分享:
分享到微信朋友圈
X
临床研究
单、双指数模型扩散加权成像及动脉自旋标记预测复发性鼻咽癌近期疗效的应用价值
刘腾 肖磊 韦波 廖海

LIU T, XIAO L, WEI B, et al. Application value of mono- and bi-exponential model diffusion weighted imaging and arterial spin labeling in predicting short-term curative effect of recurrent nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(9): 63-69.引用本文:刘腾, 肖磊, 韦波, 等. 单、双指数模型扩散加权成像及动脉自旋标记预测复发性鼻咽癌近期疗效的应用价值[J]. 磁共振成像, 2023, 14(9): 63-69. DOI:10.12015/issn.1674-8034.2023.09.011.


[摘要] 目的 探讨单、双指数模型扩散加权成像(diffusion weighted imaging, DWI)及三维伪连续动脉自旋标记(three dimensional pseudo-continuous arterial spin labeling, 3DpCASL)技术在复发性鼻咽癌近期疗效预测中的潜在价值。材料与方法 前瞻性纳入34例复发性鼻咽癌患者,所有患者于治疗前行常规MRI、传统单指数模型DWI检查(b=0、800 s/mm2)和基于体素内不相干运动成像的双指数模型多b值DWI以及3DpCASL检查,治疗结束后行常规MRI检查。根据实体瘤疗效评估标准1.1将患者分为应答组(完全缓解和部分缓解)和无应答组(疾病稳定和疾病进展)。比较两组间表观扩散系数(apparent diffusion coefficient, ADC)、慢速扩散系数(slow diffusion coefficient, Dslow)、快速扩散系数(fast diffusion coefficient, Dfast)、灌注分数(perfusion fraction, f)、肿瘤血流量(tumor blood flow, TBF)和相对肿瘤血流量(relative TBF, rTBF)值之间的差异。同时,根据治疗前后靶病灶退缩情况计算肿瘤消退率,并利用Spearman相关分析探索各参数与肿瘤退缩率之间的相关性。采用AUC值评估各参数的诊断价值。结果 应答组基线ADC及Dslow值明显低于无应答组(P<0.001)。应答组基线TBF及rTBF值明显高于无应答组(P<0.001)。治疗前ADC、Dslow值与肿瘤消退率呈负相关,治疗前TBF及rTBF值与肿瘤消退率呈正相关。ROC分析显示,ADC、Dslow、TBF及rTBF预测复发性鼻咽癌近期疗效的AUC值分别为0.944、0.940、0.765、0.779。结论 单、双指数模型DWI及3DpCASL参数能准确预测复发性鼻咽癌近期疗效,尤其是ADC和Dslow预测效能最佳,为复发性鼻咽癌近期疗效的早期精准预测提供无创技术手段和有效量化指标。
[Abstract] Objective To investigate the potential value of mono- and bi-exponential model diffusion weighted imaging (DWI) and three dimensional pseudo-continuous arterial spin labeling (3DpCASL) in predicting the short-term curative effect of recurrent nasopharyngeal carcinoma.Materials and Methods A total of 34 patients with recurrent nasopharyngeal carcinoma who were treated in our hospital were prospectively enrolled. Before treatment, all patients underwent conventional MRI, traditional mono-exponential model DWI (b=0, 800 s/mm2) and intravoxel incoherent motion imaging (IVIM) bi-exponential model multi-b-value DWI and 3DpCASL examination, routine MRI examination after treatment. According to Response Evaluation Criteria in Solid Tumors (version 1.1), patients were divided into response group (complete response and partial response) and non-response group (stable disease and progression disease). The differences in apparent diffusion coefficient (ADC), slow diffusion coefficient (Dslow), fast diffusion coefficient (Dfast), perfusion fraction (f), tumor blood flow (TBF), and relative tumor blood flow (rTBF) values were compared between the two groups. Then, the tumor regression rate was calculated according to the regression of the target lesion before and after treatment, and the correlation between each parameter and the tumor regression rate was explored by Spearman correlation analysis. The area under curve of ROC was used to evaluate the diagnostic value of each parameter.Results The baseline ADC and Dslow value of the response group were significantly lower than those of the non-response group (P<0.001). The baseline TBF and rTBF values of the response group were significantly higher than those of the non-response group (P<0.001). The ADC and Dslow values before treatment were negatively correlated with the tumor regression rate, and the TBF and rTBF values before treatment were positively correlated with the tumor regression rate. ROC analysis showed that the AUC values of ADC, Dslow, TBF and rTBF for predicting the short-term curative effect of recurrent nasopharyngeal carcinoma were 0.944, 0.940, 0.765 and 0.779, respectively.Conclusions The mono- and bi-exponential model DWI and 3DpCASL parameters could accurately predict the short-term curative effect of recurrent nasopharyngeal carcinoma, especially ADC and Dslow have the best predictive performance, providing non-invasive technical means and effective quantification for the early and accurate prediction of the short-term curative effect of recurrent nasopharyngeal carcinoma index.
[关键词] 鼻咽癌;复发;疗效预测;扩散加权成像;体素内不相干运动;动脉自旋标记;磁共振成像
[Keywords] nasopharyngeal carcinoma;recurrence;efficacy prediction;diffusion-weighted imaging;intravoxel incoherent motion;arterial spin labeling;magnetic resonance imaging

