分享:
分享到微信朋友圈
X
临床研究
2型糖尿病患者肾脏脂肪定量测量:Dixon与HISTO MRS技术的比较
李易 谢亮华 刘柳 赵晓芳 杨萍 唐华丽 毛芸

LI Y, XIE L H, LIU L, et al. Quantitative measurement of renal fat in patients with type 2 diabetes mellitus: Comparison between Dixon and HISTO MRS techniques[J]. Chin J Magn Reson Imaging, 2023, 14(9): 86-91.引用本文:李易, 谢亮华, 刘柳, 等. 2型糖尿病患者肾脏脂肪定量测量:Dixon与HISTO MRS技术的比较[J]. 磁共振成像, 2023, 14(9): 86-91. DOI:10.12015/issn.1674-8034.2023.09.015.


[摘要] 目的 比较基于六回波水脂分离(Dixon)和高速T2校正多回波磁共振波谱(high-speed T2-crrected multiecho magnetic resonance spectroscopic, HISTO MRS)技术脂肪定量指标在肾脏的一致性并探讨其对肾功能损害的预测能力,为2型糖尿病(type 2 diabetic mellitus, T2DM)患者肾脏脂毒性损害程度判定及治疗监测提供依据。材料与方法 前瞻性纳入172名T2DM患者和55名健康受试者。所有受试者接受Dixon与HISTO MRS腹部3 T MRI检查,获得肾脏质子密度脂肪分数(proton density fat fraction, PDFF),分别记为D-PDFF和H-PDFF。使用组内相关系数评价两种技术的一致性;根据有无T2DM和肾小球滤过率(estimated glomerular filtration rate, eGFR)将所有受试者分为健康受试者、T2DM患者肾功能正常组(N-T2DM)、T2DM患者肾功能轻中度受损组(M-T2DM)、T2DM患者肾功能严重受损组(S-T2DM),并比较组间差异性;应用Pearson相关性分析和多元线性回归明确D-PDFF和H-PDFF是否为eGFR降低的独立危险因素。结果 D-PDFF和H-PDFF的组内相关系数为0.185。校正混杂因素后,健康受试者和T2DM患者D-PDFF的差异有统计学意义(P<0.001),H-PDFF的差异无统计学意义(P>0.05)。校正后健康受试者与N-T2DM组、健康受试者与M-T2DM组、N-T2DM与M-T2DM组的D-PDFF的差异均有统计学意义(P均≤0.001);H-PDFF在各组间的差异均无统计学意义(P均>0.05)。在校正混杂因素后D-PDFF与eGFR的升高独立负相关(β=-0.168,P=0.016),是肾功能损害的独立危险因素。H-PDFF值与eGFR无相关性(β=-0.008,P=0.918)。结论 两种MRI脂肪定量测量技术在肾脏的一致性差,基于Dixon的PDFF更能反映T2DM患者肾脏脂肪沉积增加和肾功能损害,可能更适用于T2DM患者的肾脏脂肪沉积监测。
[Abstract] Objective To compare the concordance of renal fat quantification measures based on the six-echo water-fat separation (Dixon) and high-speed T2-corrected multiecho magnetic resonance spectroscopic (HISTO MRS) techniques, and to investigate their predictive ability for renal function impairment. Provide a basis for determining the extent of renal lipotoxicity in patients with type 2 diabetes mellitus (T2DM) and for monitoring treatment efficacy.Materials and Methods This prospective study enrolled 172 patients with T2DM and 55 healthy subjects. Renal proton density fat fraction (PDFF) was obtained through abdominal 3 T MRI using Dixon and HISTO MRS techniques, recorded as D-PDFF and H-PDFF. The intraclass correlation coefficient was used to evaluate the consistency between the two techniques within the same group. The subjects were divided into healthy subjects, normal renal function group in T2DM patients (N-T2DM), mild to moderate renal function impairment group in T2DM patients (M-T2DM), and severe renal function impairment group in T2DM patients (S-T2DM) based on the presence or absence of T2DM and estimated glomerular filtration rate (eGFR), and inter-group differences were compared. Pearson correlation and multiple linear regression analyses were performed to investigate whether D-PDFF and H-PDFF are independent risk factors for decreased eGFR.Results The interclass correlation coefficient was 0.185 for D-PDFF and H-PDFF. After adjusting for confounding factors, the difference in D-PDFF between healthy participants and T2DM patients was statistically significant (P<0.001), while the difference in H-PDFF was not statistically significant (P>0.05). After adjustment, the differences in D-PDFF between the healthy participant group and the N-T2DM group, the healthy participant group and the M-T2DM group, and the N-T2DM group and the M-T2DM group were all statistically significant (all P≤0.001). The differences in H-PDFF among the groups were not statistically significant (all P>0.05). D-PDFF was independently and negatively associated with increased eGFR (β=-0.168, P=0.016) after correction for confounders and was identified as an independent risk factor for renal impairment. H-PDFF values did not correlate with eGFR (β=-0.008, P=0.918).Conclusions The two magnetic resonance fat quantification techniques are poorly concordant in the kidney. Dixon-based PDFF is more responsive to increased renal ectopic fat accumulation (RELA) and renal function impairment in patients with T2DM than HISTO MRS-based PDFF. Therefore, Dixon-based PDFF may be a more suitable method for monitoring RELA in patients with T2DM.
[关键词] 糖尿病,2型;糖尿病肾病;脂肪沉积;肾脏脂毒性;肾功能;脂肪定量测量;磁共振成像
[Keywords] diabetes mellitus, type 2;diabetic nephropathies;lipid accumulation;renal lipotoxicity;renal function;quantitative measurement of fat;magnetic resonance imaging

