分享:
分享到微信朋友圈
X
临床研究
动脉自旋标记和扩散张量成像评估脑胶质瘤IDH1基因表型的价值研究
张萌 耿瑞雯 白源 董洋

Cite this article as: ZHANG M, GENG R W, BAI Y, et al. Value of arterial spin labeling and diffusion tensor imaging in evaluating IDH1 gene phenotype in gliomas[J]. Chin J Magn Reson Imaging, 2023, 14(10): 58-64.本文引用格式:张萌, 耿瑞雯, 白源, 等. 动脉自旋标记和扩散张量成像评估脑胶质瘤IDH1基因表型的价值研究[J]. 磁共振成像, 2023, 14(10): 58-64. DOI:10.12015/issn.1674-8034.2023.10.011.


[摘要] 目的 探讨常规MRI联合动脉自旋标记(arterial spin labeling, ASL)成像、扩散张量成像(diffusion tensor imaging, DTI)在评估胶质瘤异柠檬酸脱氢酶1(isocitrate dehydrogenase 1, IDH1)表型中的价值。材料与方法 回顾性分析2019年9月至2021年12月经病理证实为胶质瘤患者病例61例,根据基因或免疫组化检测IDH1表型,分为IDH1突变型(IDH1 mutant, IDH1mut)组和IDH1野生型(IDH1 wild, IDH1wt)组,术前行颅脑MRI常规检查及ASL、DTI检查。评估IDH1mut、IDH1wt胶质瘤常规MRI特征(大小、位置、边缘、坏死囊变、出血、水肿和强化),测量肿瘤实性区、瘤周区的各向异性分数(anisotropy fraction, FA)、表观扩散系数(apparent diffusion coefficient, ADC)、脑血流量最大值(maximum cerebral blood flow, CBFmax)、平均值(mean cerebral blood flow, CBFmean),计算相对脑血流量最大值(relativer CBFmax, rCBFmax)、相对脑血流量平均值(relativer CBFmean, rCBFmean)。采用SPSS 25.0进行统计学分析。所有样本组间分析采用独立样本t检验或非参数检验进行分析,建立多因素logistic回归模型并绘制受试者工作特征(receiver operating characteristic, ROC)曲线预测其诊断效能。结果 本研究共纳入胶质瘤患者病例61例:IDHmut 19例、IDH1wt 42例。IDH1mut与IDHwt胶质瘤的位置、强化、水肿、肿瘤实性区CBF、瘤周区ADC具有显著性差异(P<0.05);IDH1wt肿瘤实性区CBFmax、CBFmean、rCBFmax、rCBFmean高于IDH1mut型(P<0.05),曲线下面积(area under the curve, AUC)分别为0.879、0.832、0.806、0.875;IDH1wt瘤周ADC值高于IDH1mut(P<0.05)。肿瘤实质区CBFmean联合瘤周ADC诊断IDH1表型的效能最高(AUC=0.892)。多因素logistic回归显示肿瘤实体区CBF是胶质瘤IDH1表型预测的独立风险因素。结论 常规MRI特征、ASL及DTI对胶质瘤IDH1表型评估具有重要临床价值,联合肿瘤实质区CBF、瘤周ADC值可进一步提高胶质瘤IDH1表型的诊断效能。
[Abstract] Objective To investigate the value of conventional MRI combined with arterial spin labeling (ASL) imaging and diffusion tensor imaging (DTI) in assessing the phenotype of isocitrate dehydrogenase 1 (IDH1) value in glioma.Materials and Methods Sixty-one cases of patients with pathologically confirmed glioma from September 2019 to December 2021 were collected retrospectively and divided into IDH1 mutant (IDH1mut) and IDH1 wild (IDH1wt) groups according to IDH1 phenotype by genetic or immunohistochemical detection. Routine cranial MRI examination, ASL and DTI examination were performed before surgery. Evaluate the conventional MRI features of IDH1mut and IDH1wt gliomas (size, location, margin, necrotic cystic changes, hemorrhage, edema, and enhancement), measure the anisotropy fraction (FA), apparent diffusion coefficient (ADC), maximum cerebral blood flow (CBFmax) and mean (CBFmean) of the solid tumor area and peritumor area, and the relative CBFmax (rCBFmax), relative cerebral CBFmean (rCBFmean) were computed. Statistical analysis was performed using SPSS 25.0. All inter-sample analyses were performed using independent samples t-tests or non-parametric tests. Multi-factor logistic regression models were developed and receiver operating characteristic (ROC) curves were plotted to predict diagnostic efficacy.Results A total of 61 cases of gliomas were included in this study: 19 cases of IDH1mut and 42 cases of IDH1wt. There were significant differences in the location, enhancement, edema, CBF in the solid tumor area, and ADC in the peritumor area between IDH1mut and IDH1wt gliomas (P<0.05). CBFmax, CBFmean, rCBFmax, and rCBFmean in the solid tumor area of IDH1wt were higher than those of IDH1mut (P<0.05), and the area under the curve (AUC) was 0.879, 0.832, 0.806, 0.875, respectively. The peritumoral ADC value of IDH1wt was higher than that of IDH1mut (P<0.05). The CBFmean in solid tumor area combined with ADC value in peritumor area had the highest diagnostic efficacy (AUC=0.892). Multi-factor logistic regression showed that CBF in the solid tumor area was an independent risk factor for predicting the IDH1 phenotype of glioma.Conclusions Multi-parametric MRI has important value in evaluating the IDH1 phenotype of gliomas. The combination of tumor parenchymal CBF and peritumoral ADC can further improve the diagnostic efficacy of the IDH1 phenotype of gliomas.
[关键词] 胶质瘤;磁共振成像;动脉自旋标记;扩散张量成像;异柠檬酸脱氢酶1;瘤周
[Keywords] glioma;magnetic resonance imaging;arterial spin labeling;diffusion tensor imaging;isocitrate dehydrogenase 1;peritumoral