刘腾    肖磊    韦波    廖海 *  

广西医科大学附属肿瘤医院医学影像中心,南宁 530021

通信作者:廖海,E-mail:42442427@qq.com

作者贡献声明:廖海设计本研究的方案,对稿件的重要的智力内容进行了修改,并获得了广西科技计划项目(编号:桂科AB23026018、桂科AD20238096)和广西自然科学基金项目的资助;刘腾起草和撰写稿件,获取、分析或解释本研究的数据;肖磊、韦波获取、分析、解释本研究的数据,对稿件重要的智力内容进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 广西科技计划项目 桂科AB23026018,桂科AD20238096 广西自然科学基金 2023GXNSFAA026249
收稿日期:2023-04-05
接受日期:2023-08-04
中图分类号:R445.2  R739.6 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.09.011
引用本文:刘腾, 肖磊, 韦波, 等. 单、双指数模型扩散加权成像及动脉自旋标记预测复发性鼻咽癌近期疗效的应用价值[J]. 磁共振成像, 2023, 14(9): 63-69. DOI:10.12015/issn.1674-8034.2023.09.011.

0 前言

       鼻咽癌是起源于鼻咽黏膜上皮的恶性肿瘤,具有对放化疗敏感的特性,但仍有10%~15%的患者发生局部区域复发的风险,是临床中所要面临的重要挑战[1]。复发性鼻咽癌由于既往已接受过放化疗,局部出现坏死、纤维化等乏氧改变,使得再放化疗敏感性降低,最终导致治疗失败。近年来,随着免疫治疗的兴起和应用,在复发性鼻咽癌患者中取得了较好的缓解率[2, 3],但仍有部分患者由于肿瘤内部乏氧微环境而导致治疗抗拒。因此,治疗前早期、精准地评估复发性鼻咽癌乏氧状态,有利于识别低敏感性的患者,并通过前期更为积极的个体化干预和治疗方案调整对于改善患者预后具有重大意义。

       功能MRI(functional MRI, fMRI)可以从微观层面深度挖掘病灶内部病理生理、血流动力学及功能代谢等变化情况,在鼻咽癌分期、鉴别诊断、疗效评估及预测预后等方面具有一定的临床应用价值[4, 5, 6, 7, 8]。扩散加权成像(diffusion weighted imaging, DWI)通过测定水分子扩散的方向和速度来推测组织内部变化,当肿瘤发生坏死、缺血等乏氧改变后,细胞密度降低,ADC值升高[9]。因此,ADC值的升高间接提示了肿瘤乏氧程度加重,进而影响疗效。体素内不相干运动(introvoxel incoherent motion, IVIM)利用多b值和双指数衰减模型将组织扩散和灌注分离,较传统DWI更为真实地反映水分子扩散情况,已有学者利用IVIM预测头颈部鳞癌、直肠癌等疗效[10, 11]。三维伪连续动脉自旋标记(three dimensional pseudo-continuous arterial spin labeling, 3DpCASL)因不需注射对比剂的优势在临床应用广泛,既往研究多集中在中枢神经系统病变[12, 13],近年来在鼻咽癌疗效预测方面取得了一定成果,其参数值血流量可作为无创性生物标记物预测鼻咽癌治疗反应[14, 15]。然而,既往研究多集中在鼻咽癌原发灶,复发性鼻咽癌经历了原发灶治疗消失后肿物复现的过程,因此与原发灶相比有着不同的病理生理基础。单一模态MRI所提供的信息量有限,多模态fMRI技术可反映更多功能学信息,有研究报道IVIM联合3DpCASL预测鼻咽癌同步放化疗近期疗效,且相应研究表明多模态fMRI联合应用有助于鼻咽癌疗效评估[16]。目前国内外就单、双指数模型DWI联合3DpCASL技术在复发性鼻咽癌疗效预测的研究尚处于空白阶段。因此,本研究旨在探讨单、双指数模型DWI和3DpCASL技术相关参数特征与复发性鼻咽癌近期临床疗效的关系,探索复发性鼻咽癌乏氧敏感指标,将为复发性鼻咽癌疗效早期、精准预测提供无创的技术手段。