李易    谢亮华    刘柳    赵晓芳    杨萍    唐华丽    毛芸 *  

重庆医科大学附属第一医院放射科,重庆 404100

通信作者:毛芸,E-mail:maoyun1979@163.com

作者贡献声明:毛芸设计本研究的方案,对稿件重要内容进行了修改;李易起草和撰写稿件,获取、分析、解释本研究的数据;谢亮华、刘柳、赵晓芳、杨萍、唐华丽获取分析本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2023-04-11
接受日期:2023-08-09
中图分类号:R445.2  R587.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.09.015
引用本文:李易, 谢亮华, 刘柳, 等. 2型糖尿病患者肾脏脂肪定量测量:Dixon与HISTO MRS技术的比较[J]. 磁共振成像, 2023, 14(9): 86-91. DOI:10.12015/issn.1674-8034.2023.09.015.

0 前言

       2型糖尿病(type 2 diabetic mellitus, T2DM)患者发生糖尿病肾病与肾脏异位脂肪沉积(renal ectopic lipid accumulation, RELA)有关[1, 2]。其机制可能是肾实质细胞中过多脂肪酸伴甘油三酯的累积导致肾脏慢性细胞功能障碍和损伤,包括肾小球硬化、肾小管损伤和间质纤维化等,最终造成肾功能受损[3, 4, 5, 6, 7]。目前已有多种药物被证明可以通过各类通路降低RELA来预防和治疗糖尿病肾病[8, 9, 10]。目前评估RELA的金标准方法是病理活检,然而这一方法由于手术风险和伦理影响而使用受限[11]。使用MRI定量脂肪测量技术可以无创测量肾脏组织质子密度脂肪分数(proton density fat fraction, PDFF)评估RELA[12, 13, 14]。最新的MRI定量脂肪测量技术包括六回波水脂分离(Dixon)技术和高速T2校正多回波磁共振波谱(high-speed T2-corrected multiecho magnetic resonance spectroscopic, HISTO MRS)技术。六回波Dixon可以更好地校正包括主磁场不均匀性、T2、T1效应等混杂因素[15, 16, 17]。HISTO MRS具有采集时间短,可以校正混杂因素等优点[18]。这些技术已经广泛应用于脂肪性肝病和肌肉脂肪的定量测量[19, 20, 21, 22, 23]。然而据我们所知,目前没有研究应用这些最新的脂肪定量测量技术来评估T2DM患者的RELA,而且这两种技术在RELA的一致性也没有得到很好的评估。本研究的目的是比较基于六回波Dixon和HISTO MRS技术的脂肪定量指标在肾脏的一致性并探讨其对肾功能损害的预测能力,为T2DM患者肾脏脂毒性损害程度的评估、治疗和预防方式的选择及疗效监测提供依据。