张萌 1, 2   耿瑞雯 1   白源 1   董洋 1*  

1 大连医科大学附属第二医院放射科,大连 116027

2 大连医科大学,大连 116027

通信作者:董洋,E-mail:23121546@qq.com

作者贡献声明:董洋设计本研究的方案,对稿件重要的智力内容进行修改,获得了辽宁省教育厅科研计划项目的资助;张萌起草和撰写稿件,获取、分析或解释本研究的数据;耿瑞雯、白源获取、分析或解释本研究的数据,对稿件重要的内容进行修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 辽宁省教育厅科研计划项目 LZ2019030
收稿日期:2023-03-12
接受日期:2023-09-11
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.10.011
本文引用格式:张萌, 耿瑞雯, 白源, 等. 动脉自旋标记和扩散张量成像评估脑胶质瘤IDH1基因表型的价值研究[J]. 磁共振成像, 2023, 14(10): 58-64. DOI:10.12015/issn.1674-8034.2023.10.011.

0 前言

       胶质瘤是成人最常见的原发性中枢神经系统恶性肿瘤,2021年《世界卫生组织中枢神经系统肿瘤分类(第五版)》[1]在组织学诊断基础上引入一系列分子诊断指标,其中异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)突变是成人弥漫性胶质瘤的重要诊断标记物,是区分、定义胶质瘤亚型的重要组成部分[2]。胶质瘤IDH突变分为IDH1基因(以第132位密码子突变常见)和IDH2基因突变[3],术前正确评估胶质瘤IDH1突变状态,可为胶质瘤精准诊断、治疗方案制订及预后判断提供有价值的信息[4, 5]

       IDH1野生型(IDH1 wild, IDH1wt)胶质瘤缺氧诱导因子(hypoxia-inducible factor-1α, HIF-1α)升高促进血管内皮生长因子(vascular endothelial growth factor, VEGF)表达上调,增加肿瘤新生血管生成和细胞增殖[6];IDH1突变时,胶质瘤细胞内2-羟基戊二酸(2-bydroxyglutarate, 2-HG)含量增加,促进HIF-1α减低;此外,IDH1基因突变可以改变细胞甲基化谱、阻止细胞分化促进肿瘤细胞增殖与克隆、阻止血管生成、抑制肿瘤侵袭性行为[7],导致与IDH1wt胶质瘤新生血管及细胞增殖等特征差异。多参数MRI可反映胶质瘤的血管生成、细胞增殖等特征,是胶质瘤IDH1表型评估的研究热点[8, 9]

       磁共振动脉自旋标记(arterial spin labeling, ASL)成像通过标记动脉血中氢原子实现脑血流灌注定量评价,脑血流量(cerebral blood flow, CBF)与胶质瘤血管密度、表皮生长因子受体表达密切相关[10];扩散张量成像(diffusion tensor imaging, DTI)通过描述生物组织中水分子迁移程度、细胞外间隙水分子扩散速度与方向,间接反映肿瘤微观结构、表征肿瘤的异质性,有助于胶质瘤术前分级[11],在胶质瘤瘤周浸润、瘤周神经纤维破坏等评估中具有优势[12]。既往研究发现肿瘤实质区ASL、DTI可用于评估胶质瘤IDH1突变状态[13, 14],瘤周区影像学结构及功能成像特征的研究报道较少[15, 16]

       本研究拟采用常规MRI、ASL、DTI技术评估胶质瘤实体区、瘤周区的磁共振微观结构特征,探讨其在胶质瘤IDH1表型评估中的价值。

1 材料与方法

1.1 一般资料

       回顾性分析2019年9月至2021年12月就诊于我院经病理证实为胶质瘤的患者病例61例。纳入标准:(1)经病理证实为胶质瘤;(2)术前1周内完成MRI检查,包括常规MRI、ASL或/及DTI;(3)临床及病理资料完整,可获得经基因或免疫组化检测的IDH1表型。排除标准:(1)MRI检查前接受过脑肿瘤相关治疗(包括放疗、化疗、放化疗或激素治疗等);(2)MRI图像质量欠佳(伪影等),不能满足评估及后处理要求;(3)既往存在脑血管等神经系统疾病、系统性疾病或其他部位恶性肿瘤。胶质瘤病理诊断及分级标准参照2021年《世界卫生组织中枢神经系统肿瘤分类(第五版)》[1],根据免疫组化或基因检测诊断IDH1表型分为IDH1mut、IDH1wt组[17]。本研究遵守《赫尔辛基宣言》,经大连医科大学附属第二医院伦理委员会批准,免除受试者知情同意,批准文号:2019046。