1 材料与方法

1.1 研究对象

       本研究前瞻性收集2021年3月至2022年12月于我院诊治的复发性鼻咽癌患者,所有患者均签署知情同意书,本研究遵守《赫尔辛基宣言》,并经过广西医科大学附属肿瘤医院伦理委员会批准(批准文号:LW2023037)。纳入标准:(1)鼻咽癌原发病灶治疗结束后消失,6个月后MRI复查发现鼻咽肿物复现,并经病理证实为复发;(2)卡氏评分≥70,对治疗耐受;(3)所有患者均行免疫治疗联合同步放化疗治疗。排除标准:(1)患者未完成完整治疗周期;(2)图像伪影过重;(3)并发其他部位第二原发肿瘤。最终纳入34例患者,男25例,女9例,年龄26~61(49.1±9.1)岁。临床分期中Ⅱ期2例,Ⅲ期9例,Ⅳ期23例。

1.2 MRI扫描

       所有患者均在3.0 T MRI(Discovery 750w, GE, USA)上扫描,配备8通道头颈联合线圈。治疗前行平扫+增强、DWI、IVIM及3DpCASL扫描,治疗后行平扫+增强扫描。轴位T1WI:TR/TE 848.0 ms/11.7 ms,FOV 24 cm×24 cm,层厚5 mm,层间距2 mm,矩阵320×224,激励次数2;轴位T2WI抑脂(fat suppression, FS):TR/TE 4507.0 ms /65.1 ms,FOV 24 cm×24 cm,层厚5 mm,层间距2 mm,矩阵320×192,激励次数3;增强扫描包括冠、矢、轴位:TR/TE 528.0 ms/9.0 ms,FOV 22 cm×22 cm,层厚4 mm,层间距0 mm,矩阵270×289,激励次数3,手动静脉注射钆喷酸葡胺(Magnevist,Bayer schering pharma,Germany),剂量0.2 mL/kg,流速2 mL/s;DWI序列:TR/TE 4880.0 ms/73.5 ms,FOV 24 cm×24 cm,层厚5 mm,层间距1.5 mm,矩阵130×160,激励次数2,b值取0、800 s/mm2;IVIM序列:使用11个b值(0、30、50、80、100、150、200、400、600、800、1000 s/mm2),TR/TE 4000.0 ms/30.3 ms,FOV 22 cm×22 cm,层厚5 mm,层间距1 mm,矩阵128×128,各b值对应激励次数2、2、3、3、3、4、4、4、2、3、2;3DpCASL序列:TR/TE 4640.0 ms/10.7 ms,FOV 22 cm×22 cm,层厚4 mm,层间距0 mm,矩阵512×8,激励次数3。标记后延迟时间为1525 ms。

1.3 治疗方案

       所有患者均在我院放疗科治疗,治疗方案为特瑞普利单抗+同期放化疗。特瑞普利单抗240 mg(每周期第1天),21天一个周期,共2~4周期。采用三维适形调强放疗(intensity modulated radiotherapy, IMRT)技术,IMRT期间的同步化疗药物为顺铂,剂量为80~100 mg/m2(每周期第1天),共2~3个周期,21天为一个周期。原发肿瘤总体积的计划目标剂量为70.0~79.5 Gy,淋巴结总肿瘤体积的总剂量为60.0~73.6 Gy,1次/天,5次/周。

1.4 疗效评估

       患者经免疫治疗及同步放化疗治疗结束后3个月行MRI复查,根据实体瘤疗效评估标准(Response Evaluation Criteria in Solid Tumors, RECIST)1.1[17]确定复发瘤灶、最大病理淋巴结和最大转移灶为需要评估的靶病灶。本研究根据靶病灶消退情况分为应答组和无应答组,肿瘤消退率=(治疗前靶病灶直径-治疗结束后靶病灶直径)/治疗前靶病灶直径×100%。其中应答组包括了完全缓解和部分缓解,无应答组包括了疾病进展和疾病稳定。

1.5 图像后处理与分析

       所有采集的数据均传输至AW4.6后处理工作站,采用Functool软件包对图像进行后处理,于DWI和IVIM原始图上沿肿瘤每一层边缘勾画ROI,随后自动获取各参数图像,包括了表观扩散系数(apparent diffusion coefficient, ADC)、慢速扩散系数(slow diffusion coefficient, Dslow)、快速扩散系数(fast diffusion coefficient, Dfast)和灌注分数(perfusion fraction, f);利用控制像与标记像剪影的方法获得动脉自旋标记(arterial spin labeling, ASL)衍生的肿瘤血流量(tumor blood flow, TBF)图,并与T2WI-FS融合以便定位病灶,在病灶侧小脑选取两个类圆形ROI作为参照,得到新的参数相对肿瘤血流量(relative TBF, rTBF),rTBF为病灶与参照物血流量值的比值。以上参数均采用体积测量法,以T1WI增强作为参照,避开明显的坏死、囊变区。以上参数由两名具有6年以上诊断经验的放射科医师(住院医师、主任医师)独立进行测量分析,取两者平均值作为最终结果。