1 材料与方法

1.1 研究对象

       本前瞻性临床研究遵守《赫尔辛基宣言》,经重庆医科大学附属第一医院伦理委员会批准,批准文号:2021-687,全体受试者均签署了知情同意书。我们招募了2021年6月至2022年7月在重庆医科大学附属第一医院内分泌科就诊的18~80岁人群,其中包含213例T2DM患者和65名非T2DM健康受试者。纳入标准:(1)根据1999年世界卫生组织的T2DM诊断标准进行T2DM诊断,非T2DM健康受试者为既往无T2DM相关病史且检查当天空腹血糖测试为正常者;(2)所有研究对象都签署了知情同意书;(3)完成了腹部MRI扫描。排除标准:(1)未同时完成Dixon和HISTO检查;(2)图像存在呼吸伪影或存在水脂交换异常,无法测量肾脏PDFF;(3)存在影响肾脏脂肪定量测量的疾病,包括肾脏肿瘤、肾脏囊肿、肾脏位置异常、先天性肾脏发育不良、孤立肾、肾脏积水、肾脏结石等;(4)临床数据不全。最终纳入了172名T2DM患者及55名非T2DM健康受试者。具体纳入排除数据流程如图1示。

       收集的临床、人口学和实验室数据包括:年龄、性别、腰臀比、腰高比、体质量指数(body mass index, BMI)、病程、高血压病史、吸烟史、饮酒史、运动史、降糖药使用情况、胰岛素使用情况、降压药使用情况、降脂药使用情况、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇、甘油三酯、总胆固醇、糖化血红蛋白A1c、空腹血糖、餐后血糖、血尿素氮、尿酸、通过慢性肾脏病流行病学协作方程计算的肾小球滤过率(estimated glomerular filtration rate, eGFR)等。以上生化指标均使用大型生化自动检测仪,由医院检验科根据标准步骤进行检测。首先根据有无T2DM将入组受试者分为健康受试者组和T2DM组,其次根据eGFR对T2DM组进行肾功能亚分组,分为T2DM患者肾功能正常组(N-T2DM),即eGFR 1级[eGFR为90~120 mL/(min•1.73 m2)];T2DM患者肾功能轻中度受损组(M-T2DM),即eGFR 2、3级[eGFR为30~89 mL/(min•1.73 m2)];T2DM患者肾功能严重受损组(S-T2DM),即eGFR 4、5级[eGFR为0~29 mL/(min•1.73 m2)][24]

图1  纳入和排除数据流程图。Dixon:水脂分离;HISTO:高速T2校正多回波。
Fig. 1  Inclusion and exclusion of data flowchart. Dixon: water-fat separation; HISTO: high-speed T2-corrected multiecho.

1.2 研究方法

1.2.1 MRI扫描

       所有MRI扫描均在3.0 T MRI系统(MAGNETOM Skyra, Siemens, Erlangen, Germany)上使用16通道相控阵体腹部线圈完成。本研究应用序列主要包括T1容积内插屏气检查的两点Dixon序列、六回波Dixon序列与单体素波谱HISTO Steam序列。

       T1容积内插屏气检查两点Dixon序列参数:重复时间4.66 ms,回波时间1.34、2.57 ms,切片厚度3 mm,片数64,矩阵210×320,激励次数1,视野400 mm×350 mm,带宽820 Hz/Px,采集时间17 s。

       T1容积内插屏气检查六回波Dixon序列参数:重复时间9.46 ms,回波时间1.33、2.64、3.95、5.26、6.57、7.88 ms,切片厚度4 mm,片数64,矩阵137×224,激励次数1,视野360 mm×315 mm,带宽1060 Hz/Px,采集时间20 s。采集完成后使用西门子内置的后处理工具包自动生成脂肪分数图像、纯脂肪及纯水图像等。

       单体素波谱HISTO Steam序列的参数参数:重复时间3000.00 ms,回波时间分别为12.00、24.00、36.00、48.00、72.00 ms,体素30 mm×30 mm×30 mm,单次屏气15 s,带宽1200 Hz/Px,混合时间10 ms,翻转角90°,体素10 mm×10 mm×30 mm。

1.2.2 数据测量分析

       所有数据的测量分析由两名放射科医生(医生A:3年经验,初级职称;医生B:2年经验,初级职称)完成,结果不一致时协商解决。并由一名18年经验的放射科高级职称医生(医生C)对所有数据进行双盲检查并修正。

       六回波Dixon序列PDFF的测量在软件(sygno,via,Siemens Healthcare,Erlangen,德国)进行,分别选取以肾脏两侧肾门为中心的5个层面,将整个肾实质手绘为感兴趣区计算PDFF(图2),单侧肾脏PDFF由5个测量层面的算术平均值计算,个体肾脏PDFF由双侧肾脏PDFF之和计算并记为D-PDFF。我们没有进一步分别测量肾皮质和髓质的PDFF,因为两个结构之间的PDFF没有显著性差异并且边界在所有受试者中都不清楚[12, 14]