1.2 图像采集

       所有患者均在GE Discovery 750W 3.0 T MRI 扫描仪(8通道头部线圈)完成术前颅脑MR检查,扫描序列包括:横断面常规序列(T1WI、T2WI、T1-FLAIR、T1WI+C),扫描参数见表1;3D-ASL扫描参数:TR/TE 4874 ms/10.7 ms,FOV 240 mm×240 mm,矩阵512×512,层厚4 mm,标记后延迟时间(post labeling delay, PLD)2025 ms,激励次数3,扫描时间4 min 42 s;DTI扫描参数:TR/TE 8000 ms/99 ms,FOV 240 mm×240 mm,矩阵128×128,层厚5.0 mm,层间隔1.0 mm,b值分别为0、1000 s/mm2,扩散敏感梯度场施加在15个方向,扫描时间4 min 24 s。

表1  脑胶质瘤MRI常规扫描序列及参数
Tab. 1  parameters of conventional MRI sequences in brain glioma

1.3 图像分析及后处理

       图像分析及ASL、DTI后处理在MR扫描仪配套的GE ADW 4.7工作站完成,由两位分别具有2年、17年工作经验的影像科医师完成,医师对患者病理诊断为胶质瘤知情,对其IDH1表型不知情。常规MR特征分析内容如下:位置(累及原发脑叶):额叶、颞叶及其他脑叶;大小(最长径);边界(以肿瘤2/3边界清晰为边界清晰);瘤周水肿(T2WI瘤周高信号为水肿,根据水肿最大径和肿瘤最大径比值确定水肿程度:0为无,<1/2为轻度,1/2≤中度<1,≥1为重度),肿瘤强化(根据肿瘤实体强化区范围占肿瘤体积比确定,分为≥50%和<50%);坏死囊变(T1WI低信号、T2WI高信号,无强化面积≥50%为大量坏死,<50%为少量坏死);出血(T1WI高信号或ADC图中极低信号,≥50%为大量出血,<50%为少量出血)。

       采用工作站配套Functool软件包进行ASL、DTI后处理,将生成的CBF、ADC、FA伪彩图与3D-BRAVO-T1WI增强图像融合(显示解剖定位)。根据CBF、ADC、DTI融合伪彩图中颜色差异,将其分为热区(红色、参数值最大)、冷区(蓝色、参数值最小),选择肿瘤最大层面进行感兴趣区(region of interest, ROI)勾画以测量相关参数,ROI面积为20~40 mm2。在CBF伪彩图肿瘤实性区选择热区放置3个ROI,求取平均值作为CBFmax;在热区~冷区间放置3个ROI,求取平均值作为CBFmean。以中线为轴,生成与患侧ROI对应的健侧脑区CBF健侧,计算相对脑血流量:rCBFmax=CBFmax/CBF健侧,rCBFmean=CBFmean/CBF健侧。同法测量并计算肿瘤实性区ADCmin、FAmax;同法测量瘤周1 cm范围内的瘤周CBF、FA、ADC值。

图1  IDH1wt与IDH1mut胶质瘤ASL灌注参数(CBF)与DTI参数(ADC、FA)示意图。1A~1D:右侧颞叶IDH1wt胶质瘤;1E~1H:左侧颞叶区IDH1mut胶质瘤。1A~1D、1E~1H分别为T2WI、CBF、ADC、FA伪彩图。IDH1wt胶质瘤实性区CBFmean增高且高于IDH1mut(图1B、1F),IDH1wt瘤周区ADC值高于IDH1mut。IDH1:异柠檬酸脱氢酶1;ASL:动脉自旋标记;DTI:扩散张量成像;CBF:脑血流量;ADC:表观扩散系数;FA:各向异性分数。
Fig. 1  Schematic diagram of ASL perfusion parameters (CBF) and DTI parameters (ADC, FA) of IDH1wt and IDH1mut gliomas. 1A-1D: IDH1wt glioma in the right temporal lobe; 1E-1H: IDH1mut glioma in the left temporal lobe. 1A-1D and 1E-1H are T2WI, CBF, ADC, FA, respectively. CBFmean in the solid region of IDH1wt gliomas is higher than IDH1mut gliomas (1B and 1F), IDH1wt peritumoral area ADC are higher than IDH1mut. IDH1: isocitrate dehydrogenase 1; ASL: arterial spin labeling; DTI: diffusion tensor imaging; CBF: cerebral blood flow; ADC: apparent diffusion coefficient; FA: anisotropy fraction.

