分享:
分享到微信朋友圈
X
临床研究
基于Bp-MRI的PI-RADS v2.1评分构建列线图预测PSA(4-20 ng/mL)前列腺癌的诊断价值
张若弟 周云舒 刘世莉 陈晓华 王卓 张少茹 陈志强

Cite this article as: ZHANG R D, ZHOU Y S, LIU S L, et al. The diagnostic value of constructing a nomogram mode based on the PI-RADS v2.1 score of Bp-MRI for predicting PSA (4-20 ng/mL) in prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(10): 84-89.本文引用格式:张若弟, 周云舒, 刘世莉, 等. 基于Bp-MRI的PI-RADS v2.1评分构建列线图预测PSA(4-20 ng/mL)前列腺癌的诊断价值[J]. 磁共振成像, 2023, 14(10): 84-89. DOI:10.12015/issn.1674-8034.2023.10.015.


[摘要] 目的 基于前列腺影像报告和数据系统2.1版(Prostate Imaging Report and Data System version 2.1, PI-RADS v2.1)的双参数磁共振成像(biparametric MRI, bp-MRI)和前列腺特异性抗原(prostate specific antigen, PSA)等临床指标,构建鉴别诊断PSA(4-20 ng/mL)前列腺癌(prostate cancer, PCa)的列线图模型。材料与方法 回顾性分析宁夏医科大学总医院2017年10月至2022年2月206例行bp-MRI检查并有病理学结果的患者资料。根据病理结果分为PCa组(n=66)和前列腺增生和(或)炎症组(n=140),经单、多因素logistic回归分析筛选PSA (4-20 ng/mL) PCa患者的独立危险因素,随后使用R软件构建列线图模型,并用决策曲线分析(decision curve analysis, DCA)其临床净效益。以受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)、敏感度和特异度评价诊断效能,并通过DeLong检验比较AUC值间的差异。结果 年龄、总前列腺特异性抗原(total prostate specific antigen, tPSA)、前列腺体积(prostate volume, PV)、PI-RADS v2.1是预测PSA (4-20 ng/mL) PCa的独立危险因素。基于上述4个独立指标构建的列线图模型诊断效能最好(AUC=0.945),明显高于PI-RADS v2.1(AUC=0.816)、PV(AUC=0.772)、tPSA(AUC=0.737)、年龄(AUC=0.680)。结论 基于bp-MRI的PI-RADS v2.1评分联合临床相关指标建立的列线图模型,预测PSA (4–20 ng/mL) PCa的诊断效能明显优于单一指标,可作为一种无创精准化预测工具,将更全面、准确地预测罹患PCa的风险概率,为临床提供有效的诊疗指导。
[Abstract] Objective To construct a nomogram model for differential diagnosis of prostate cancer (PCa) with PSA (4-20 ng/mL) based on biparametric MRI (bp-MRI) of Prostate Imaging Report and Data System version 2.1 (PI-RADS v2.1) and other clinical indicators such as prostate specific antigen (PSA).Materials and Methods Retrospectively analyzed the data of 206 patients undergoing bp-MRI examination with pathological results between October 2017 and February 2022 in the General Hospital of Ningxia Medical University. The patients were divided into PCa group (n=66) and benign prostatic hyperplasia and / or inflammation group (n=140) according to the pathological results. The independent risk factors of PCa patients with PSA (4-20 ng/mL) were screened by univariate and multivariate logistic regression analysis, then the nomogram model was constructed by R software, and the clinical net benefit was analyzed by decision curve (DCA). Diagnostic performance was evaluated by using the area under the curve (AUC) of receiver operating characteristic (ROC) curve, sensitivity and specificity, and the differences between AUC values were compared by the DeLong test.Results Age, total prostate specific antigen (tPSA), prostate volume (PV), and PI-RADS v2.1 are independent risk factors for predicting PSA (4-20 ng/mL) PCa. The nomogram model based on the above four independent indexes shows the best performance (AUC=0.945), which is significantly higher than that of PI-RADS v2.1 (AUC=0.816), PV (AUC=0.772), tPSA (AUC=0.737) and age (AUC=0.680).Conclusions The diagnostic performance of the nomogram model based on PI-RADS v2.1 score of bp-MRI combined with clinical related indicators is significantly better than that of the single index to predict the PSA (4–20 ng/mL) PCa, and can be used as a non-invasive accurate prediction tool.It will predict the risk probability of PCa more comprehensively and accurately, and provide effective diagnosis and treatment guidance for clinicians.
[关键词] 前列腺癌;前列腺特异性抗原;前列腺影像报告和数据评分系统2.1版;列线图;双参数;磁共振成像
[Keywords] prostate cancer;prostate specific antigen;Prostate Imaging Reporting and Data Scoring System version 2.1;nomogram;biparametric;magnetic resonance imaging

