,利用脑容量测量软件定量分析其颅内总CSF以及各亚区CSF容量。横断面研究中,比较CLC、NCLC以及HC三组各项CSF指标的差异,研究发现与HC组相比,CLC和NCLC组患者第三脑室、右侧侧脑室CSF容量以及右侧侧脑室脉络丛体积均显著增加。并且在CLC组中,肿瘤大小与第三脑室CSF容量之间呈显著的正相关关系。纵向分析中比较LC患者前后两次随访后各项CSF指标的变化,结果显示,LC患者在第二次随访后,颅内CSF总量、外周CSF以及左侧侧脑室CSF容量显著增加,并且两次随访时间间隔与上述CSF指标变化量间呈显著正相关性。本研究创新性地提出并结合横向和纵向分析方法,证明了LC及癌症化疗对患者CSF容量的影响,为LC的预防、诊断以及治疗提供了新的影像学方法,并且对指导癌症化疗进程具有一定临床意义。

3.1 CLC和NCLC患者CSF容量发生改变

       与LV等[11]的研究结果一致,本文中横断面研究发现,CLC和NCLC患者第三脑室、右侧侧脑室CSF容量以及右侧侧脑室脉络丛体积较HC组均显著增加。近年来,随着生物技术的高效发展,CSF成分检测常被用于追踪肿瘤的进展[12, 13]。既往研究显示,CSF成分改变是LC患者尤其是LC伴脑膜转移患者神经系统的肿瘤标记物之一[14, 15, 16]。肿瘤细胞可沿神经轴扩散进入CSF,破坏中枢神经系统(central nervous system, CNS)微环境,损伤患者免疫系统进而引起神经炎症[17, 18]。动物研究发现,LC小鼠模型的CNS中多种神经炎症因子显著增加[19]。脉络丛组织负责CNS中CSF的产生,对神经炎症高度敏感[20]。炎症反应可以破坏脉络丛上皮细胞间的紧密连接蛋白,损伤血液-脑脊液屏障的完整性,从而引起CSF微环境改变[21]。多项研究显示CNS炎症反应导致脉络丛体积增加[22, 23],可能与免疫细胞进入CNS后对脉络丛上皮产生继发性浸润有关[24],同时CNS炎症反应可引起脉络丛上皮细胞氧化损伤,线粒体功能障碍,进而导致组织反应性增大[25]。有报道称炎症反应将使CSF循环系统障碍,CSF过量产生并且清除系统受损从而引起脑室改变[26, 27]。根据上述理论机制,本研究中LC患者的癌细胞可能通过引发神经炎症反应从而造成CSF容量和脉络丛体积改变。与既往研究结果不同[11],本研究中CLC和NCLC两组间上述各项CSF指标无显著性差异,造成结果不一致的原因可能有以下两点:(1)测量CSF容量的方法不同,本研究使用联影智能脑容量测量软件对受试者颅脑3D-T1WI结构像进行预处理和定量分析,而LV等使用的是vol2Brain在线测量软件,不同的测量方法可能会对结果产生一定影响;(2)癌症化疗周期不同,化疗周期越长对患者神经系统的影响越大[28],这可能是导致本研究与既往研究不一致的原因之一。

3.2 CLC患者CSF容量和肿瘤大小的相关性

       横向研究中,相关性分析结果显示,CLC患者组中,肿瘤大小和第三脑室CSF容量间具有显著的正相关性,即肿瘤尺寸越大,第三脑室CSF容量越大。肿瘤大小是LC分期的重要依据[29],肿瘤较大者预后较差,并且术后复发的可能性较大[30, 31],据此推测其可能通过上述神经炎症机制对CNS产生更严重的影响。此前多项研究阐述了肿瘤化疗的神经毒性理论[32, 33],化疗药物可通过与DNA相互作用、激活促炎细胞因子以及诱导氧化应激等多种途径导致神经元凋亡[34, 35, 36]。由于在NCLC患者组中并未发现肿瘤大小和CSF容量间的显著相关性,因此推测化疗可能进一步加重肿瘤大小对LC患者CNS的影响。