1.6 统计学分析

       采用SPSS 25.0和MedCalc 15.11.4软件进行分析,使用组内相关系数(interclass correlation coefficient, ICC)评价观察者间一致性,ICC>0.75考虑一致性水平高。所有计量资料用均数±标准差(x¯±s),符合正态分布和方差齐性的计量资料采用两独立样本t检验,对于非正态分布采用Mann-Whitney U检验,采用Spearman相关分析各参数与肿瘤消退率之间的相关性。绘制ROC曲线并计算AUC以评估各定量参数的诊断效能,DeLong检验比较各预测因子的AUC值。以P<0.05为差异有统计学意义。

2 结果

2.1 疗效评估及一致性检验分析

       根据RECIST 1.1标准,患者治疗结束后应答组19例,其中完全缓解组11例,部分缓解组8例;无应答组15例,疾病稳定组15例,疾病进展组0例。两组患者间年龄、性别、病理类型、美国癌症联合会分期、瘤灶直径、复发时间等临床基线资料的比较差异均无统计学意义(P>0.05)(表1)。ADC、Dslow、Dfast、f、TBF、rTBF参数的ICC分别为0.984(95% CI:0.967~0.992)、0.987(95% CI:0.975~0.994)、0.971(95% CI:0.942~0.985)、0.910(95% CI:0.820~0.955)、0.968(95% CI:0.934~0.984)及0.976(95% CI:0.941~0.994),P值均<0.001。

表1  入组患者临床特征
Tab. 1  Clinical characteristics of the enrolled patients

2.2 两组间治疗前各参数值的比较

       治疗前DWI参数中,应答组ADC值明显低于无应答组,组间比较差异具有统计学意义(P<0.001)。治疗前IVIM各参数中,应答组Dslow值明显低于无应答组,组间比较差异有统计学意义(P<0.001)。治疗前Dfast及f值组间比较差异均无统计学意义(P>0.05)。治疗前3DpCASL相关参数中,应答组TBF值明显高于无应答组,组间比较差异有统计学意义(P=0.009)。应答组rTBF值亦明显高于无应答组,组间比较差异具有统计学意义(P=0.004)(表2图12)。

图1  应答组病例,男,41岁,鼻咽右侧壁肿物(箭),IVa期(rT4N2M0)。1A为治疗前T1WI增强图;1B为治疗前IVIM原始图;1C~1E分别为ADC、Dslow、ASL/T2WI-FS融合图;1F为治疗后T1WI增强图。ADC值为0.947×10-3 mm2/s,Dslow值为0.688×10-3 mm2/s,TBF值为41.339 mL/(100 g·min),rTBF值为3.809。治疗前肿瘤最大径为5.5 cm,治疗后T1WI增强示病灶大部分消失,但仍有少许病灶残留,疗效评估为PR。
图2  无应答组病例,男,40岁,鼻咽左侧壁肿物(箭),IVa期(rT4N2M0)。2A为治疗前T1WI增强图;2B为治疗前IVIM原始图;2C~2E分别为ADC、Dslow、ASL/T2WI-FS融合图;2F为治疗后T1WI增强图。ADC值为1.24×10-3 mm2/s,Dslow值为0.904×10-3 mm2/s,TBF值为28.430 mL/(100 g·min),rTBF值为1.770。治疗前肿瘤最大径为5.9 cm,治疗后T1WI增强示病灶范围较前略缩小,侵犯周围结构较前变化不大,疗效评估为SD。ADC:表观扩散系数;Dslow:慢速扩散系数;ASL:动脉自旋标记;TBF:肿瘤血流量;rTBF:相对肿瘤血流量;PR:部分缓解;SD:疾病稳定。
Fig. 1  A 41-year-old male patient in the response group with a mass in the right lateral wall of the nasopharynx (arrow), stage IVa (rT4N2M0). 1A is T1WI enhanced image before treatment; 1B is the original IVIM map before treatment; 1C-1E are ADC, Dslow, ASL/T2WI-FS fusion images, respectively; 1F is the enhanced T1WI image after treatment. ADC value is 0.947×10-3 mm2/s, Dslow value is 0.688×10-3 mm2/s, TBF value is 41.339 mL/(100 g·min), and rTBF value is 3.809. The maximum tumor diameter is 5.5 cm before treatment. After treatment, T1WI enhancement show that most of the lesions disappeared, but there are still a few residual lesions. The efficacy assessment is classified into PR.
Fig. 2  A 40-year-old male patient in the non-response group with a mass in the left lateral wall of nasopharynx (arrow), stage IVa (rT4N2M0). 2A is T1WI enhanced image before treatment; 2B is the original IVIM map before treatment; 2C-2E are ADC, Dslow, ASL/ T2WI-FS fusion maps, respectively; 2F is the enhanced T1WI image after treatment. ADC value is 1.240×10-3 mm2/s, Dslow value is 0.904×10-3 mm2/s, TBF value is 28.430 mL/(100 g·min), and rTBF value is 1.770. Before treatment, the maximum tumor diameter is 5.9 cm. After treatment, T1WI enhancement show that the scope of the lesion is slightly reduced, and there is little change in the surrounding structure of invasion. The efficacy assessment is classified into SD. ADC: apparent diffusion coefficient; Dslow: slow diffusion coefficient; ALS: arterial spin labeling; TBF: tumor blood flow; rTBF: relative tumor blood flow; PR: partial response; SD: stable disease.
表2  应答组与无应答组间各参数值的差异
Tab. 2  Differences in parameters between the response group and the non-response group