张若弟 1   周云舒 1   刘世莉 1   陈晓华 1   王卓 1   张少茹 1   陈志强 1, 2, 3*  

1 宁夏医科大学总医院放射科,银川 750004

2 海南医学院第一附属医院放射科,海口 570102

3 宁夏医科大学临床医学院,银川 750004

通信作者:陈志强,E-mail:zhiqiang_chen99@163.com

作者贡献声明:陈志强设计本研究的方案,对稿件重要内容进行了修改,获得了宁夏回族自治区自然科学基金和宁夏回族自治区重点研发计划项目的资助;张若弟起草和撰写稿件,获取、分析或解释本研究的数据;周云舒、刘世莉、陈晓华、王卓、张少茹获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁夏回族自治区重点研发计划项目 2019BEG03033 宁夏回族自治区自然科学基金项目 2022AAC03472
收稿日期:2023-05-18
接受日期:2023-10-07
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.10.015
本文引用格式:张若弟, 周云舒, 刘世莉, 等. 基于Bp-MRI的PI-RADS v2.1评分构建列线图预测PSA(4-20 ng/mL)前列腺癌的诊断价值[J]. 磁共振成像, 2023, 14(10): 84-89. DOI:10.12015/issn.1674-8034.2023.10.015.

0 前言

       前列腺癌(Prostate cancer, PCa)是男性最常见的实体恶性肿瘤,居男性癌症相关死因第二位[1]。据文献报道,至2030年我国PCa粗发病率为38.99/10万,粗死亡率为10.41/10万[2],这提示我们,PCa防控形势越发严峻。血清前列腺特异性抗原(prostate specific antigen, PSA)仍广泛用于PCa筛查、指导穿刺活检、复发风险分层、诊断后监测[3, 4]。尽管PSA (4-20 ng/mL) PCa患者穿刺比率增高,但其特异性不高[5, 6]。多项研究表明,总前列腺特异性抗原(total prostate specific antigen, tPSA)在4~10 ng/mL、10~20 ng/mL之间,PCa检出率分别为11.8%~20.5%、20.5%~25.0%[4, 7, 8]。因此,如何提高PSA (4-20 ng/mL) PCa的检出率是目前PCa早诊、早治的重要问题。

       多参数磁共振成像(multiparametric MRI, mp-MRI)的前列腺影像报告和数据系统2.1版(Prostate Imaging Reporting and Data System version 2.1, PI-RADS v2.1)作为前列腺MRI扫描技术规范、诊断报告书写的重要指南,已广泛应用于临床,且对PCa的早期诊断及分期具有较高价值[9, 10]。PI-RADS v2.1也强调了双参数磁共振成像(biparametric MRI, bp-MRI)诊断PCa的潜在价值[11, 12, 13]。多项研究表明简化的bp-MRI方案检测临床显著性PCa(clinically significant PCa, csPCa)与标准mp-MRI具有相似的诊断效率[14, 15]。有研究发现PSA(4-10 ng/mL)的患者中,bp-MRI联合前列腺特异性抗原密度(prostate specific antigen density, PSAD)在检测csPCa方面的性能优于mp-MRI,且具有更高的特异性[16]。有文献报道PSA水平与PCa患病率存在种族差异,与传统灰区PSA(4–10 ng/mL)相比,亚洲男性PSA“灰色区域”范围应高于4~10 ng/mL[17]。国内对可疑区间PSA (4-20 ng/mL) PCa的类似研究较少[18, 19]。而PSA位于4~20 ng/mL区间时,不典型增生、低级别瘤变的发生率较高,给予积极主动检测及相关治疗至关重要,国外并未应用bp-MRI的PI-RADS v2.1评分分析PSA (4-20 ng/mL) PCa的诊断效能。故本研究以PSA(4-20 ng/mL)的患者为研究对象,基于bp-MRI的PI-RADS v2.1评分及PSA等临床指标构建列线图模型,为临床可疑PCa的患者提供个体化的风险预测,并进一步提高PCa的诊断准确性。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经宁夏医科大学总医院医学伦理委员会批准,免除受试者知情同意,批准文号:2018-339。回顾性分析宁夏医科大学总医院2017年10月至2022年2月因PSA升高或有明显临床症状,如:尿痛、进行性排尿困难、肉眼血尿等行bp-MRI检查并有病理学结果的患者资料206例。纳入标准:(1)tPSA值是4~20 ng/mL;(2)MRI检查前未接受过相关治疗,无其他肿瘤病史;(3)一般资料、tPSA、游离前列腺特异性抗原(free prostate specific antigen, fPSA)及T2加权成像压脂(T2-weighted imaging fat suppression, T2WI-FS)序列、扩散加权成像(diffusion-weighted imaging, DWI)等资料完整;(4)有直肠超声(transrectal ultrasound, TRUS)引导下系统性穿刺或根治术后的病理结果,且均在穿刺活检前行bp-MRI检查。排除标准:MRI图像质量差,无法准确进行PI-RADS v2.1评分。