3.3 纵向随访LC患者CSF容量的改变

       纵向研究结果显示,LC患者颅内CSF总量、外周CSF以及左侧侧脑室CSF容量随着随访间隔时间的延长逐渐增加,并且多次随访趋势图表明LC患者CSF总量等指标呈明显上升趋势。LC是造成脑转移癌的主要原发肿瘤之一,有报道称23%~36%的LC患者会发生CNS转移[17],并且小细胞LC患者中近60%的患者在两年内出现CNS侵犯[37]。既往研究提出检测CSF流量及体积的改变可能作为监测脑肿瘤发展的重要生物学技术[38],由于此次试验招募的LC患者暂未发生CNS转移,因此结合上述理论研究推测,测量LC患者CSF容量变化可能成为监测肿瘤发展以及预防癌细胞侵犯CNS的较为敏感的神经影像学标记。与既往利用CSF遗传学或细胞学检测诊断LC脑转移等方法[39, 40, 41]相比较,本研究使用的MRI神经影像学定量分析CSF容量的方法创伤性更小,患者耐受性更高。

3.4 局限性

       本研究尚存在以下局限性:(1)纳入的样本量偏小,可能造成研究结果偏倚,今后将招募更大样本对本研究结果进行重复验证;(2)本研究缺少认知行为学指标,未能说明脑形态学改变对行为学表现潜在的影响,之后的研究中将评估受试者的多项认知功能;(3)缺乏完整的生物遗传学数据,无法提供LC患者神经影像学改变的生物学机制,未来将考虑收集受试者的遗传学数据,探索LC及化疗引起CSF改变的生物学机制。

4 结论

       综上所述,本研究结合横向和纵向分析方法,无创性评估和证明了LC及化疗导致患者多个脑室CSF容量以及脉络丛体积显著增加,并且化疗后,肿瘤大小和第三脑室CSF容量间呈显著正相关关系。本研究有助于加深LC以及癌症化疗对神经系统影响的理解,对LC的预防和早期诊断具有一定临床价值。