2.3 各参数预测复发性鼻咽癌近期疗效的效能情况

       ROC分析显示,治疗前ADC、Dslow值是预测复发性鼻咽癌近期疗效敏感性的最有效参数,两者AUC值最大,分别为0.944、0.940;3DpCASL相关参数TBF及rTBF预测效能低于ADC和Dslow,其AUC值分别为0.765、0.779(表3图3)。各有意义的参数联合诊断的AUC值为0.944(95% CI:0.807~0.994),敏感度为86.7%,特异度为94.7%,P<0.001,联合指标与ADC值的AUC值相当,但高于其他指标的AUC值。DeLong检验显示各指标间AUC值差异均无统计学意义(P>0.05)。

图3  各参数预测复发性鼻咽癌近期疗效的ROC曲线图。ADC:表观扩散系数;Dslow:慢速扩散系数;TBF:肿瘤血流量;rTBF:相对肿瘤血流量。
Fig. 3  ROC curve of each parameter for predicting short-term efficacy in recurrent nasopharyngeal carcinoma. ADC: apparent diffusion coefficient; Dslow: slow diffusion coefficient; TBF: tumor blood flow; rTBF: relative tumor blood flow.
表3  各参数诊断效能比较
Tab. 3  Comparison of diagnostic efficacy of each parameter

2.4 治疗前各参数与肿瘤消退率间的相关性

       应答组肿瘤消退率为(75.53±26.99)%,无应答组肿瘤消退率为(13.94±5.64)%。治疗前ADC及Dslow值与肿瘤消退率均呈负相关,相关系数r分别为-0.692,-0.669(P值均<0.001)。治疗前TBF及rTBF值与肿瘤消退率均呈正相关,相关系数r分别为0.422(P=0.013),0.472(P=0.005)(图4)。

图4  治疗前各参数与肿瘤消退率的相关性散点图。ADC:表观扩散系数;Dslow:慢速扩散系数;TBF:肿瘤血流量;rTBF:相对肿瘤血流量。
Fig. 4  Scatter diagrams of the correlation between parameters and tumor regression rate before treatment. ADC: apparent diffusion coefficient; Dslow: slow diffusion coefficient; TBF: tumor blood flow; rTBF: relative tumor blood flow.

3 讨论

       本研究于国内外首次使用无创性多模态fMRI(DWI、IVIM、3DpCASL)技术,从微观层面上获取复发性鼻咽癌组织灌注、水分子扩散运动等丰富量化信息,进而在治疗前早期预测复发性鼻咽癌近期疗效。本研究结果发现,DWI参数ADC值、IVIM参数Dslow值及3DpCASL参数TBF、rTBF值均展现出不同程度的预测价值,其中扩散相关参数预测性能更优。

3.1 DWI在预测复发性鼻咽癌近期疗效中的价值

       DWI是一种非侵入性反映组织内水分子扩散的技术,在头颈部肿瘤、脑肿瘤等[18, 19]中已被证明对疗效预测有重要的价值。本研究结果显示,应答组治疗前ADC值明显低于无应答组,且治疗前ADC值与肿瘤退缩率呈负相关。治疗前ADC水平高的肿瘤病灶可能有更多的微坏死和炎症,提示肿瘤存在缺氧的可能,导致肿瘤对电离辐射敏感性低,疗效差。而低ADC值的肿瘤细胞密集,间质含量少,氧含量高,有利于放射线对癌细胞杀灭,较少的间质成分则有利于化疗药物的运输,从而达到最好的疗效。国内外学者均发现ADC值低的鼻咽癌患者治疗疗效优于高ADC值患者,这与本研究结果相吻合[20, 21, 22, 23]。本研究证实了DWI参数ADC值作为早期预测复发性鼻咽癌治疗疗效的影像学生物标志物具有巨大的潜力,可以通过ADC值的变化来准确反映肿瘤生物学特性的差异。