1.4 统计学分析

       采用SPSS 25.0进行统计分析。计数资料采用卡方检验,以例(%)表示;计量资料进行正态性检验,不服从正态分布时两组间比较采用非参数秩和检验,以中位数(四分位数间距)表示;否则用独立样本t检验,以均数±标准差(x¯±s)表示;对差异具有统计学意义的参数采用多因素logistic回归分析胶质瘤IDH1突变的风险因素,绘制ASL、DTI及ASL联合DTI的ROC曲线并计算曲线下面积(area under the curve, AUC)值,评估其对胶质瘤IDH1突变的诊断效能。P<0.05为差异具有统计学意义。采用组内相关系数(intra-class correlation coefficient, ICC)评价两位影像医师对数据测量的一致性,ICC值>0.75为一致性良好;0.40~0.75为一致性中等,<0.40为一致性较差。

2 结果

2.1 一般资料及常规MRI特征

       本研究收集胶质瘤病例61例,其中IDH1mut 19例、IDH1wt 42例,男∶女=30∶31。IDHmut组年龄(43.95±13.13)岁低于IDHwt组(54.57±11.97)岁(P<0.05)。IDH1mut与IDH1wt胶质瘤的发生位置、强化范围、瘤周水肿差异具有统计学意义(P<0.05);性别、边界、囊变坏死、出血差异无统计学意义(P>0.05)。详见表2

       本研究中胶质瘤分级情况如下:Ⅰ级1例(IDH1mut∶IDHwt=0∶1),Ⅱ级13例(IDH1mut∶IDHwt=11∶2),Ⅲ级10例(IDH1mut∶IDHwt=3∶7),Ⅳ级37例(IDH1mut∶IDHwt=5∶32)。IDH1表型与胶质瘤病理分级差异具有统计学意义(P<0.05),IDH1mut多见于低级别胶质瘤(WHO Ⅰ~Ⅲ)。

表2  IDH1mut与IDHwt胶质瘤临床及常规MRI特征分析
Tab. 2  Analysis of clinical and conventional MRI features of IDH1mut and IDH1wt gliomas

2.2 两组IDH1表型胶质瘤肿瘤ASL、DTI参数差异性分析

       IDH1wt胶质瘤实性区CBFmax、rCBFmax、CBFmean、rCBFmean高于IDH1mut组,差异具有统计学意义(P<0.05);两组间肿瘤实性区ADC、FA差异无统计学意义(P>0.05),见表3。IDH1wt胶质瘤周区ADC值大于IDH1mut(P<0.05),FA值低于IDH1mut(P>0.05)。两组间瘤周区CBF值差异无统计学意义(P>0.05)。见表4

表3  IDH1mut、IDH1wt胶质瘤ASL、DTI参数比较
Tab. 3  ASL, DTI metrics of IDH1mut and IDH1wt glioma
表4  IDH1mut、IDH1wt胶质瘤瘤周区ASL及DTI参数
Tab. 4  ASL and DTI metrics of peri-tumor areas of glioma

2.3 logistic回归分析、建立联合模型与ROC曲线分析

       将单变量分析中,差异具有统计学意义参数(肿瘤位置、强化、水肿、肿瘤实性区CBFmean、瘤周ADC)纳入多因素logistic回归分析,结果表明肿瘤实性区CBFmean [比值比(odds ratio, OR)=1.112,95 CI:1.018~1.214,P<0.05]是区分胶质瘤IDH1表型的独立危险因素,AUC为0.879,截断值为64.969,敏感度为75.9%,特异度为87.5%,见表5。瘤周ADC的AUC为0.774,截断值为1.100,敏感度为62.1%,特异度为87.5%。将胶质瘤实体区CBFmean与瘤周ADC纳入联合诊断中,ROC曲线显示肿瘤实质区CBFmean与瘤周ADC联合诊断效能最高,AUC为0.892,最佳临界值、敏感度、特异度分别为0.657、89.7%、87.5%,见图2

图2  ASL、DTI参数及ASL联合DTI区分胶质瘤IDH1表型的ROC曲线分析。ASL:动脉自旋标记;DTI:扩散张量成像;ROC:受试者工作特征;CBFmean:平均脑血流量;CBFmax:最大脑血流量;rCBFmax:相对脑血流量最大值;rCBFmean:相对脑血流量平均值;ADC:表观扩散系数。
Fig. 2  ROC curve of ASL, DTI parameters and ASL and DTI multi-parameters to distinguish IDH1 gene situation from gliomas. ROC: receiver operating characteristics; ASL: arterial spin labeling; DTI: diffusion tensor imaging; CBFmean: mean cerebral blood flow; CBFmax: maximum cerebral blood flow; rCBFmax: relative maximum cerebral blood flow; rCBFmean: relative mean cerebral blood flow; ADC: apparent diffusion coefficient.
表5  胶质瘤IDH1基因表型的多因素logistic回归分析
Tab. 5  Multivariate logistic regression analysis of IDH1 gene phenotype in glioma

2.4 一致性检验

       胶质瘤肿瘤实性区ASL参数CBFmax和CBFmean的ICC值分别为0.893、0.750,瘤周CBF的ICC值为0.816,提示一致性良好。肿瘤实性区DTI参数ADCmin、FAmax的ICC分别为0.849、0.879,瘤周ADC的ICC为0.861,提示一致性良好。肿瘤实性区ADCmean、FAmean的ICC为0.625、0.558,瘤周FA的ICC为0.668,提示一致性中等。