       HISTO序列PDFF的测量首先在两点Dixon序列脂肪图像上规画肾实质内单个1H-MRS体素,以避免肾窦或肾周脂肪污染(图3)。然后使用九投影一阶铅笔束体积静态场shimming算法在体素位置均匀化B0,以1H-MRS体素为中心放置垫片(大小为40 mm×20 mm×20 mm)后,通过一次15 s的屏气扫描,直接生成双肾PDFF报告,双侧肾脏PDFF之和记为H-PDFF(图3)。

图2  Dixon技术肾脏组织质子密度脂肪分数测量示意图。2A:在肾内选取以肾门(黑色实线)为中心的五个测量层面(黑线虚线);2B:在整个肾实质(红色区域)用白线标记边界作为感兴趣区;2C:手动将感兴趣区放置在选定的5个层面上并避开肾周脂肪和肾窦脂肪,测定肾脏组织质子密度脂肪分数。Dixon:水脂分离。
Fig. 2  Illustration of renal proton density fat fraction measurement of using Dixon techniques. 2A: Select five measurement planes (dashed black lines) centered on the renal hilum (solid black line) within the kidney; 2B: Mark the boundary of the entire renal parenchyma (red area) with a white line as the region of interest (ROI); 2C: Place the ROI manually on the selected five planes, avoiding perinephric fat and renal sinus fat, to measure renal proton density fat fraction. Dixon: water-fat separation.
图3  HISTO磁共振波谱体素技术肾脏组织质子密度脂肪分数的测量示意图。3A:在Dixon-fat only图像中放置1H HISTO MRS体素(白色,大小为10 mm×10 mm×30 mm)和垫片(红色,大小为20 mm×20 mm×40 mm)进行肾脏光谱定位和测量;3B:测量结果示意图。Dixon:水脂分离;HISTO MRS:高速T2校正多回波磁共振波谱。
Fig. 3  Illustration of renal proton density fat fraction measurement of using HISTO MRS techniques. 3A: Place a 1H HISTO MRS voxel (white, 10 mm×10 mm×30 mm in size) and a phantom (red, 20 mm×20 mm×40 mm in size) in the Dixon fat-only image for renal spectral localization and measurement; 3B: Illustration of measurement results. Dixon: water-fat separation; HISTO MRS: high-speed T2-corrected multiecho magnetic resonance spectroscopic.

1.3 统计学分析

       统计分析和数据处理采用SPSS 25.0(IBM, Armonk, NY, USA)、Prism GraphPad 9.0(GraphPad Software,中国)软件。通过Shapiro-Wilk检验来验证计量资料的正态性,正态分布变量用(x¯±s)表示,组间比较采用独立样本t检验。非正态分布变量用MQ1,Q3)表示,组间比较采用Mann-Whitney U检验。计数资料采用例(%)表示,组间比较采用χ2检验。使用组内相关系数(intra-class correlation coefficient, ICC)评价D-PDFF与H-PDFF之间的一致性。当ICC<0.5时,为可靠性差;0.5≤ICC<0.75时,为可靠性中等;0.75≤ICC≤0.9时,为可靠性好;ICC>0.9时,为可靠性优异[25]。通过倾向性评分法(propensity score method, PSM)匹配校正不同组别年龄、性别混杂因素。用Pearson单因素相关性分析检验eGFR与可能对其造成影响的人口、临床、实验室指标的相关性。以eGFR为结果变量,将单因素分析中具有统计学意义的指标作为校正因素,采用多因素线性回归分析两种技术测得PDFF值是否为肾功能损伤的独立危险因素。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       本研究共入组227名受试者,其中女94例(41.4%),男133例(58.6%),年龄(52.23±14.93)岁,BMI(24.55±3.26)kg/m2。分组后特征见表1

表1  受试者基线特征表
Tab. 1  Baseline characteristics sheet for subjects

2.2 Dixon和HISTO MRS技术测定肾脏PDFF值的一致性

       D-PDFF和H-PDFF的组间ICC值为0.185,其ICC<0.5,D-PDFF和H-PDFF一致性差。

2.3 健康受试者组与T2DM患者组的组间差异性分析

       采用PSM匹配校正年龄、性别混杂因素后,得到28名健康受试者和28名T2DM患者的匹配分组。结果显示年龄、性别、BMI的组间差异均没有统计学意义(P均>0.05,图4A4C)。健康受试者D-PDFF和T2DM患者D-PDFF两者的差异有统计学意义(P<0.001,图4D),健康受试者H-PDFF和T2DM患者H-PDFF的差异无统计学意义(P>0.05,图4E)。

