分享:
分享到微信朋友圈
X
综述
多模态磁共振成像在评估直肠癌术前分期、放化疗后再分期、放化疗疗效中的应用研究进展
郭晓霖 薛良圆 田春梅 董立杰 陈亮 张林

GUO X L, XUE L Y, TIAN C M, et al. Research progress of multimodal magnetic resonance imaging in evaluating preoperative staging, restaging after chemoradiotherapy and efficacy of chemoradiotherapy in rectal cancer[J]. Chin J Magn Reson Imaging, 2023, 14(9): 181-185.引用本文:郭晓霖, 薛良圆, 田春梅, 等. 多模态磁共振成像在评估直肠癌术前分期、放化疗后再分期、放化疗疗效中的应用研究进展[J]. 磁共振成像, 2023, 14(9): 181-185. DOI:10.12015/issn.1674-8034.2023.09.033.


[摘要] 直肠癌是一种我国乃至全球发病率较高的恶性肿瘤。近年来,常规MRI及功能MRI在直肠癌的应用方面发展迅速。本文汇总高分辨率MRI、动态对比增强MRI、扩散加权成像、体素内不相干运动MRI在评估直肠癌术前分期、放化疗后再分期、放化疗疗效方面的国内外文献,希望将各模态MRI的优劣势整合,为临床的诊治提供更加可靠的影像学依据。
[Abstract] Rectal cancer (RC) is a malignant tumor with high incidence in China and even in the world. In recent years, the application of conventional MRI and functional MRI in RC has developed rapidly. This paper summarized domestic and foreign literatures on high-resolution MRI, dynamic contrast enhanced MRI, diffuse-weighted imaging, intravoxel incoherent motion MRI in evaluating the preoperative staging, restaging after chemoradiation, and the efficacy of chemoradiation in RC, hoping to integrate the advantages and disadvantages of each mode of MRI and provide more reliable imaging basis for clinical diagnosis and treatment.
[关键词] 直肠癌;磁共振成像;多模态磁共振成像;术前分期;放化疗后再分期;放化疗疗效
[Keywords] rectal cancer;magnetic resonance imaging;multimodal magnetic resonance imaging;preoperative staging;restaging after chemoradiotherapy;efficacy of chemoradiotherapy

郭晓霖 1   薛良圆 1   田春梅 2   董立杰 1   陈亮 1   张林 1*  

1 滨州医学院附属医院放射科,滨州 256603

2 滨州医学院附属医院儿科,滨州 256603

通信作者:张林,E-mail:zhanglin730101@163.com

作者贡献声明:张林设计本研究的方案,对稿件重要内容进行了修改,获得了滨州医学院研究生教学案例库建设项目基金资助;郭晓霖起草和撰写稿件,获取、分析或解释本研究的数据;薛良圆、田春梅、董立杰、陈亮获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 滨州医学院研究生教学案例库建设项目 BYYJSALK2021007
收稿日期:2023-03-22
接受日期:2023-08-04
中图分类号:R445.2  R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.09.033
引用本文:郭晓霖, 薛良圆, 田春梅, 等. 多模态磁共振成像在评估直肠癌术前分期、放化疗后再分期、放化疗疗效中的应用研究进展[J]. 磁共振成像, 2023, 14(9): 181-185. DOI:10.12015/issn.1674-8034.2023.09.033.

0 前言

       结直肠癌(colorectal cancer, CRC)是常见的消化系统癌症,也是全球第三大高发癌症[1]。在中国,随着人民发展指数的显著增加,直肠癌的发病率和病死率也显著提升,均已处于世界较高水平[2]。据2020年数据统计,中国CRC发病人数占全球的28.8%,发病率(23.9/10万)位于中国各癌种第3位;死亡人数占全球的30.6%,病死率(12.0/10万)位于第5位[3]。MRI较CT具有更高的软组织分辨力,可清晰地显示直肠管壁的组织学分层及其周围的解剖结构,可帮助评估直肠癌术前分期、放化疗后再分期、放化疗后的反应。其中,高分辨率MRI(high resolution MRI, HR-MRI)可更细致地观察肠壁受侵犯的情况,动态对比增强MRI(dynamic contrast enhancement MRI, DCE-MRI)可清楚观察肿瘤的淋巴血管侵犯情况,扩散加权成像(diffusion weighted imaging, DWI)可更直观地观察肿瘤的形态轮廓,体素内不相干运动MRI(intravoxel incoherent motion MRI, IVIM-MRI)可在DWI的基础上进一步区分肿瘤与正常直肠。本文旨在了解各模态MRI在评估直肠癌术前分期、放化疗后再分期以及放化疗疗效方面的优劣势,并加以整合,为临床诊治提供更加坚实的理论依据。