3 讨论

       本研究探讨常规MRI特征、ASL、DTI在区分IDH1mut、IDH1wt胶质瘤中的价值,结果显示,不同IDH1表型胶质瘤的位置、强化范围、瘤周水肿具有显著差异,肿瘤实性区CBFmean、瘤周区ADC值对IDH1表型诊断具有一定价值,ASL与DTI多参数联合诊断可进一步提高胶质瘤IDH1表型的诊断效能,肿瘤实性区CBFmean是IDH1表型的独立风险因素。

3.1 常规MRI特征在IDH1表型胶质瘤诊断中的价值

       胶质瘤的常规MRI特征在临床工作中应用广泛,其在胶质瘤分级、手术方案制订、预后评估等分析中具有重要价值。本研究中,IDH1mut胶质瘤发病年龄低于IDH1wt;胶质瘤病理分级与IDH1表型相关,IDH1mut在低级别胶质瘤(Ⅰ~Ⅲ级)中约占65%,在高级别胶质瘤(WHO Ⅳ级)中约占16%,这与既往报道相近似[5, 18, 19, 20, 21]。常规MRI征象中,瘤周水肿范围≥50%、肿瘤实性区强化范围≥50%有助于IDH1wt的诊断,可能与IDHwt胶质瘤恶性程度高、瘤周浸润显著、肿瘤新生血管丰富、血脑屏障破坏显著有关[22, 23, 24]。本研究中两组胶质瘤出血、囊变的MRI特征差异不显著,然而基于MRI形态学特征、基于瘤内和瘤周影像组学方法可提升图像中肿瘤强化、出血囊变、瘤内钙化、瘤周水肿等信息的识别及提取能力,对IDH1表型预测具有重要价值[25, 26];SHIMIZU等[27]采用SWI分析胶质母细胞瘤IDH1表型的研究显示,SWI亦可提升胶质瘤内微出血、钙化等信号的识别,有助于胶质瘤分子亚型诊断。IDH1mut胶质瘤与额叶特定前脑神经祖细胞变异有关[5],故好发于额叶、侧脑室周围区,肿瘤发生位置与胶质瘤IDH1表型有关[18, 19];但HYARE等[28]报道额叶并非为IDHmut胶质瘤特征。本研究中,IDH1mut胶质瘤发生于额叶居多(14/19),而额叶胶质瘤中,IDH1mut与IDH1wt比例相近似(14∶13),颞叶胶质瘤中IDH1wt更为多见(16/20),有助于对不同IDH1表型胶质瘤的分析。

3.2 ASL在胶质瘤IDH1表型中的诊断价值

       ASL以定量评价脑血流灌注特征为优势,与胶质瘤新生血管密切相关。临床上,CBF受年龄、性别、生理周期等因素影响[29],本研究纳入相对脑血流量进行研究,结果显示胶质瘤实性区CBFmax、rCBFmax、CBFmean、rCBFmean均有助于评估IDH1基因表型,CBFmean效能最佳(AUC=0.879),其结果并未受到患者基础脑血流量的影响。既往研究报道IDH1wt胶质瘤血管生长因子VEGF水平较高、肿瘤实性区血管生成广泛[30],是IDH1wt胶质瘤血管基因标记。GUO等[31]、AHN等[32]和PANG等[33]采用动态磁敏感对比(dynamic susceptibility contrast, DSC)、ASL评价胶质瘤IDH1表型,发现DSC-脑血容量(cerebral blood volume, CBV)、ASL-CBF与肿瘤实性区微血管密度(microvascular density, MVD)表达相关,有助于IDH1表型诊断,然而其未对瘤周区进行分析。LI等[34]采用动态对比增强MRI区分胶质瘤IDH1表型,发现Ktrans有助于反映瘤周血管生成和IDH1表型。本研究中,IDH1wt肿瘤实性区各CBF参数值均高于IDH1mut,二者瘤周区CBF值无显著性差异,可能与瘤周肿瘤血管生成、瘤周血管性水肿程度及其影响有关。

3.3 DTI在胶质瘤IDH表型中的诊断价值

       DTI是基于水分子扩散遵循高斯分布理论基础上较为成熟的扩散成像技术,可用于胶质瘤瘤周浸润、瘤周神经纤维束破坏程度分析[35];既往研究显示胶质瘤实性区DTI参数特征与IDH1表型相关[36],与本研究结果不同,可能与本研究以Ⅰ-Ⅳ级胶质瘤为研究对象、未对特定病理分级的胶质瘤进行分析有关,适用于临床工作中未能确定胶质瘤分级情况下,这与TAN等[37]研究结果近似。本研究中瘤周ADC值有助于IDH1mut与IDH1wt鉴别,且IDH1wt瘤周ADC值高于IDH1mut;既往研究报道,胶质瘤瘤周区域包含肿瘤浸润和血管源性水肿,常规MRI难以区分[26],血管源性水肿的穿透效应可对ADC、FA值产生影响[38];METZ等[39]通过基于深度学习的自由水校正法预测胶质瘤预后,发现FA图在无复发水肿区和肿瘤复发之间存在显著差异,而未进行水肿校正时FA差异不显著。本研究中瘤周水肿是IDHwt胶质瘤特征之一,血管源性水肿所致ADC值升高有助于IDH1wt诊断。