[1]
BARTA J A, POWELL C A, Wisnivesky J P. Global epidemiology of lung cancer[J]. Ann Glob Health, 2019, 85(1): 1-16. DOI: 10.5334/aogh.2419.
[2]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332.
[3]
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[4]
LEI J, YANG J, DONG L, et al. An exercise prescription for patients with lung cancer improves the quality of life, depression, and anxiety[J/OL]. Front Public Health, 2022, 10: 1050471 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714027. DOI: 10.3389/fpubh.2022.1050471.
[5]
HU L, DING S, ZHANG Y, et al. Dynamic functional network connectivity reveals the brain functional alterations in lung cancer patients after chemotherapy[J]. Brain Imaging Behav, 2021, 16(3): 1040-1048. DOI: 10.1007/s11682-021-00575-9.
[6]
PARK Y W, AN C, LEE J, et al. Diffusion tensor and postcontrast T1-weighted imaging radiomics to differentiate the epidermal growth factor receptor mutation status of brain metastases from non-small cell lung cancer[J]. Neuroradiology, 2021, 63(3): 343-352. DOI: 10.1007/s00234-020-02529-2.
[7]
MENTZELOPOULOS A, GKIATIS K, KARANASIOUS I, et al. Chemotherapy-Induced Brain Effects in Small-Cell Lung Cancer Patients: A Multimodal MRI Study[J]. Brain Topogr, 2021, 34(2): 167-181. DOI: 10.1007/s10548-020-00811-3.
[8]
LIU S, YIN N, MA R, et al. Abnormal topological characteristics of brain white matter network relate to cognitive and emotional deficits of non-small cell lung cancer (NSCLC) patients prior to chemotherapy[J]. Int J Neurosci, 2022, 132(4): 328-337. DOI: 10.1080/00207454.2020.1813130.
[9]
SIMÓ M, VAQUERO L, RIPOLLÉS P, et al. Brain damage following prophylactic cranial irradiation in lung cancer survivors[J]. Brain Imaging Behav, 2016, 10(1): 283-295. DOI: 10.1007/s11682-015-9393-5.
[10]
SIMO M, RIFA-ROS X, VAQUERO L, et al. Brain functional connectivity in lung cancer population: an exploratory study[J]. Brain Imaging Behav, 2018, 12(2): 369-382. DOI: 10.1007/s11682-017-9697-8.
[11]
LV P, MA G L, CHEN W Q, et al. Brain morphological alterations and their correlation to tumor differentiation and duration in patients with lung cancer after platinum chemotherapy[J/OL]. Front Oncol, 2022, 12: 903249 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396961. DOI: 10.3389/fonc.2022.903249.
[12]
DE M L, MAYOR R, NG C K Y, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma[J/OL]. Nat Commun, 2015, 6: 8839 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426516. DOI: 10.1038/ncomms9839.
[13]
MILLER A M, SHAN R H, PENTSOVA E I, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid[J]. Nature, 2019, 565(7741): 654-658. DOI: 10.1038/s41586-019-0882-3.
[14]
LI Y S, ZHENG M M, JIANG B Y, et al. Association of cerebrospinal fluid tumor DNA genotyping with survival among patients with lung adenocarcinoma and central nervous system metastases[J/OL]. JAMA Netw Open, 2020, 3(8): e209077 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403922. DOI: 10.1001/jamanetworkopen.2020.9077.
[15]
WANG W, ZHENG X, WANG H, et al. Development of an UPLC-MS/MS method for quantification of Avitinib (AC0010) and its five metabolites in human cerebrospinal fluid: application to a study of the blood-brain barrier penetration rate of non-small cell lung cancer patients[J/OL]. J Pharm Biomed Anal, 2017, 139: 205-214 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/28285073. DOI: 10.1016/j.jpba.2017.02.057.
[16]
CHINANG C L, HUANG H C, LUO Y H, et al. Cerebrospinal fluid as a medium of liquid biopsy in the management of patients with non-small-cell lung cancer having central nervous system metastasis[J]. Front Biosci (Landmark Ed), 2021, 26(12): 1679-1688. DOI: 10.52586/5060.
[17]
WANLEENUWAT P, IWANOWSKI P. Metastases to the central nervous system: Molecular basis and clinical considerations[J/OL]. J Neurol Sci, 2020, 412: 116755 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/32120132. DOI: 10.1016/j.jns.2020.116755.
[18]
KO Y, GWAK H S, PARK E Y, et al. Association of MRI findings with clinical characteristics and prognosis in patients with leptomeningeal carcinomatosis from non-small cell lung cancer[J]. J Neurooncol, 2019, 143(3): 553-562. DOI: 10.1007/s11060-019-03190-3.
[19]
ZHOU Y S, CUI Y, ZHENG J X, et al. Luteolin relieves lung cancer-induced bone pain by inhibiting NLRP3 inflammasomes and glial activation in the spinal dorsal horn in mice[J/OL]. Phytomedicine, 2022, 96: 153910 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/35026502. DOI: 10.1016/j.phymed.2021.153910.
[20]
MURUGESAN N, PAUL D, LEMIRE Y, et al. Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus[J]. Fluids Barriers CNS, 2012, 9(1): 15-30. DOI: 10.1186/2045-8118-9-15.
[21]