1 HR-MRI

1.1 HR-MRI在评估直肠癌术前分期中的应用

       对于评估直肠癌术前T分期,HR-MRI能很好地显示肿瘤与管壁、系膜筋膜、腹膜反折、直肠括约肌复合体及邻近器官的关系。HR-MRI对直肠癌术前T1~T4期的评估总准确率为79.62%,对直肠癌患者治疗方案决策的诊断准确率为80.57%[4]。这表明HR-MRI可以准确评估直肠癌术前T分期,为临床医生选择恰当的治疗方案提供帮助。但是,HR-MRI在评估直肠肿瘤术前T分期上也存在挑战,一是由于软组织分辨率的限制,早期肿瘤信号和肌层信号难以辨别,导致T1期与T2期肿瘤之间的鉴别存在困难;二是由于肿瘤局部的粘连,真性的肿瘤浸润和假性的炎性增生难以区分,导致T2期与T3期肿瘤之间的鉴别存在困难[5]

       对于评估直肠癌术前N分期,HR-MRI能很好地显示淋巴结的形态、大小、存在的个数及区域。HR-MRI对评估直肠癌术前N分期的敏感度和特异度分别为73%和74%[6]。目前,HR-MRI在评估直肠癌术前N分期上存在一定的壁垒,即对于转移淋巴结的评定缺乏统一的标准。2017年第8版UICC/AJCC拟定的转移淋巴结的评定标准为:短径超过8 mm或具备以下四项中的一项(边缘不清、形态不规则、信号不均、强化不均),再加上扩散信号增强,此标准测得的敏感度和特异度分别为72%和66%[6];而一项大型多中心研究显示,HR-MRI上短轴直径≥7 mm的淋巴结与19.5%的高风险的局部复发相关,建议将其作为合理的截止尺寸[7];GRÖNE等[8]研究发现,7.2 mm的短轴直径截断值的准确度为68.3%,敏感度和特异度为32%和94.3%。此外,CURVO-SEMEDO等[9]研究发现,淋巴结无论是否受累,其体积都趋向于减小。以上研究均表明不能仅用淋巴结的短径和体积来界定是否存在转移。除了大小,联合形态学标准可增强鉴别良恶性淋巴结的能力,已有研究发现,息肉样肿瘤与较低的病理N分期相关[10]。LI等[11]研究发现,由10个放射组学特征组成的模型(Maximun3DDiameter、SumAverage、JointEntropy、Graylevel Non Uniformit、LargeDependenceEmphas、SizeZ oneNonUniformity、Maximum、Entropy、Kurtosis、LargeDependenceEmphasi)评估直肠肿瘤术前N分期的准确度、特异度和敏感度分别为87.77%、82.57%和89.81%。由此看来,放射组学技术在预测直肠癌术前淋巴结状态方面具有重要价值。随着放射组学技术的发展,HR-MRI在评估直肠癌术前N分期方面的作用愈加重要[12]

       HR-MRI可以准确评估直肠癌术前T分期,但由于分辨力的限制和肿瘤的粘连,T1与T2期、T2与T3期肿瘤之间的鉴别存在困难,该问题有待我们解决。HR-MRI可以很好地显示淋巴结形态及大小,但由于缺乏对转移淋巴结的统一评定标准,HR-MRI对直肠癌术前N分期的评估的准确性较低。放射组学技术在HR-MRI上的应用,显著提高了对术前N分期的评估的准确性,具有重要意义。

1.2 HR-MRI在评估直肠癌放化疗后再分期与治疗反应中的应用

       放化疗多用于局部晚期直肠癌的治疗,可在术前帮助降低肿瘤的体积和分期,以达到临床的手术要求或避免不必要的手术;也可在术后帮助降低肿瘤局部复发的风险。HR-MRI对再评估肿瘤TN分期的准确性均不高,分别为34%和68%[13]。HR-MRI对评估放化疗(chemoradiotherapy, CRT)后肿瘤T分期的缺点和CRT前肿瘤T分期相似:常将残余的ycT2期肿瘤过度分期为ycT3期肿瘤[14, 15]。HR-MRI在评估CRT前肿瘤N分期时具有局限性,即仅用大小的标准鉴别淋巴结的良恶性的准确性较低;联合形态学标准可适当增加其准确性。但是这对评估CRT后的肿瘤N分期并不适用:CRT后,几乎所有淋巴结都会缩小,在HR-MRI上难以观察其形态。因此,HR-MRI在CRT后肿瘤分期再评估方面的应用是具有挑战性的。尽管如此,它仍是评估直肠癌放化疗后再分期的首选方法[16]。其他检查像内镜检查虽能直观地观察直肠肠腔表面,但其无法评估直肠肠壁及系膜深处的肿瘤反应[17]。在HR-MRI上,偶见或未见肿瘤残留,同时未见纤维化反应,仅见正常的直肠壁结构,即认定为MRI上的完全缓解(complete response, CR)[18]。在术后病理标本中未检测到残留的肿瘤细胞,即认定为病理完全缓解(pathological complete response pCR)[19]。CRT后pCR率高达20%或更高已被证实[20],但HR-MRI在预测pCR方面的敏感性较低。磁共振肿瘤退缩分级(magnetic resonance tumor regression grade, mrTRG)是基于MRI图像,以肿瘤的大小、形态和信号强度的变化为反映评估主要标准的肿瘤回归评分系统。ACHILLI等[21]和NAHAS等[22]研究发现,mrTRG与病理肿瘤退缩分级(pathological tumor regression grade, pTRG)只有适度的一致性,mrTRG预测pCR的特异度较高,而敏感度较低。而由在HR-MRI中提取的放射学特征组成的模型对CR的预测价值较高[23]