1.2 扫描方案

       所有患者在前列腺穿刺前两周内行bp-MRI检查,采用荷兰Philips 3.0 T Ingenia MR扫描仪及32通道心脏相控线圈,扫描序列包括T1WI轴位,T2WI-FS矢状位、轴位、冠状位和DWI轴位。各序列具体扫描参数见表1,DWI序列b值取0、1000、1500 s/mm2

表1  前列腺bp-MRI扫描序列及参数
Tab. 1  The scanning sequence and parametersof prostate bp-MRI

1.3 图像分析

       从我院PACS系统获取患者的bp-MRI图像,由两名分别具有3年经验的住院医师和8年腹部MRI诊断经验的影像主治医师在未知病理结果及PSA水平的情况下,严格以PI-RADS v2.1标准对bp-MRI图像评分并记录,移行带、外周带的病变主导序列分别为T2WI-FS、DWI。评分不一致者经两名医师协商后作出最终评分,两名医师PI-RADS v2.1评分的一致性极好(Kappa值:0.869,P<0.05)。当前列腺存在多个病变时,记录最高评分。具体改良的bp-MRI评分方案见表2[11]

表2  综合评分
Tab. 2  Comprehensive score

1.4 临床指标

       本研究纳入的临床及影像学指标:年龄、tPSA、fPSA、游离前列腺特异性抗原百分比(%fPSA=fPSA/tPSA)、前列腺体积(prostate volume, PV)、PSAD、游离前列腺特异性抗原百分比/前列腺特异性抗原密度(fPSA/tPSA)/PSAD、PI-RADS v2.1评分。根据PI-RADS v2.1指南,在T2WI-FS的正中矢状面上测最大前后径及最大上下径,在轴位上测最大横径[20],计算PV,并计算相关参数。PV=前后径max×上下径max×横径max×0.523;PSAD=tPSA/PV;(f/t)/PSAD=(fPSA/tPSA)/(tPSA/PV)=(fPSA×PV)/tPSA2

       病理标准:由一名具有8年以上穿刺经验的泌尿外科主治医师在TRUS引导下行穿刺活检,采用10+X针穿刺法,将前列腺分为10区,每个区穿刺1针,再结合bp-MRI图像,可疑病变加穿1~2针。符合手术指征的患者行前列腺根治性切除术,由两名分别具有5年和10年经验的住院医和副主任病理医师记录病变的位置及Gleason评分。

1.5 统计学方法

       采用SPSS 26.0和R4.1.2软件对数据进行分析。对计量资料进行正态性检验,符合正态分布的以(x¯±s)表示,组间比较用Student's t检验;偏态分布以MP25, P75)表示,组间比较用Mann-Whitney U检验;分类变量用例数(%)表示,组间比较采用χ2检验、校正卡方或Fisher精确概率法。采用逐步回归向后-LR法进行多因素logistic回归确定PSA(4-20 ng/mL)PCa独立危险因素,随后应用R软件构建列线图模型,采用Bootstrap自抽样法对该模型进行内部验证,通过一致性指数(concordance index, C-index)和校准图评价该模型的预测准确度和一致性,用决策曲线分析(decision curve analysis, DCA)其临床净效益。以受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)、敏感度和特异度评价诊断效能,并通过DeLong检验比较AUC值间的差异。P<0.05认为差异有统计学意义。

2 结果

2.1 一般资料与组间比较结果

       本研究最终纳入PSA(4-20 ng/mL)的患者206例,其中PCa组66例(32%),良性病变组140例(68%)。与良性组相比,PCa组的患者年龄更大,tPSA及PSAD值更高,PI-RADS v2.1评分也越高。两组间年龄、tPSA、%fPSA、PV、PSAD、(f/t)/PSAD、PI-RADS v2.1差异均有统计学意义(P<0.05,表3)。