图4  非糖尿病健康受试者组和2型糖尿病患者组的组间比较。4A:两组的年龄组间差异;4B:两组的性别组间差异;4C:两组的BMI组间差异;4D:两组使用Dixon技术测得肾脏PDFF值组间差异;4E:两组使用HISTO MRS技术测得肾脏PDFF值组间差异。BMI:体质量指数;D-PDFF:基于水脂分离(Dixon)的肾脏质子密度脂肪分数;H-PDFF:基于高速T2校正多回波磁共振波谱肾脏质子密度脂肪分数。
Fig. 4  Between-group comparison of non-diabetic healthy subjects and type 2 diabetic mellitus patients. 4A: Comparison of age between groups; 4B: Comparison of gender between groups; 4C: Comparison of BMI between groups; 4D: Comparison of renal PDFF values measured by Dixon technique between groups; 4E: Comparison of renal PDFF values measured by HISTO MRS technique between groups. BMI: body mass index; D-PDFF: Dixon-based water-fat separation renal proton density fat fraction; H-PDFF: high-speed T2-corrected multiecho magnetic resonance spectroscopic renal proton density fat fraction.

2.4 D-PDFF和H-PDFF在不同肾功能损害分组的组间差异性比较

       分组比较D-PDFF和H-PDFF的组间差异性,由于S-T2DM组样本量过少(n=4)易造成结果误差,故不参与比较。结果显示,健康受试者与N-T2DM组、健康受试者与M-T2DM组、N-T2DM与M-T2DM组D-PDFF的差异有统计学意义(P均≤0.001),其余差异均无统计学意义(P均>0.05),结果详见表2

表2  D-PDFF和H-PDFF组间差异性比较表
Tab. 2  Comparison of differences between D-PDFF and H-PDFF groups

2.5 eGFR的单因素相关性分析

       Pearson单因素相关性分析结果显示,eGFR与年龄、病程、高血压病史、降糖药使用史、降压药使用史、降脂药使用史、糖化血红蛋白A1c、血尿素氮、尿酸呈负相关(r=-0.165~-0.339,P均<0.05),与其他因素不具有相关性(P均>0.05),结果详见表3

表3  2型糖尿病患者eGFR与各变量之间的单因素相关性分析结果
Tab. 3  Results of univariate correlation analysis between eGFR and each variable in patients with type 2 diabetic mellitus

2.6 肾脏PDFF预测肾功能损伤风险的多因素线性回归分析

       T2DM患者D-PDFF与eGFR呈负相关(r=-0.285,P<0.001),T2DM患者H-PDFF与eGFR无相关性(r=-0.008,P=0.918)。校正上述单因素分析中可能影响eGFR的临床指标后,结果显示D-PDFF是eGFR升高的独立危险因素(β=-0.168,P=0.016),H-PDFF在校正前后都不是独立危险因素(P>0.05)。

3 讨论

       基于MRI的肾脏PDFF可以定量RELA,反映肾功能损害[1, 14, 26, 27],通过比较基于Dixon和HISTO MRS技术脂肪定量指标在肾脏的一致性并探讨其对肾功能损害的预测能力,我们发现Dixon和HISTO MRS两种技术在T2DM患者肾脏脂肪定量的一致性差;同时在我们的研究中发现不同人群组D-PDFF的差异有统计学意义,而H-PDFF无差异;我们还发现D-PDFF是肾功能损害的危险因素。

3.1 Dixon和HISTO MRS的一致性

       在既往肝脏脂肪定量研究中,两种技术体现了良好的一致性[28, 29, 30, 31]。然而在肾脏脂肪测量中我们并没有得到类似的结果,我们发现D-PDFF与H-PDFF一致性较差。由于既往没有研究对这两种技术在肾脏应用评估,因此产生两种技术一致性差的原因尚不明确。我们考虑可能与以下几点原因相关:(1)微小测量误差对肾脏PDFF值的影响性更大,更易发生结果误差。肝脏作为易脂肪沉积代谢器官,成年人肝脏脂肪含量约为40~70 g[32, 33, 34],然而肾脏脂肪量相较于肝脏少,正常单个肾脏脂肪含量约为2~4 g[33, 34, 35]。并且RELA只是T2DM患者发生糖尿病肾病多种机制之一,所以糖尿病肾病的RELA增加量不如非酒精性脂肪肝病增加明显。(2)Dixon技术评估的感兴趣区范围更大,可以更好地量化整个肾脏的脂肪含量,减少了当脂肪分布不均匀时的采样误差。(3)HISTO MRS应用固定长方体设定感兴趣区,相较于Dixon技术的个性化设定更易受到呼吸伪影干扰、肾周和肾窦大量脂肪的污染[12, 13, 18]。我们的结果也显示HISTO技术测定数据的极端值更多,组内个体间的离散程度更大(图4D4E)。