3.2 IVIM在预测复发性鼻咽癌近期疗效中的价值

       双指数模型IVIM与传统单指数DWI相比,可同时获得肿瘤组织扩散和灌注两方面信息[24]。Dslow值代表组织内真实扩散情况,与细胞密度呈负相关,与组织中的坏死或囊性变呈正相关。本研究中,应答组表现出较低的Dslow值,治疗前Dslow值与肿瘤退缩情况呈负相关。较低的Dslow值可能提示肿瘤内部微坏死较少、细胞密度较高及血管生成较多,这意味着更丰富的血流灌注及氧合水平高,因此治疗后肿瘤组织退缩更明显及治疗反应更好,这与既往报道[25, 26]相一致。但另有学者发现鼻咽癌患者治疗前Dslow值越高疗效则越佳,CHEN等[27]认为细胞密度增高的同时氧分子扩散受限,肿瘤细胞乏氧则放化疗抵抗。Dfast和f均为IVIM中与肿瘤微血管衰减有关的灌注相关参数。本研究中发现Dfast和f值不能作为可靠的预测指标,这与以往研究一致[25, 28]。有学者提出Dfast值受心动周期的影响较大,而f值与组织T2弛豫时间和扫描参数TE的设置有关[29, 30]。因此,Dslow值在预测复发性鼻咽癌近期疗效中的价值与ADC值相当,而Dfast和f值临床应用受限。

3.3 3DpCASL在预测复发性鼻咽癌近期疗效中的价值

       有学者发现ASL量化参数与肿瘤微血管密度和血管内皮生长因子有一定相关性,此研究证明了ASL可对肿瘤灌注进行评价[31, 32]。LIN等[33]的研究表明,动态对比增强MRI(dynamic-contrast enhancement MRI, DCE-MRI)的容量转移常数及速率常数与ASL参数间存在较好的一致性,与DCE-MRI相比,ASL不需要注射螯合钆造影剂,可避免过敏反应和肾源性纤维化的风险。本研究显示应答组治疗前TBF和rTBF均明显高于无应答组,且两参数值与肿瘤退缩情况呈正相关,说明高灌注代表肿瘤血供丰富、氧合好,有利于药物达到更高浓度以杀死癌细胞,治疗后肿瘤退缩率更高,而肿瘤血流供应不足可导致慢性缺氧,诱导肿瘤细胞向更为耐药的亚型转化,可能面临着更高的复发风险。本研究结果与既往研究报道相一致,但TBF阈值明显低于以往研究[14, 15],这种差异可能是由于本研究对象为复发鼻咽癌,复发灶由于既往接受过治疗病灶乏氧情况更为显著,导致肿瘤灌注减低。本研究考虑到不同患者的个体差异,将病灶一侧的小脑半球作为参照物,有效消除了脑灌注对肿瘤血流灌注带来的影响。

3.4 各参数诊断效能比较

       本研究通过ROC曲线比较各fMRI参数在预测复发性鼻咽癌近期治疗反应中的诊断效能,结果发现,区分应答者和非应答者的最佳预测指标是ADC和Dslow。ADC在预测疗效的AUC值达0.944,Dslow诊断效能可与ADC相媲美,AUC为0.940。本研究还发现TBF和rTBF在预测患者疗效稍显逊色,AUC值分别为0.765和0.77,但TBF的特异度高达100%,rTBF的敏感度为93.3%,因此ASL的预测价值仍不容小觑。另外本研究联合上述各指标发现诊断效能并未显著提高,联合指标AUC与ADC值AUC一致,但仍然高于其他指标的诊断效能。综上所述,扩散相关参数(ADC和Dslow)及灌注相关参数(TBF和rTBF)均为复发性鼻咽癌患者治疗应答的可靠指标,多指标联合诊断在本研究中并未体现更高的预测价值。鉴于临床方案制订的可行性及效能优越性,ADC和Dslow在本研究中对于指导临床实践和预后更为重要。

3.5 本研究局限性

       本研究也有一定的局限性:首先,样本量较少且为单中心研究,结果可能存在偏倚;其次,随访时间较短,未来将对长期疗效预测深入研究;最后,本研究使用的DWI和IVIM基于单次激发平面回波序列,成像质量受到一定影响。

4 结论

       单、双指数模型DWI及3DpCASL参数能准确预测复发性鼻咽癌近期疗效,尤其是ADC和Dslow预测效能更优,TBF和rTBF值可作为辅助预测指标。因此,治疗前DWI、IVIM及3DpCASL定量参数有望为复发性鼻咽癌近期疗效的早期精准预测提供无创技术手段和有效量化指标。