       HR-MRI对直肠癌放化疗后再分期与治疗反应的评估的准确性均不高,应用放射组学技术对于肿瘤放化疗后治疗反应的预测有较大的潜在价值。

2 DCE-MRI

       DCE-MRI作为一项功能MRI技术,能够显示肿瘤区域血管内对比剂浓度随时间的变化特点,反映肿瘤的微循环状态及新生血管的程度[24]。DCE序列对鉴别直肠癌良恶性淋巴结有很大的价值,常规MRI检测恶性淋巴结(淋巴结≥5 mm)的敏感度和特异度为71%和70%,而联合DCE-MRI后提高到86%和90%[25]。良性淋巴结在DCE-MRI上表现为动脉期均匀强化,而恶性淋巴结表现为动脉期不均匀强化,并且具有中心呈低信号不强化、边缘呈高信号明显强化的特点,二者差异十分明显。另外,YANG等[26]研究发现,DCE-MRI衍生的灌注参数体积转移常数(volume transfer constant, Ktrans),在区分短轴直径<5 mm的淋巴结的良恶性时,具有中度的诊断性能。LU等[27]研究发现,DCE-MRI对预测CRT后病理学分期为T0~T1(ypT0~ypT1)期的直肠肿瘤的准确度、敏感度、特异度均较高,分别为86%、73%、90%。并得出结论:在DCE-MRI上进行的yT分期是ypT0~ypT1期直肠肿瘤的独立预测因子。WAN等[28]研究发现,DCE-MRI在鉴别T0~T1期与T2期直肠肿瘤时,存在“黏膜下增强条纹征”,其准确度较高为87%。KIM等[29]研究发现,DCE-MRI定量参数Ktrans对预测CRT后的肿瘤反应有意义。PETRILLO等[30]研究发现,定性DCE-MRI对评估CRT后肿瘤反应的准确度、敏感度及特异度,比形态学MRI更高。FUSCO等[31]研究发现,标准化形状指数在区分CRT后病理有反应者和无反应者时,准确度、敏感度、特异度均较高,分别为91.8%、95.9%、84.7%。

       DCE-MRI可准确分辨直肠癌淋巴结的良恶性,这有助于直肠肿瘤术前N分期的评估,其独特的影像学特点亦有助于术前T0~T1期与T2期肿瘤的鉴别。不单其自身可以准确预测放化疗后病理学分期为T0~T1期的肿瘤,其衍生物对预测放化疗后的肿瘤反应也非常准确。

3 DWI

       DWI作为一种功能MRI,能够检测正常组织和肿瘤内水分子运动的扩散状态,反映其微观结构的特点和变化。在常规MRI上,评估CRT前直肠肿瘤分期的特异度稍低,联合DWI后,特异度显著提高[32]。常规MRI在检测CRT后直肠肿瘤再分期方面敏感度较低,而DWI有较高的敏感度(72.7%);二者的特异度差异不大[33]。在常规MRI基础上增加DWI序列可显著提高MRI对CRT后直肠肿瘤再分期的诊断性能,敏感度从80%提高到100%,特异度从50%提高到67%;再联合内镜检查,准确性大大提高[34]

       在检测直肠肿瘤受累淋巴结方面,CRT后DWI上显示的淋巴结消失是淋巴结受累状态阴性的可靠的预测指标。DWI联合T2加权图像可以提高CRT后淋巴结的检出率,但鉴别良恶性并不可靠:在进行视觉分析时,无论是否转移,几乎所有淋巴结在DWI上均显示为突出的高信号,仅凭形态很难区分转移性淋巴结和CRT引起的淋巴结变化。另外,DWI的衍生参数表观扩散系数(apparent diffusion coefficient, ADC)代表组织结构中水分子扩散的快慢,是一种评估和预测肿瘤反应的成像生物标志物。在进行ADC值分析时,发现良恶性淋巴结之间有差异,但由于淋巴结细胞结构紧密,故需考虑ADC值重叠。有研究表明,ADC值可以预测直肠肿瘤的淋巴结转移及淋巴血管浸润状态[35]。另有研究发现,ADC值与CRT后直肠肿瘤的局部区域降期和体积缩小显著相关。并且ADC值能够区分pCR和非pCR患者,其敏感度和特异度分别为75%和70%[36]