3.2 Dixon和HISTO MRS的比较

       既往研究表明T2DM会导致肾脏脂肪含量增加进而继发肾脂毒性导致肾功能损害,基于MRI的PDFF指标可以反映T2DM患者RELA的增加和肾功能的改变[12, 14]。我们的结果显示非T2DM和T2DM人群的D-PDFF存在差异性,但H-PDFF并没有表现出类似的差异性,其原因可能也和上述HISTO技术易受到测量误差影响有关。同时我们的结果显示H-PDFF与eGFR并无相关性,而D-PDFF即使在校正多种混杂因素后仍然与eGFR独立负相关,是肾功能损害的独立危险因素,这也体现在N-T2DM组与M-T2DM组D-PDFF的组间差异有统计学意义上。这间接表明相较于H-PDFF,D-PDFF更能反映T2DM患者的肾功能损害情况。

3.3 本研究的局限性

       本研究存在以下局限性:首先,出于手术风险和伦理考虑,我们没有收集肾脏病理数据,因此影像学RELA标志物与病理改变的关系有待进一步验证;其次,肾脏脂肪定量测量目前应用较少,设置扫描参数参照肝脏扫描方案,可能会影响测量精度,包括切片厚度、场强、接收线圈、3D与2D采集以及估计PDFF算法的细节;最后,我们的数据来源于单中心,多数为轻度肾功能不全患者而健康组人数较少,结果可能无法代表整个人群并且无法排除仪器差异可能造成的影响,因此可能需要进行纳入更大样本规模、包含不同肾脏损害程度人群的多中心研究。

4 结论

       综上所述,本研究发现两种磁共振脂肪定量测量技术在肾脏的一致性差,基于六回波Dixon的PDFF更能反映T2DM患者RELA的增加和肾功能损害的变化,可能更适用于T2DM患者肾脏脂毒性损害程度的判定、选择预防治疗措施及疗效监测。