3.4 logistic回归模型与诊断效能分析

       新生血管活跃是胶质瘤的特征之一,与胶质瘤增生活跃、侵袭性强等恶性特征有关;ASL能够量化反映组织新生血管数量等特征,在胶质瘤的分级、预后评估、疗效监测中具有潜力[40, 41]。本研究中,胶质瘤实性区CBFmean对IDH1表型诊断效能最高(AUC为0.879),是IDH1表型的独立预测因素(OR=1.112,1.018~1.214);瘤周区ADC值对预测IDH1wt胶质表现出优势(AUC为0.774),联合瘤内CBF、瘤周ADC进一步提升了胶质瘤IDH1表型的诊断效能(AUC为0.892)。既往研究采用DWI联合DSC灌注加权成像对胶质母细胞瘤IDH1表型进行研究,发现肿瘤强化区CBV联合非增强区CBV是评估胶质母细胞可靠的生物标志物,肿瘤实体区ADC与CBV联合诊断可提升胶质母细胞瘤IDH1表型诊断的敏感性和特异性[19]。胶质瘤灌注成像与扩散成像联合可从血管增生、细胞增殖、肿瘤水肿方面提升对IDH1基因表型预测能力[13, 42]

3.5 局限性

       本研究主要包括以下局限性:首先,本研究未能实现胶质瘤靶向活检区IDH1表型与ASL、DTI参数特征的精准对照;其次,本研究样本量相对较少,未能进行不同病理分级胶质瘤IDH1表达的评估;第三,本研究纳入的磁共振功能成像序列有限,有待于进一步深入开展前瞻性研究。

4 结论

       综上所述,MRI对预测胶质瘤IDH1表型具有重要价值,胶质瘤的位置、强化范围、瘤周水肿有助于IDH1表型诊断;胶质瘤实性区ASL-CBF、瘤周区DTI-ADC有助于胶质瘤IDH1诊断,联合诊断模型进一步提升胶质瘤IDH1表型的诊断效能;胶质瘤实性区ASL-CBF是IDH1表型预测的独立风险因素。