[1]
康敏. 中国鼻咽癌放射治疗指南(2020版)[J]. 中华肿瘤防治杂志, 2021, 28(3): 167-177. DOI: 10.16073/j.cnki.cjcpt.2021.03.01.
KANG M. Radiotherapy guidelines for nasopharyngeal carcinoma in China (2020 edition)[J]. Chin J Cancer Prev Treat, 2021, 28(3): 167-177. DOI: 10.16073/j.cnki.cjcpt.2021.03.01.
[2]
WALLE T, MARTINEZ MONGE R, CERWENKA A, et al. Radiation effects on antitumor immune responses: current perspectives and challenges[J/OL]. Ther Adv Med Oncol, 2018, 10: 1758834017742575 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/29383033/. DOI: 10.1177/1758834017742575.
[3]
HUA Y J, YOU R, WANG Z Q, et al. Toripalimab plus intensity-modulated radiotherapy for recurrent nasopharyngeal carcinoma: an open-label single-arm, phase Ⅱ trial[J/OL]. J Immunother Cancer, 2021, 9(11): e003290 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/34782428/. DOI: 10.1136/jitc-2021-003290.
[4]
XIAO B H, WANG P G, ZHAO Y R, et al. Combination of diffusion-weighted imaging and arterial spin labeling at 3.0T for the clinical staging of nasopharyngeal carcinoma[J]. Clin Imaging, 2020, 66: 127-132. DOI: 10.1016/j.clinimag.2020.05.007.
[5]
SUN Z Q, HU S D, GE Y X, et al. Can arterial spin labeling perfusion imaging be used to differentiate nasopharyngeal carcinoma from nasopharyngeal lymphoma?[J]. J Magn Reson Imaging, 2021, 53(4): 1140-1148. DOI: 10.1002/jmri.27451.
[6]
YU X D, YANG F, LIU X, et al. Arterial spin labeling and diffusion-weighted imaging for identification of retropharyngeal lymph nodes in patients with nasopharyngeal carcinoma[J/OL]. Cancer Imaging, 2022, 22(1): 40 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/35978445/. DOI: 10.1186/s40644-022-00480-4.
[7]
ZHAO D W, FAN W J, MENG L L, et al. Comparison of the pre-treatment functional MRI metrics' efficacy in predicting Locoregionally advanced nasopharyngeal carcinoma response to induction chemotherapy[J/OL]. Cancer Imaging, 2021, 21(1): 59 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/34758876/. DOI: 10.1186/s40644-021-00428-0.
[8]
QIN Y H, CHEN C, CHEN H T, et al. The value of intravoxel incoherent motion model-based diffusion-weighted imaging for predicting long-term outcomes in nasopharyngeal carcinoma[J/OL]. Front Oncol, 2022, 12: 902819 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/36531009/. DOI: 10.3389/fonc.2022.902819.
[9]
BOUCHER F, LIAO E, SRINIVASAN A. Diffusion-weighted imaging of the head and neck (including temporal bone)[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 205-232. DOI: 10.1016/j.mric.2021.01.005.
[10]
SONG Q X, LI F, CHEN X, et al. Early detection treatment response for head and neck carcinomas using intravoxel incoherent motion-magnetic resonance imaging: a meta-analysis[J/OL]. Dentomaxillofac Radiol, 2021, 50(1): 20190507 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/32286860/. DOI: 10.1259/dmfr.20190507.
[11]
HU H B, JIANG H J, WANG S, et al. 3.0T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol, 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[12]
陈红日, 杨文蕊, 李青润, 等. 应用磁共振动脉自旋标记技术对不同运动亚型帕金森病患者脑灌注改变的研究[J]. 磁共振成像, 2021, 12(8): 1-5, 10. DOI: 10.12015/issn.1674-8034.2021.08.001.
CHEN H R, YANG W R, LI Q R, et al. Study on cerebral perfusion changes in patients with Parkinson's disease with different motor subtypes by using arterial spin labeling technique[J]. Chin J Magn Reson Imag, 2021, 12(8): 1-5, 10. DOI: 10.12015/issn.1674-8034.2021.08.001.
[13]
HU F, ZHENG X H, LI T, et al. Brain perfusion abnormalities after radiotherapy measured by 3-dimensional arterial spin labeling MRI and correlations with cognitive impairment[J]. Radiat Res, 2022, 197(4): 324-331. DOI: 10.1667/RADE-21-00143.1.
[14]
SUN Z Q, HU S D, XUE Q, et al. Can 3D pseudo-continuous arterial spin labeling perfusion imaging be applied to predict early response to chemoradiotherapy in patients with advanced nasopharyngeal carcinoma?[J/OL]. Radiother Oncol, 2021, 160: 97-106 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/33951492/. DOI: 10.1016/j.radonc.2021.04.017.
[15]
LIU J, ZHU J, WANG Y X, et al. Arterial spin labeling of nasopharyngeal carcinoma shows early therapy response[J/OL]. Insights Imaging, 2022, 13(1): 114 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/35796807/. DOI: 10.1186/s13244-022-01248-x.
[16]
LIAO L P, LIU T, WEI B. Prediction of short-term treatment outcome of nasopharyngeal carcinoma based on voxel incoherent motion imaging and arterial spin labeling quantitative parameters[J/OL]. Eur J Radiol Open, 2022, 10: 100466 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/36590328/. DOI: 10.1016/j.ejro.2022.100466.