       在常规MRI序列上,检测pCR的敏感度、特异度、阳性预测值、阴性预测值分别为30%、87%、27%、88%;增加DWI序列后,其分别可提高到70%、93%、64%、95%[37]。在pCR患者中,利用3.0 T MRI获得DWI图像与ADC图像后,在两种图像上测得的CRT前后信号强度差值能较好地评估肿瘤反应[38]。并且在DWI图像上,测得的直肠肿瘤CRT前后的体积与肿瘤体积缩小率对评估pCR患者很准确[39]

       CRT后,可以观察到直肠肿瘤不同程度的纤维化,其纤维化的模式通常与原发肿瘤的形态相关:不规则或针状肿瘤在CRT后表现为不规则纤维化,而半圆形或息肉样肿瘤表现为局灶性纤维化。将T2加权图像上的肿瘤形态与DWI上不同的信号模式相结合,息肉样肿瘤通常表现为局灶性扩散受限,类圆形肿瘤表现为分散区域的扩散受限。这种基于模式的方法区分残余肿瘤和完全反应的敏感度为94%,特异度为77%,阳性预测值为88%,阴性预测值为87%,总体准确度为88%[40],有助于区分残余肿瘤与完全反应,提高对CRT后肿瘤反应的诊断的准确性。

       目前,DWI对CRT后的残余肿瘤和纤维化的视觉评估的优势已被证实[41],然而,单纯利用DWI鉴别CRT后残余肿瘤和完全反应是不够的,还需结合ADC图(在DWI基础上测量得到的图)。DWI序列具有T2加权性质,会使具有较长T2弛豫时间的结构(如液体)呈高信号。CRT会引发少量腔内积液,在DWI上呈高信号,被误认为直肠壁扩散受限。此时,需结合ADC图,真正的扩散受限在ADC上呈低信号,而腔内T2穿透效应在ADC上呈高信号。除此之外,DWI上的信号形状也可帮助诊断,真正的扩散受限的高信号大多呈U形,而腔内T2穿透效应大多呈星形。黏液性肿瘤也会有T2穿透效应,这使得DWI在评估黏液性肿瘤方面价值不高[42, 43]。同样,单纯利用ADC图鉴别CRT后残余肿瘤和完全反应也是不够的,还需结合DWI。肿瘤在ADC图上表现为低信号。致密性纤维化包含很多的细胞外基质大分子,T2弛豫时间很短,导致在ADC图上也表现为低信号,但并不是真正的扩散受限。只有在ADC图上表现为低信号,并且在DWI上有相应的高信号时,才可诊断为CRT后残余的肿瘤。

       DWI可精准预测直肠癌放化疗后受累淋巴结的阴性状态,但无法鉴别淋巴结的良恶性。它与常规MRI联合可显著提高对直肠癌术前分期的评估的敏感性以及对放化疗后再分期的诊断性能;对评估放化疗后肿瘤反应有重要价值。但是由于T2穿透效应,DWI在评估黏液性肿瘤方面价值不大。

4 IVIM-MRI

       IVIM-MRI作为一项新的功能MRI技术,能够通过双指数模型计算获得真扩散系数(D)、伪扩散系数(D*)、灌注分数(f)。其中D与细胞微结构高度相关,D*和f与微循环相关。实际上D代表真正的水分子扩散,而D*代表血流量;f代表有效血容量。肿瘤D值和f值较正常直肠低,而D*值较高[44]。D值较低是因为肿瘤细胞增大,微结构改变,自然扩散受限;D*值较高是因为肿瘤血管生成增多,自然血流较多;f值较低可能是因为肿瘤血管结构混乱、功能较差,导致血流虽多但有效灌注较少。D、D*、f这三个参数均能反映肿瘤微结构或微循环的变化,从而显著区分肿瘤与正常直肠。除此之外,D、D*和f与肿瘤的分期或分级相关[45, 46];D和D*随肿瘤分期的增加而降低,D*和f随肿瘤分化程度的增高而增高[47]。另外,D值和D*值的早期变化具有预估CRT疗效的潜能[48]。有研究发现,CRT后肿瘤的D值显著升高[49];全体积感兴趣区衍生的Δ%D值(D值的变化百分比)与淋巴结转移、非pCR及不良缓解相关[50];pCR患者的D*值较非pCR患者高[51]。同步远处转移患者的f值较非同步转移患者低[52]。目前,已有研究表明,D值在预测化疗前pCR状态方面,具有较高的准确度和特异度,分别为86.27%和95.12%;Δ%D值在评估pCR反应方面具有较高的AUC值,有助于评估直肠肿瘤患者术前的pCR状态[53]。以Dslow、Dfast和f值构建的IVIM模型在预测pCR方面较ADC稍显逊色;全肿瘤ADC平均值结合肿瘤体积对预测pCR有较高的敏感度和特异度,为100%和81%[54]。另外,有研究发现,在IVIM-MRI相关灰度共生矩阵(GLCM)特征分析方面,pCR和非pCR患者之间存在显著差异[55]。IVIM-MRI对评估直肠癌的术前分期、分级、放化疗疗效及同步转移具有重要价值。