KOOIJ G, KOPPLIN K, BLASIG R, et al. Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation[J]. Acta Neuropathol, 2014, 128(2): 267-277. DOI: 10.1007/s00401-013-1227-1.
[22]
ALTHUBAITY N, SCHUBERT J, MARTINS D, et al. Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression[J/OL]. Neuroimage Clin, 2022, 33: 102926 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718974. DOI: 10.1016/j.nicl.2021.102926.
[23]
FLEISCHER V, GONZALEZ-ESCAMILLA G, CIOLAC D, et al. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans[J/OL]. Proc Natl Acad Sci U S A. 2021, 118(36): e2025000118 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433504. DOI: 10.1073/pnas.2025000118.
[24]
YAKIMOV V, SCHWEIGER F, ZHAN J, et al. Continuous cuprizone intoxication allows active experimental autoimmune encephalomyelitis induction in C57BL/6 mice[J]. Histochem Cell Biol, 2019, 152(2): 119-131. DOI: 10.1007/s00418-019-01786-4.
[25]
CAMPBELL G R, KRAYTSBERG Y, KRISHNAN K J, et al. Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis[J]. Acta Neuropathol, 2012, 124(2): 209-220. DOI: 10.1007/s00401-012-1001-9.
[26]
MILLWARD J M, RAMOS-DELGADO P, SMORODCHENKO A, et al. Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis[J/OL]. JCI Insight, 2020, 5(21): e140040 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710287. DOI: 10.1172/jci.insight.140040.
[27]
KARIMY J K, REEVES B C, DAMISAH E, et al. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets[J]. Nat Rev Neurol, 2020, 16(5): 285-296. DOI: 10.1038/s41582-020-0321-y.
[28]
PACHMAnN D R, QIN R, SEISLER D, et al. Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505)[J]. Support Care Cancer, 2016, 24(12): 5059-5068. DOI: 10.1007/s00520-016-3373-1.
[29]
VETTER M H, SMRZ S, GEHRIG P A, et al. Pathologic and clinical tumor size discordance in early-stage cervical cancer: Does it matter?[J]. Gynecol Oncol, 2020, 159(2): 354-358. DOI: 10.1016/j.ygyno.2020.08.004.
[30]
WILLIAMSON S R, TANEGA K, CHENG L. Renal cell carcinoma staging: pitfalls, challenges, and updates[J]. Histopathology, 2019, 74(1): 18-30. DOI: 10.1111/his.13743.
[31]
TSUKIOKA T, IZUMI N, OMASTU H, et al. Tumor size and N2 lymph node metastasis are significant risk factors for early recurrence in completely resected centrally located primary lung cancer patients[J]. Anticancer Res, 2021, 41(4): 2165-2169. DOI: 10.21873/anticanres.14989.
[32]
SANTOS N, FERREIRA R S, SANTOS A C D. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents[J/OL]. Food Chem Toxicol, 2020, 136: 111079 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/31891754. DOI: 10.1016/j.fct.2019.111079.
[33]
HOEFFNER E G. Central nervous system complications of oncologic therapy[J]. Hematol Oncol Clin North Am, 2016, 30(4): 899-920. DOI: 10.1016/j.hoc.2016.03.010.
[34]
GEWANDTER J S, KLECKNER A S, MARSHALL J H, et al. Chemotherapy-induced peripheral neuropathy (CIPN) and its treatment: an NIH Collaboratory study of claims data[J]. Support Care Cancer, 2020, 28(6): 2553-2562. DOI: 10.1007/s00520-019-05063-x.
[35]
ZAJACZKOWSKA R, KOCOT-KEPSKA M, LEPPERT W, et al. Mechanisms of chemotherapy-induced peripheral neuropathy[J]. Int J Mol Sci, 2019, 20(6): 1451-1479. DOI: 10.3390/ijms20061451.
[36]
GPUTA P, MAKKAR T K, GOEL L, et al. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity[J]. Immunol Res, 2022, 70(6): 725-741. DOI: 10.1007/s12026-022-09307-7.
[37]
OSTROM Q T, WRIGHT C H, BARNHOLTZ-SLOAN J S. Brain metastases: epidemiology[J/OL]. Handb Clin Neurol, 2018, 149: 27-42 [2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/29307358. DOI: 10.1016/B978-0-12-811161-1.00002-5.
[38]
PENG J, MUNSON J M. Fluids and flows in brain cancer and neurological disorders[J/OL]. WIREs Mech Dis, 2023, 15(1): e1582 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869390. DOI: 10.1002/wsbm.1582.
[39]
MA C, YANG X, XING W, et al. Detection of circulating tumor DNA from non-small cell lung cancer brain metastasis in cerebrospinal fluid samples[J]. Thorac Cancer, 2020, 11(3): 588-593. DOI: 10.1111/1759-7714.13300.
[40]
RUAN H, HOU Y, SHEN J, et al. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single-cell transcriptome analysis[J/OL]. Clin Transl Med, 2020, 10(8): e246 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737787. DOI: 10.1002/ctm2.246.
[41]
LI M C, CHEN J, ZHANG B S, et al. Dynamic monitoring of cerebrospinal fluid circulating tumor DNA to identify unique genetic profiles of brain metastatic tumors and better predict intracranial tumor responses in non-small cell lung cancer patients with brain metastases: a prospective cohort study (GASTO 1028)[J]. BMC Med, 2022, 20(1): 398-409. DOI: 10.1186/s12916-022-02595-8.

上一篇 三维伪连续式动脉自旋标记成像联合自动分割技术在海马硬化型颞叶内侧癫痫中的应用
下一篇 基于弥散张量成像对急性精神创伤后早期脑白质变化的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2