[17]
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.1016/j.ejca.2008.10.026.
[18]
CHUNG S R, CHOI Y J, SUH C H, et al. Diffusion-weighted magnetic resonance imaging for predicting response to chemoradiation therapy for head and neck squamous cell carcinoma: a systematic review[J]. Korean J Radiol, 2019, 20(4): 649-661. DOI: 10.3348/kjr.2018.0446.
[19]
JABEHDAR MARALANI P, MYREHAUG S, MEHRABIAN H, et al. Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma[J/OL]. Radiother Oncol, 2021, 156: 258-265 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/29383033/. DOI: 10.1016/j.radonc.2020.12.037.
[20]
PAPRAD T, LERTBUTSAYANUKUL C, JITTAPIROMSAK N. Value of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for prediction of treatment outcomes in nasopharyngeal carcinoma[J]. J Comput Assist Tomogr, 2022, 46(4): 664-672. DOI: 10.1097/RCT.0000000000001304.
[21]
HUANG T X, LU N, LIAN S S, et al. The primary lesion apparent diffusion coefficient is a prognostic factor for locoregionally advanced nasopharyngeal carcinoma: a retrospective study[J/OL]. BMC Cancer, 2019, 19(1): 470 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/31101029/. DOI: 10.1186/s12885-019-5684-3.
[22]
郭笑寒, 孔祥林, 田兴仓, 等. 扩散加权成像对鼻咽癌放化疗疗效的预测价值[J]. 临床放射学杂志, 2017, 36(1): 28-33. DOI: 10.13437/j.cnki.jcr.2017.01.008.
GUO X H, KONG X L, TIAN X C, et al. Value of magnetic resonance diffusion-weighted imaging for the prediction of chemoradiotheray efficacy in nasopharyngeal carcinoma[J]. J Clin Radiol, 2017, 36(1): 28-33. DOI: 10.13437/j.cnki.jcr.2017.01.008.
[23]
LEE M K, CHOI Y, JUNG S L. Diffusion-weighted MRI for predicting treatment response in patients with nasopharyngeal carcinoma: a systematic review and meta-analysis[J/OL]. Sci Rep, 2021, 11(1): 18986 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/34556743/. DOI: 10.1038/s41598-021-98508-5.
[24]
WANG D J J, BIHAN D L, KRISHNAMURTHY R, et al. Noncontrast pediatric brain perfusion: arterial spin labeling and intravoxel incoherent motion[J]. Magn Reson Imaging Clin N Am, 2021, 29(4): 493-513. DOI: 10.1016/j.mric.2021.06.002.
[25]
QAMAR S, KING A D, AI Q H, et al. Pre-treatment intravoxel incoherent motion diffusion-weighted imaging predicts treatment outcome in nasopharyngeal carcinoma[J/OL]. Eur J Radiol, 2020, 129: 109127 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/32563165/. DOI: 10.1016/j.ejrad.2020.109127.
[26]
ZHANG H, LI W H, FU C X, et al. Comparison of intravoxel incoherent motion imaging, diffusion kurtosis imaging, and conventional DWI in predicting the chemotherapeutic response of colorectal liver metastases[J/OL]. Eur J Radiol, 2020, 130: 109149 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/32659615/. DOI: 10.1016/j.ejrad.2020.109149.
[27]
CHEN W B, ZHANG B, LIANG L, et al. To predict the radiosensitivity of nasopharyngeal carcinoma using intravoxel incoherent motion MRI at 3.0 T[J]. Oncotarget, 2017, 8(32): 53740-53750. DOI: 10.18632/oncotarget.17367.
[28]
HOU J, YU X P, HU Y, et al. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma[J/OL]. Medicine, 2016, 95(35): e4320 [2023-04-94].https://pubmed.ncbi.nlm.nih.gov/27583847/. DOI: 10.1097/MD.0000000000004320.
[29]
FEDERAU C, HAGMANN P, MAEDER P, et al. Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle[J/OL]. PLoS One, 2013, 8(8): e72856 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/24023649/. DOI: 10.1371/journal.pone.0072856.
[30]
LEMKE A, LAUN F B, SIMON D, et al. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen[J]. Magn Reson Med, 2010, 64(6): 1580-1585. DOI: 10.1002/mrm.22565.
[31]
DI N N, PANG H P, DANG X F, et al. Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies[J]. Neuroradiology, 2017, 59(1): 51-59. DOI: 10.1007/s00234-016-1756-0.
[32]
PANG H P, DANG X F, REN Y, et al. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: comparison of quantitative perfusion and pathology on accurate spatial location-matched basis[J]. J Magn Reson Imaging, 2019, 50(1): 209-220. DOI: 10.1002/jmri.26562.
[33]
LIN M, YU X D, LUO D H, et al. Investigating the correlation of arterial spin labeling and dynamic contrast enhanced perfusion in primary tumor of nasopharyngeal carcinoma[J/OL]. Eur J Radiol, 2018, 108: 222-229 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/30396660/. DOI: 10.1016/j.ejrad.2018.09.034.

上一篇 基于IVIM-DWI定量参数的影像组学预测鼻咽癌短期疗效
下一篇 体素内不相干运动扩散加权成像在乳腺癌腋窝转移性小淋巴结中的研究价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2