5 局限性与展望

       目前,各模态MRI均可较为准确地评估直肠癌术前分期、放化疗后再分期、放化疗后的治疗反应。但是,在一些细微之处仍存在局限性,包括不能准确鉴别病变具体的T分期、不能准确预测CRT后的治疗反应以及不能准确评估黏液性肿瘤CRT后的反应,这些问题亟待解决。未来,各模态MRI之间的优劣势互为补充,调整优化。期待多模态MRI在直肠癌诊断、疗效评估以及预后预测方面更加精进,成为直肠癌诊疗中有力的辅助手段。

[1]
SIEGEL R L, MILLER K D, GODING SAUER A, et al. Colorectal cancer statistics, 2020[J]. CA, 2020, 70(3): 145-164. DOI: 10.3322/caac.21601.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
周雄, 胡明, 李子帅, 等. 2020年全球及中国结直肠癌流行状况分析[J]. 海军军医大学学报, 2022, 43(12): 1356-1364. DOI: 10.16781/j.CN31-2187/R.20220593.
ZHOU X, HU M, LI Z S, et al. Colorectal cancer in the world and China in 2020: an analysis of epidemic status[J]. Acad J Nav Med Univ, 2022, 43(12): 1356-1364. DOI: 10.16781/j.CN31-2187/R.20220593.
[4]
XU L P, ZHANG C, ZHANG Z Y, et al. Value of 3Tesla MRI in the preoperative staging of mid-low rectal cancer and its impact on clinical strategies[J/OL]. Asia Pac J Clin Oncol, 2020, 16(5): e216-e222 [2023-03-21]. https://onlinelibrary.wiley.com/doi/10.1111/ajco.13368. DOI: 10.1111/ajco.13368.
[5]
OPARA C O, KHAN F Y, KABIRAJ D G, et al. The value of magnetic resonance imaging and endorectal ultrasound for the accurate preoperative T-staging of rectal cancer[J/OL]. Cureus, 2022, 14(10): e30499 [2023-03-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674932/. DOI: 10.7759/cureus.30499.
[6]
ZHUANG Z X, ZHANG Y, WEI M T, et al. Magnetic resonance imaging evaluation of the accuracy of various lymph node staging criteria in rectal cancer: a systematic review and meta-analysis[J/OL]. Front Oncol, 2021, 11: 709070 [2023-03-21]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.709070/full. DOI: 10.3389/fonc.2021.709070.
[7]
OGURA A, KONISHI T, CUNNINGHAM C, et al. Neoadjuvant (chemo)radiotherapy with total mesorectal excision only is not sufficient to prevent lateral local recurrence in enlarged nodes: results of the multicenter lateral node study of patients with low cT3/4 rectal cancer[J]. J Clin Oncol, 2019, 37(1): 33-43. DOI: 10.1200/JCO.18.00032.
[8]
GRÖNE J, LOCH F N, TAUPITZ M, et al. Accuracy of various lymph node staging criteria in rectal cancer with magnetic resonance imaging[J]. J Gastrointest Surg, 2018, 22(1): 146-153. DOI: 10.1007/s11605-017-3568-x.
[9]
CURVO-SEMEDO L. Rectal cancer: staging[J]. Magn Reson Imaging Clin N Am, 2020, 28(1): 105-115. DOI: 10.1016/j.mric.2019.09.003.
[10]
GOLIA PERNICKA J S, BATES D D B, FUQUA J L, et al. Meaningful words in rectal MRI synoptic reports: how "polypoid" may be prognostic[J]. Clin Imaging, 2021, 80: 371-376. DOI: 10.1016/j.clinimag.2021.08.010.
[11]
LI J, ZHOU Y, WANG X X, et al. An MRI-based multi-objective radiomics model predicts lymph node status in patients with rectal cancer[J]. Abdom Radiol (NY), 2021, 46(5): 1816-1824. DOI: 10.1007/s00261-020-02863-2.
[12]
MA X L, SHEN F, JIA Y, et al. MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features[J/OL]. BMC Med Imaging, 2019, 19(1): 86 [2023-03-21]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-019-0392-7. DOI: 10.1186/s12880-019-0392-7.
[13]
POMERRI F, PUCCIARELLI S, MARETTO I, et al. Prospective assessment of imaging after preoperative chemoradiotherapy for rectal cancer[J]. Surgery, 2011, 149(1): 56-64. DOI: 10.1016/j.surg.2010.03.025.
[14]
MAAS M, DIJKHOFF R A P, BEETS-TAN R. Rectal cancer: assessing response to neoadjuvant therapy[J]. Magn Reson Imaging Clin N Am, 2020, 28(1): 117-126. DOI: 10.1016/j.mric.2019.09.004.
[15]
YOU Y N, HARDIMAN K M, BAFFORD A, et al. The American society of colon and rectal surgeons clinical practice guidelines for the management of rectal cancer[J]. Dis Colon Rectum, 2020, 63(9): 1191-1222. DOI: 10.1097/DCR.0000000000001762.