[1]
DE VRIES A P, RUGGENENTI P, RUAN X Z, et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease[J]. Lancet Diabetes Endocrinol, 2014, 2(5): 417-426. DOI: 10.1016/S2213-8587(14)70065-8.
[2]
XU T T, XU X Y, ZHANG L, et al. Lipidomics reveals serum specific lipid alterations in diabetic nephropathy[J/OL]. Front Endocrinol, 2021, 12: 781417 [2023-07-06]. https://www.frontiersin.org/articles/10.3389/fendo.2021.781417/full. DOI: 10.3389/fendo.2021.781417.
[3]
WEINBERG J M. Lipotoxicity[J]. Kidney Int, 2006, 70(9): 1560-1566. DOI: 10.1038/sj.ki.5001834.
[4]
NAWAZ S, CHINNADURAI R, AL-CHALABI S, et al. Obesity and chronic kidney disease: a current review[J]. Obes Sci Pract, 2023, 9(2): 61-74. DOI: 10.1002/osp4.629.
[5]
CASTRO B B A, FORESTO-NETO O, SARAIVA-CAMARA N O, et al. Renal lipotoxicity: insights from experimental models[J]. Clin Exp Pharmacol Physiol, 2021, 48(12): 1579-1588. DOI: 10.1111/1440-1681.13556.
[6]
KAWANAMI D, MATOBA K, UTSUNOMIYA K. Dyslipidemia in diabetic nephropathy[J/OL]. Ren Replace Ther, 2016, 2(1): 1-9 [2023-07-06]. https://rrtjournal.biomedcentral.com/articles/10.1186/s41100-016-0028-0#citeas. DOI: 10.1186/s41100-016-0028-0.
[7]
OPAZO-RÍOS L, MAS S, MARÍN-ROYO G, et al. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities[J/OL]. Int J Mol Sci, 2020, 21(7): 2632 [2023-07-06]. https://www.mdpi.com/1422-0067/21/7/2632. DOI: 10.3390/ijms21072632.
[8]
ZHANG Y, YAO H J, LI C, et al. Gandi capsule improved podocyte lipid metabolism of diabetic nephropathy mice through SIRT1/AMPK/HNF4A pathway[J/OL]. Oxid Med Cell Longev, 2022, 2022: 6275505 [2023-07-06]. https://www.hindawi.com/journals/omcl/2022/6275505/. DOI: 10.1155/2022/6275505.
[9]
KIM Y, LIM J H, KIM M Y, et al. The adiponectin receptor agonist AdipoRon ameliorates diabetic nephropathy in a model of type 2 diabetes[J]. J Am Soc Nephrol, 2018, 29(4): 1108-1127. DOI: 10.1681/ASN.2017060627.
[10]
KIM D H, PARK J S, CHOI H I, et al. The role of the farnesoid X receptor in kidney health and disease: a potential therapeutic target in kidney diseases[J]. Exp Mol Med, 2023, 55(2): 304-312. DOI: 10.1038/s12276-023-00932-2.
[11]
POGGIO E D, MCCLELLAND R L, BLANK K N, et al. Systematic review and meta-analysis of native kidney biopsy complications[J]. Clin J Am Soc Nephrol, 2020, 15(11): 1595-1602. DOI: 10.2215/CJN.04710420.
[12]
YOKOO T, CLARK H R, PEDROSA I, et al. Quantification of renal steatosis in type Ⅱ diabetes mellitus using dixon-based MRI[J]. J Magn Reson Imaging, 2016, 44(5): 1312-1319. DOI: 10.1002/jmri.25252.
[13]
JONKER J T, HEER P D, ENGELSE M A, et al. Metabolic imaging of fatty kidney in diabesity: validation and dietary intervention[J]. Nephrol Dial Transplant, 2018, 33(2): 224-230. DOI: 10.1093/ndt/gfx243.
[14]
WANG Y C, FENG Y L, LU C Q, et al. Renal fat fraction and diffusion tensor imaging in patients with early-stage diabetic nephropathy[J]. Eur Radiol, 2018, 28(8): 3326-3334. DOI: 10.1007/s00330-017-5298-6.
[15]
YU H Z, SHIMAKAWA A, MCKENZIE C A, et al. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling[J]. Magn Reson Med, 2008, 60(5): 1122-1134. DOI: 10.1002/mrm.21737.
[16]
YOO Y H, KIM H S, LEE Y H, et al. Comparison of multi-echo Dixon methods with volume interpolated breath-hold gradient echo magnetic resonance imaging in fat-signal fraction quantification of paravertebral muscle[J]. Korean J Radiol, 2015, 16(5): 1086-1095. DOI: 10.3348/kjr.2015.16.5.1086.
[17]
KIM D, KIM S K, LEE S J, et al. Simultaneous estimation of the fat fraction and R2(*) Via T2(*)-corrected 6-echo Dixon volumetric interpolated breath-hold examination imaging for osteopenia and osteoporosis detection: correlations with sex, age, and menopause[J]. Korean J Radiol, 2019, 20(6): 916-930. DOI: 10.3348/kjr.2018.0032.
[18]
PINEDA N, SHARMA P, XU Q, et al. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy: a rapid and accurate technique[J]. Radiology, 2009, 252(2): 568-576. DOI: 10.1148/radiol.2523082084.
[19]
应洁, 刘丹, 杨全, 等. 3.0 TMRI双回波水脂分离Dixon技术在非酒精性脂肪肝患者肝脏脂肪含量定量测定中的应用[J]. 磁共振成像, 2020, 11(7): 577-580. DOI: 10.12015/issn.1674-8034.2020.07.020.