[1]
杨学军, 尹洪芳, 李智, 等. 2021年世界卫生组织中枢神经系统肿瘤分类(第五版)简表中译版及说明[J]. 中国现代神经疾病杂志, 2021, 21(9): 746-750.
YANG X J, YIN H F, LI Z, et al. Chinese version of simplified table of 2021 WHO Classification of Tumors of the Central Nervous System (fifth edition) and translational interpretations[J]. Chin J Contemp Neurol Neurosurg, 2021, 21(9): 746-750.
[2]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[3]
SPORIKOVA Z, SLAVKOVSKY R, TUCKOVA L, et al. IDH1/2 mutations in patients with diffuse gliomas: a single centre retrospective massively parallel sequencing analysis[J]. Appl Immunohistochem Mol Morphol, 2022, 30(3): 178-183. DOI: 10.1097/PAI.0000000000000997.
[4]
MONDESIR J, WILLEKENS C, TOUAT M, et al. IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives[J]. J Blood Med, 2016, 7: 171-180. DOI: 10.2147/JBM.S70716.eCollection2016.
[5]
YAN H, PARSONS D W, JIN G, et al. IDH1 and IDH2 mutations in gliomas[J]. N Engl J Med, 2009, 360(8): 765-773. DOI: 10.1056/NEJMoa0808710.
[6]
KAUR B, KHWAJA F W, SEVERSON E A, et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis[J]. Neuro Oncol, 2005, 7(2): 134-153. DOI: 10.1215/s1152851704001115.
[7]
DANG L, WHITE D W, GROSS S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate[J]. Nature, 2009, 462(7274): 739-744. DOI: 10.1038/nature08617.
[8]
PRENSNER J R, CHINNAIYAN A M. Metabolism unhinged: IDH mutations in cancer[J]. Nat Med, 2011, 17(3): 291-293. DOI: 10.1038/nm0311-291.
[9]
TAN Y, ZHANG H, WANG X, et al. Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of astrocytomas[J]. Clin Radiol, 2019, 74(4): 314-320. DOI: 10.1016/j.crad.2018.12.004.
[10]
WANG N, XIE S Y, LIU H M, et al. Arterial Spin Labeling for Glioma Grade Discrimination: Correlations with IDH1 Genotype and 1p/19q Status[J]. Transl Oncol, 2019, 12(5): 749-756. DOI: 10.1016/j.tranon.2019.02.013.
[11]
HUNG N DUY, MINH DUC N, VAN ANH N T, et al. Diagnostic performance of diffusion tensor imaging for preo-perative glioma grading[J]. Clin Ter, 2021, 172(4): 315-321. DOI: 10.7417/ct.2021.2335.
[12]
ALIOTTA E, NOURZADEH H, BATCHALA P P, et al. Molecular Subtype Classification in Lower-Grade Glioma with Accelerated DTI[J]. AJNR Am J Neuroradiol, 2019, 40(9): 1458-1463. DOI: 10.3174/ajnr.A6162.
[13]
BATALOV A I, ZAKHAROVA N E, CHEKHONIN I V, et al. Arterial spin labeling perfusion in determining the IDH1 status and Ki-67 index in brain gliomas[J/OL]. Diagnostics (Basel), 2022, 12(6): 1444 [2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/35741254/.10.3390/diagnostics12061444. DOI: 10.3390/diagnostics12061444.
[14]
AUGELLI R, CICERI E, GHIMENTON C, et al. Magnetic resonance diffusion-tensor imaging metrics in high grade gliomas: correlation with IDH1 gene status in WHO 2016 era[J]. Eur J Radiol, 2019, 116: 174-179. DOI: 10.1016/j.ejrad.2019.04.020.
[15]
王茹, 王少彧, 张华鹏, 等. 瘤体、瘤周水肿区DCE-MRI对弥漫性胶质瘤分级的应用价值[J]. 磁共振成像, 2021, 12(6): 88-91. DOI: 10.12015/issn.1674-8034.2021.06.017.
WANG R, WANG S Y, ZHANG H P, et al. Application value of DCE-MRI in tumor body, peritumoral edema area in grading diffuse glioma[J]. Chin J Magn Reson Imaging, 2021, 12(6): 88-91. DOI: 10.12015/issn.1674-8034.2021.06.017.
[16]
DU N, SHU W, LI K, et al. An initial study on the predictive value using multiple MRI characteristics for Ki-67 labeling index in glioma[J/OL]. J Transl Med, 2023, 21(1): 119 [2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/36774480/.10.1186/s12967-023-03950-w. DOI: 10.1186/s12967-023-03950-w.
[17]
PICCA A, BERZERO G, DI STEFANO A L, et al. The clinical use of IDH1 and IDH2 mutations in gliomas[J]. Expert Rev Mol Diagn, 2018, 18(12): 1041-1051. DOI: 10.1080/14737159.2018.1548935.
[18]
QI S, YU L, LI H, et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms[J]. Oncol Lett, 2014, 7(6): 1895-1902. DOI: 10.3892/ol.2014.2013.
[19]
XING Z, ZHANG H, SHE D, et al. IDH genotypes differentiation in glioblastomas using DWI and DSC-PWI in the enhancing and peri-enhancing region[J]. Acta Radiol, 2019, 60(12): 1663-1672. DOI: 10.1177/0284185119842288.
[20]
HARTMANN C, MEYER J, BALSS J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1, 010 diffuse gliomas[J]. Acta Neuropathol, 2009, 118(4): 469-474. DOI: 10.1007/s00401-009-0561-9.
[21]
KLOOSTERHOF N K, BRALTEN L B, DUBBINK H J, et al. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma?[J]. Lancet Oncol, 2011, 12(1): 83-91. DOI: 10.1016/s1470-2045(10)70053-x.
[22]
DUBINSKI D, WON S Y, RAUCH M, et al. Association of isocitrate dehydrogenase (IDH) status with edema to tumor ratio and its correlation with immune infiltration in glioblastoma[J/OL]. Front Immunol, 2021, 12: 627650 [2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/33868245/.10.3389/fimmu.2021.627650. DOI: 10.3389/fimmu.2021.627650.
[23]
YANG J, ZHANG X, GAO X, et al. Fiber density and structural brain connectome in glioblastoma are correlated with glioma cell infiltration[J]. Neurosurgery, 2023, 92(6): 1234-1242. DOI: 10.1227/neu.0000000000002356.
[24]