[16]
FERNANDES M C, GOLLUB M J, BROWN G. The importance of MRI for rectal cancer evaluation[J/OL]. Surg Oncol, 2022, 43: 101739 [2023-03-21]. https://www.sciencedirect.com/science/article/abs/pii/S0960740422000329?via%3Dihub. DOI: 10.1016/j.suronc.2022.101739.
[17]
FELDER S I, FEUERLEIN S, PARSEE A, et al. Endoscopic and MRI response evaluation following neoadjuvant treatment for rectal cancer: a pictorial review with matched MRI, endoscopic, and pathologic examples[J]. Abdom Radiol, 2021, 46(5): 1783-1804. DOI: 10.1007/s00261-020-02827-6.
[18]
BATES D D B, HOMSI M E, CHANG K J, et al. MRI for rectal cancer: staging, mrCRM, EMVI, lymph node staging and post-treatment response[J]. Clin Colorectal Cancer, 2022, 21(1): 10-18. DOI: 10.1016/j.clcc.2021.10.007.
[19]
朱洁, 沈浮, 袁渊, 等. 磁共振影像组学对直肠癌新辅助治疗后病理完全反应的评估价值[J]. 放射学实践, 2022, 37(4): 426-431. DOI: 10.13609/j.cnki.1000-0313.2022.04.003.
ZHU J, SHEN F, YUAN Y, et al. The value of MRI radiomics for evaluation of pathological complete response of rectal cancer after neoadjuvant treatment[J]. Radiol Pract, 2022, 37(4): 426-431. DOI: 10.13609/j.cnki.1000-0313.2022.04.003.
[20]
陈朱虹, 徐本华. 直肠癌新辅助放化疗后达病理完全缓解的关联因素分析[J]. 中华肿瘤防治杂志, 2022, 29(4): 296-301. DOI: 10.16073/j.cnki.cjcpt.2022.04.11.
CHEN Z H, XU B H. Analysis of related factors of pathologic complete response following neoadjuvant chemoradiotherapy in rectal cancer patients[J]. Chin J Cancer Prev Treat, 2022, 29(4): 296-301. DOI: 10.16073/j.cnki.cjcpt.2022.04.11.
[21]
ACHILLI P, MAGISTRO C, AZIZ M A ABD EL, et al. Modest agreement between magnetic resonance and pathological tumor regression after neoadjuvant therapy for rectal cancer in the real world[J]. Int J Cancer, 2022, 151(1): 120-127. DOI: 10.1002/ijc.33975.
[22]
NAHAS S C, NAHAS C S R, CAMA G M, et al. Diagnostic performance of magnetic resonance to assess treatment response after neoadjuvant therapy in patients with locally advanced rectal cancer[J]. Abdom Radiol, 2019, 44(11): 3632-3640. DOI: 10.1007/s00261-019-01894-8.
[23]
PETKOVSKA I, TIXIER F, ORTIZ E J, et al. Clinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapy[J]. Abdom Radiol, 2020, 45(11): 3608-3617. DOI: 10.1007/s00261-020-02502-w.
[24]
赵丽, 张红梅, 赵心明. 定量磁共振在直肠癌术前评估中的研究进展[J]. 放射学实践, 2021, 36(10): 1312-1315. DOI: 10.13609/j.cnki.1000-0313.2021.10.022.
ZHAO L, ZHANG H M, ZHAO X M. Research progress of quantitative magnetic resonance imaging in preoperative evaluation of rectal cancer[J]. Radiol Pract, 2021, 36(10): 1312-1315. DOI: 10.13609/j.cnki.1000-0313.2021.10.022.
[25]
ARMBRUSTER M, D'ANASTASI M, HOLZNER V, et al. Improved detection of a tumorous involvement of the mesorectal fascia and locoregional lymph nodes in locally advanced rectal cancer using DCE-MRI[J]. Int J Colorectal Dis, 2018, 33(7): 901-909. DOI: 10.1007/s00384-018-3083-x.
[26]
YANG X Y, CHEN Y, WEN Z Q, et al. Role of quantitative dynamic contrast-enhanced MRI in evaluating regional lymph nodes with a short-axis diameter of less than 5 mm in rectal cancer[J]. AJR Am J Roentgenol, 2019, 212(1): 77-83. DOI: 10.2214/AJR.18.19866.
[27]
LU Q Y, GUAN Z, ZHANG X Y, et al. Contrast-enhanced MRI for T restaging of locally advanced rectal cancer following neoadjuvant chemotherapy and radiation therapy[J]. Radiology, 2022, 305(2): 364-372. DOI: 10.1148/radiol.212905.
[28]
WAN L J, LIU Y, PENG W J, et al. Submucosal enhancing stripe as a contrast material-enhanced MRI-based imaging feature for the differentiation of stage T0-T1 from early T2 rectal cancers[J]. Radiology, 2021, 298(1): 93-101. DOI: 10.1148/radiol.2020201416.