YING J, LIU D, YANG Q, et al. 3.0 T MRI double-echo hydro-lipid separation Dixon technique for quantitative determination of liver fat in patients with nonalcoholic fatty liver disease[J]. Chin J Magn Reson Imag, 2020, 11(7): 577-580. DOI: 10.12015/issn.1674-8034.2020.07.020.
[20]
张旭霞, 张皓, 南江, 等. 磁共振脂肪测量技术在肌肉病变中的应用进展[J]. 磁共振成像, 2019, 10(6): 474-478. DOI: 10.12015/issn.1674-8034.2019.06.017.
ZHANG X X, ZHANG H, NAN J, et al. Muscle fat measurement by magnetic resonance technology: the progresses in muscle disease[J]. Chin J Magn Reson Imag, 2019, 10(6): 474-478. DOI: 10.12015/issn.1674-8034.2019.06.017.
[21]
GRIMM A, MEYER H, NICKEL M D, et al. Repeatability of Dixon magnetic resonance imaging and magnetic resonance spectroscopy for quantitative muscle fat assessments in the thigh[J]. J Cachexia Sarcopenia Muscle, 2018, 9(6): 1093-1100. DOI: 10.1002/jcsm.12343.
[22]
GASSENMAIER S, KÄHM K, WALTER S S, et al. Quantification of liver and muscular fat using contrast-enhanced Dual Source Dual Energy Computed Tomography compared to an established multi-echo Dixon MRI sequence[J/OL]. Eur J Radiol, 2021, 142: 109845 [2023-07-06]. https://www.ejradiology.com/article/S0720-048X(21)00326-0/fulltext. DOI: 10.1016/j.ejrad.2021.109845.
[23]
ZHAO F Y, CHEN Y D, ZHANG H T, et al. Multi-echo Dixon and breath-hold T2-corrected multi-echo single-voxel MRS for quantifying hepatic iron overload in rabbits[J]. Acta Radiol, 2023, 64(1): 13-19. DOI: 10.1177/02841851211063007.
[24]
STEVENS P E, LEVIN A, Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members of the Kidney Disease. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline[J]. Ann Intern Med, 2013, 158(11): 825-830. DOI: 10.7326/0003-4819-158-11-201306040-00007.
[25]
KOO T K, LI M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]. J Chiropr Med, 2016, 15(2): 155-163. DOI: 10.1016/j.jcm.2016.02.012.
[26]
SHEN Y, XIE L H, CHEN X J, et al. Renal fat fraction is significantly associated with the risk of chronic kidney disease in patients with type 2 diabetes[J/OL]. Front Endocrinol, 2022, 13: 995028 [2023-07-06]. https://www.frontiersin.org/articles/10.3389/fendo.2022.995028/full. DOI: 10.3389/fendo.2022.995028.
[27]
余远曙, 赖灿, 秦奋洁, 等. 肥胖儿童肾脏脂肪沉积的磁共振定量成像研究[J]. 临床放射学杂志, 2022, 41(8): 1530-1534. DOI: 10.13437/j.cnki.jcr.2022.08.018.
YU Y S, LAI C, QIN F J, et al. Quantitative magnetic resonance imaging study of renal lipid accumulation in children with obesity[J]. J Clin Radiol, 2022, 41(8): 1530-1534. DOI: 10.13437/j.cnki.jcr.2022.08.018.
[28]
ZHAO Y Z, GAN Y G, ZHOU J L, et al. Accuracy of multi-echo Dixon sequence in quantification of hepatic steatosis in Chinese children and adolescents[J]. World J Gastroenterol, 2019, 25(12): 1513-1523. DOI: 10.3748/wjg.v25.i12.1513.
[29]
ZHAN C Y, OLSEN S, ZHANG H C, et al. Detection of hepatic steatosis and iron content at 3 Tesla: comparison of two-point Dixon, quantitative multi-echo Dixon, and MR spectroscopy[J]. Abdom Radiol, 2019, 44(9): 3040-3048. DOI: 10.1007/s00261-019-02118-9.
[30]
KUKUK G M, HITTATIYA K, SPRINKART A M, et al. Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis[J]. Eur Radiol, 2015, 25(10): 2869-2879. DOI: 10.1007/s00330-015-3703-6.
[31]
YURDAISIK I, NURILI F. Accuracy of multi-echo Dixon sequence in quantification of hepatic steatosis[J/OL]. Cureus, 2020, 12(2): e7103 [2023-07-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098411/. DOI: 10.7759/cureus.7103.
[32]
BAE J S, LEE D H, SUH K S, et al. Noninvasive assessment of hepatic steatosis using a pathologic reference standard: comparison of CT, MRI, and US-based techniques[J]. Ultrasonography, 2022, 41(2): 344-354. DOI: 10.14366/usg.21150.
[33]
MOLINA D K, DIMAIO V J M. Normal organ weights in women: part Ⅱ-the brain, lungs, liver, spleen, and kidneys[J]. Am J Forensic Med Pathol, 2015, 36(3): 182-187. DOI: 10.1097/PAF.0000000000000175.
[34]
MOLINA D K, DIMAIO V J M. Normal organ weights in men: part Ⅱ-the brain, lungs, liver, spleen, and kidneys[J]. Am J Forensic Med Pathol, 2012, 33(4): 368-372. DOI: 10.1097/PAF.0b013e31823d29ad.
[35]
BOBULESCU I A. Renal lipid metabolism and lipotoxicity[J]. Curr Opin Nephrol Hypertens, 2010, 19(4): 393-402. DOI: 10.1097/MNH.0b013e32833aa4ac.

上一篇 采用磁共振2D-MRCP电影成像无创评估胰腺外分泌功能的可行性研究
下一篇 MR集成序列在皮肌炎/多发性肌炎诊断及其活动性定量评估中的应用
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2