LI Y, QIN Q, ZHANG Y, et al. Noninvasive determination of the IDH status of gliomas using MRI and MRI-Based radiomics: impact on diagnosis and prognosis[J]. Curr Oncol, 2022, 29(10): 6893-6907. DOI: 10.3390/curroncol29100542.
[25]
YAN J, ZHANG B, ZHANG S, et al. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients[J/OL]. NPJ Precis Oncol, 2021, 5(1): 72 [2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/34312469/. DOI: 10.1038/s41698-021-00205-z.
[26]
DASGUPTA A, GERAGHTY B, MARALANI P J, et al. Quantitative mapping of individual voxels in the peritumoral region of IDH-wildtype glioblastoma to distinguish between tumor infiltration and edema[J]. J Neurooncol, 2021, 153(2): 251-261. DOI: 10.1007/s11060-021-03762-2.
[27]
SHIMIZU T, MATSUSHIMA S, FUKASAWA N, et al. Differentiating between glioblastomas with and without isocitrate dehydrogenase gene mutation by findings on conventional magnetic resonance images[J]. J Clin Neurosci, 2020, 76: 140-144. DOI: 10.1016/j.jocn.2020.04.016.
[28]
HYARE H, RICE L, THUST S, et al. Modelling MR and clinical features in grade Ⅱ/Ⅲ astrocytomas to predict IDH mutation status[J]. Eur J Radiol, 2019, 114: 120-127. DOI: 10.1016/j.ejrad.2019.03.003.
[29]
SHIN S, KIM K, NAM H Y, et al. Sex difference in cerebral blood flow and cerebral glucose metabolism: an activation-likelihood estimation meta-analysis[J]. Nucl Med Commun, 2021, 42(4): 410-415. DOI: 10.1097/mnm.0000000000001343.
[30]
WANG K, WANG Y, FAN X, et al. Radiological features combined with IDH1 status for predicting the survival outcome of glioblastoma patients[J]. Neuro Oncol, 2016, 18(4): 589-597. DOI: 10.1093/neuonc/nov239.
[31]
GUO D, JIANG B. Noninvasively evaluating the grade and IDH mutation status of gliomas by using mono-exponential, bi-exponential diffusion-weighted imaging and three-dimensional pseudo-continuous arterial spin labeling[J/OL]. Eur J Radiol, 2023, 160: 110721 [2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/36738600/.10.1016/j.ejrad.2023.110721. DOI: 10.1016/j.ejrad.2023.110721.
[32]
AHN S H, AHN S S, PARK Y W, et al. Association of dynamic susceptibility contrast- and dynamic contrast-enhanced magnetic resonance imaging parameters with molecular marker status in lower-grade gliomas: A retrospective study[J]. Neuroradiol J, 2023, 36(1): 49-58. DOI: 10.1177/19714009221098369.
[33]
PANG H, DANG X, REN Y, et al. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: Comparison of quantitative perfusion and pathology on accurate spatial location-matched basis[J]. J Magn Reson Imaging, 2019, 50(1): 209-220. DOI: 10/.10.1002/jmri.26562.
[34]
LI S H, SHEN N X, WU D, et al. A comparative study between tumor blood vessels and dynamic contrast-enhanced MRI for identifying isocitrate dehydrogenase gene 1 (IDH1) mutation status in glioma[J]. Curr Med Sci, 2022, 42(3): 650-657. DOI: 10.1007/s11596-022-2563-y.
[35]
ZHAO J, WANG Y L, LI X B, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status[J]. J Neurooncol, 2019, 141(1): 195-203. DOI: 10.1007/s11060-018-03025-7.
[36]
XIONG J, TAN W, WEN J, et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours[J]. Eur Radiol, 2016, 26(6): 1705-1715. DOI: 10.1007/s00330-015-4025-4.
[37]
TAN W L, HUANG W Y, YIN B, et al. Can diffusion tensor imaging noninvasively detect IDH1 gene mutations in astrogliomas? A retrospective study of 112 cases[J]. AJNR Am J Neuroradiol, 2014, 35(5): 920-927. DOI: 10.3174/ajnr.A3803.
[38]
朱巍, 高燕, 王培军. 多模态功能MRI评估脑胶质瘤IDH1突变状态的研究[J]. 中国医学计算机成像杂志, 2021, 27(3): 179-184. DOI: 10.19627/j.cnki.cn31-1700/th.2021.03.001.
ZHU W, GAO Y, WANG P J. The Research of Multimodal Functional MRI in the Evaluation of IDH1 mutation Status of Glioma[J]. Chin Comput Med Imag, 2021, 27(3): 179-184. DOI: 10.19627/j.cnki.cn31-1700/th.2021.03.001.
[39]
METZ M C, MOLINA-ROMERO M, LIPKOVA J, et al. Predicting glioblastoma recurrence from preoperative MR scans using fractional-anisotropy maps with free-water suppression[J/OL]. Cancers (Basel), 2020, 12(3): 728 [2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/32204544/.10.3390/cancers12030728. DOI: 10.3390/cancers12030728.
[40]
WAQAR M, LEWIS D, AGUSHI E, et al. Cerebral and tumoral blood flow in adult gliomas: a systematic review of results from magnetic resonance imaging[J/OL]. Br J Radiol, 2021, 94(1125): 20201450 [2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/34106749/. DOI: 10.1259/bjr.20201450.
[41]
YOO R E, YUN T J, HWANG I, et al. Arterial spin labeling perfusion-weighted imaging aids in prediction of molecular biomarkers and survival in glioblastomas[J]. Eur Radiol, 2020, 30(2): 1202-1211. DOI: 10.1007/s00330-019-06379-2.
[42]
XIONG J, TAN W L, PAN J W, et al. Detecting isocitrate dehydrogenase gene mutations in oligodendroglial tumors using diffusion tensor imaging metrics and their correlations with proliferation and microvascular density[J]. J Magn Reson Imaging, 2016, 43(1): 45-54. DOI: 10.1002/jmri.24958.

上一篇 多参数MRI影像组学模型鉴别高级别胶质瘤与原发性中枢神经系统淋巴瘤的价值
下一篇 3.0 T MAGIC弛豫时间定量技术在新生儿急性胆红素脑病中的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2