[29]
KIM S H, LEE J M, GUPTA S N, et al. Dynamic contrast-enhanced MRI to evaluate the therapeutic response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer[J]. J Magn Reson Imaging, 2014, 40(3): 730-737. DOI: 10.1002/jmri.24387.
[30]
PETRILLO A, FUSCO R, PETRILLO M, et al. DCE-MRI time-intensity curve visual inspection to assess pathological response after neoadjuvant therapy in locally advanced rectal cancer[J]. Jpn J Radiol, 2018, 36(10): 611-621. DOI: 10.1007/s11604-018-0760-1.
[31]
FUSCO R, GRANATA V, SANSONE M, et al. Validation of the standardized index of shape tool to analyze DCE-MRI data in the assessment of neo-adjuvant therapy in locally advanced rectal cancer[J]. Radiol Med, 2021, 126(8): 1044-1054. DOI: 10.1007/s11547-021-01369-1.
[32]
FORNELL-PEREZ R, PEREZ-ALONSO E, PORCEL-DE-PERALTA G, et al. Primary and post-chemoradiotherapy staging using MRI in rectal cancer: the role of diffusion imaging in the assessment of perirectal infiltration[J]. Abdom Radiol, 2019, 44(11): 3674-3682. DOI: 10.1007/s00261-019-02139-4.
[33]
STIJNS R C H, LEIJTENS J, GRAAF E D, et al. Endoscopy and MRI for restaging early rectal cancer after neoadjuvant treatment[J]. Colorectal Dis, 2023, 25(2): 211-221. DOI: 10.1111/codi.16341.
[34]
NAPOLETANO M, MAZZUCCA D, PROSPERI E, et al. Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted magnetic resonance imaging in restaging after neoadjuvant chemo-radiotherapy[J]. Abdom Radiol, 2019, 44(11): 3664-3673. DOI: 10.1007/s00261-019-02012-4.
[35]
LI H, CHEN G W, LIU Y S, et al. Assessment of histologic prognostic factors of resectable rectal cancer: comparison of diagnostic performance using various apparent diffusion coefficient parameters[J/OL]. Sci Rep, 2020, 10(1): 11554 [2023-03-21]. https://www.nature.com/articles/s41598-020-68328-0. DOI: 10.1038/s41598-020-68328-0.
[36]
IAFRATE F, CICCARELLI F, MASCI G M, et al. Predictive role of diffusion-weighted MRI in the assessment of response to total neoadjuvant therapy in locally advanced rectal cancer[J]. Eur Radiol, 2023, 33(2): 854-862. DOI: 10.1007/s00330-022-09086-7.
[37]
SASSEN S, BOOIJ M D, SOSEF M, et al. Locally advanced rectal cancer: is diffusion weighted MRI helpful for the identification of complete responders (ypT0N0) after neoadjuvant chemoradiation therapy?[J]. Eur Radiol, 2013, 23(12): 3440-3449. DOI: 10.1007/s00330-013-2956-1.
[38]
CARUSO D, ZERUNIAN M, SANTIS D D, et al. Magnetic resonance of rectal cancer response to therapy: an image quality comparison between 3.0 and 1.5 Tesla[J/OL]. Biomed Res Int, 2020, 2020: 9842732 [2023-03-21]. https://www.hindawi.com/journals/bmri/2020/9842732/. DOI: 10.1155/2020/9842732.
[39]
TARALLO N, ANGERETTI M G, BRACCHI E, et al. Magnetic resonance imaging in locally advanced rectal cancer: quantitative evaluation of the complete response to neoadjuvant therapy[J/OL]. Pol J Radiol, 2018, 83: e600-e609 [2023-03-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384410/. DOI: 10.5114/pjr.2018.81156.
[40]
LAMBREGTS D M J, DELLI PIZZI A, LAHAYE M J, et al. A pattern-based approach combining tumor morphology on MRI with distinct signal patterns on diffusion-weighted imaging to assess response of rectal tumors after chemoradiotherapy[J]. Dis Colon Rectum, 2018, 61(3): 328-337. DOI: 10.1097/DCR.0000000000000915.
[41]
SCHURINK N W, LAMBREGTS D M J, BEETS-TAN R G H. Diffusion-weighted imaging in rectal cancer: current applications and future perspectives[J/OL]. Br J Radiol, 2019, 92(1096): 20180655 [2023-03-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540856/. DOI: 10.1259/bjr.20180655.
[42]
LAMBREGTS D M J, BOELLAARD T N, BEETS-TAN R G H. Response evaluation after neoadjuvant treatment for rectal cancer using modern MR imaging: a pictorial review[J/OL]. Insights Imaging, 2019, 10(1): 15 [2023-03-21]. https://insightsimaging.springeropen.com/articles/10.1186/s13244-019-0706-x. DOI: 10.1186/s13244-019-0706-x.
[43]
HORVAT N, HOPE T A, PICKHARDT P J, et al. Mucinous rectal cancer: concepts and imaging challenges[J]. Abdom Radiol, 2019, 44(11): 3569-3580. DOI: 10.1007/s00261-019-02019-x.
[44]
LU B L, YANG X Y, XIAO X J, et al. Intravoxel incoherent motion diffusion-weighted imaging of primary rectal carcinoma: correlation with histopathology[J]. Med Sci Monit, 2018, 24: 2429-2436. DOI: 10.12659/msm.908574.
[45]
GENG Z J, ZHANG Y F, YIN S H, et al. Preoperatively grading rectal cancer with the combination of intravoxel incoherent motions imaging and diffusion kurtosis imaging[J/OL]. Contrast Media Mol Imaging, 2020, 2020: 2164509 [2023-03-21]. https://www.hindawi.com/journals/cmmi/2020/2164509/. DOI: 10.1155/2020/2164509.
[46]
LI M, XU X D, XIA K J, et al. Comparison of diagnostic performance between perfusion-related intravoxel incoherent motion DWI and dynamic contrast-enhanced MRI in rectal cancer[J/OL]. Comput Math Methods Med, 2021, 2021: 5095940 [2023-03-21]. https://www.hindawi.com/journals/cmmm/2021/5095940/. DOI: 10.1155/2021/5095940.
[47]
SUN H L, XU Y Y, SONG A P, et al. Intravoxel incoherent motion MRI of rectal cancer: correlation of diffusion and perfusion characteristics with prognostic tumor markers[J/OL]. AJR Am J Roentgenol, 2018, 210(4): W139-W147 [2023-03-21]. https://www.ajronline.org/doi/10.2214/AJR.17.18342. DOI: 10.2214/AJR.17.18342.
[48]
LIU L H, ZHOU G F, RAO S X, et al. Early changes in intravoxel incoherent motion MRI parameters can potentially predict response to chemoradiotherapy in rectal cancer: an animal study[J]. Magn Reson Imaging, 2021, 78: 52-57. DOI: 10.1016/j.mri.2021.02.007.
[49]
HU H B, JIANG H J, WANG S, et al. 3.0 T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol (NY), 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[50]
LI H, YUAN Y, CHEN X L, et al. Value of intravoxel incoherent motion for assessment of lymph node status and tumor response after chemoradiation therapy in locally advanced rectal cancer[J/OL]. Eur J Radiol, 2022, 146: 110106 [2023-03-21]. https://www.ejradiology.com/article/S0720-048X(21)00587-8/fulltext. DOI: 10.1016/j.ejrad.2021.110106.
[51]
YANG L Q, XIA C C, ZHAO J, et al. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J/OL]. Eur J Radiol, 2021, 136: 109504 [2023-03-21]. https://www.ejradiology.com/article/S0720-048X(20)30694-X/fulltext. DOI: 10.1016/j.ejrad.2020.109504.
[52]
DING X, SUN D Q, GUO Q C, et al. The value of diffusion kurtosis imaging and intravoxel incoherent motion quantitative parameters in predicting synchronous distant metastasis of rectal cancer[J/OL]. BMC Cancer, 2022, 22(1): 920 [2023-03-21]. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-022-10022-7. DOI: 10.1186/s12885-022-10022-7.
[53]
XU Q Y, XU Y Y, SUN H L, et al. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Magn Reson Imaging, 2018, 48(1): 248-258. DOI: 10.1002/jmri.25931.
[54]
LIANG C Y, CHEN M D, ZHAO X X, et al. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 110: 249-255. DOI: 10.1016/j.ejrad.2018.12.005.
[55]
LIU S Y, WEN L, HOU J, et al. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging[J]. Abdom Radiol, 2019, 44(8): 2689-2698. DOI: 10.1007/s00261-019-02032-0.

上一篇 基于MRI的人工智能在直肠癌中的应用进展
下一篇 深度学习和影像组学在膀胱癌精准诊疗中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2