表3  206 例患者临床指标的基线分析
Tab. 3  Baseline analysis of clinical indexes of 206 patients

2.2 logistic回归及列线图预测模型的构建

       单、多因素logistic回归结果显示年龄、tPSA、PV、PI-RADS v2.1是PSA (4-20 ng/mL) PCa的独立危险因素(P<0.05;表4)。最终纳入上述4项指标,应用R软件构建PSA(4-20 ng/mL)罹患PCa风险的列线图模型(图1)。

       采用Bootstrap自抽样法重复抽样1000次后进行模型的内部验证,该列线图模型的C-index为0.945,具有良好的预测准确度。校准曲线显示列线图模型对预测PSA (4-20 ng/mL) PCa的发生风险具有较好的一致性(图2)。DCA表明,在较宽的概率阈值范围内,列线图模型可获得净收益(图3)。

图1  预测前列腺特异性抗原4~20 ng/mL前列腺癌风险的列线图模型。tPSA:总前列腺特异性抗原;PV:前列腺体积;PI-RADS v2.1:前列腺影像报告和数据系统2.1版。
图2  列线图模型的校准曲线。
图3  列线图模型的决策曲线。纵轴为净获益率,横轴为概率阈值。
Fig. 1  A nomogram model for predicting the prostate specific antigen (4-20 ng/mL) prostate cancer risk. It is composed of age, total prostate specific antigen (tPSA), prostate volume (PV) and Prostate Imaging Reporting and Data System version 2.1 (PI-RADS v2.1).
Fig. 2  Calibration curve of nomogram model.
Fig. 3  Decision curve of the nomogram model. The vertical axis is the net benefit rate, and the horizontal axis is the probability threshold.
表4  各指标 logistic 回归分析结果
Tab. 4  Results of Logistic regression analysis of each index

2.3 列线图模型解读

       本研究列线图模型由年龄、tPSA、PV、PI-RADS v2.1构成。根据列线图中线段可得出各预测变量所对应的分值,各项分值相加后记为总分,其对应的预测风险值,即为罹患PCa的风险概率(图45)。

图4  男,69岁,前列腺癌患者。总前列腺特异性抗原为16.1 ng/mL,前列腺体积为55.71 mL。4A:轴位T2WI抑脂示右侧外周带边界清,低信号灶(箭),直径约0.9 cm;4B:轴位DWI(b值=1000 s/mm2)示病灶呈明显高信号(箭);4C:轴位ADC图示病灶呈明显低信号(箭),PI-RADS v2.1评分为4分;4D:病理结果(HE ×100)为前列腺癌(Gleason评分4+4=8分,WHO/ISUP分级分组为4组)。
图5  男,70岁,前列腺增生患者。总前列腺特异性抗原为18.8 ng/mL,前列腺体积为95.50 mL。5A:轴位T2WI示移行带多发包膜不完整的异常信号结节;5B:轴位DWI(b值=1000 s/mm2)未见明显高信号;5C:轴位ADC图未见明显低信号,PI-RADS v2.1 评分为2分;5D:病理结果(HE ×100)前列腺增生。DWI:扩散加权成像;ADC:表观扩散系数;PI-RADS v 2.1:前列腺影像报告和数据系统2.1版;WHO:世界卫生组织;ISUP:国际泌尿病理学会。
Fig. 4  Male, 69 years old, patient of prostate cancer. Total prostate specific antigen is 16.1 ng/mL, prostate volume is 55.71 mL. 4A: T2-weighted imaging fat suppression axial with clear low-signal focus (arrow) at the periphery of the right peripheral zone, and the maximum diameter is approximately 0.9 cm; 4B: DWI (b value=1000 s/mm2) axial, the lesion shows obvious hypersignal (arrow); 4C: ADC axial, the lesion is significantly low signal (arrow), the score of PI-RADS v2.1 is 4 points; 4D: Pathological (HE ×100) shows prostate cancer (Gleason score 4+4=8, graded into 4 group).
Fig. 5  Male, 70 years old, patient of prostatic hyperplasia. Total prostate specific antigen is 18.8 ng/mL, prostate volume is 95.50 mL. 5A: On T2-weighted imaging fat suppression axial, there are multiple abnormal signal nodules with incomplete capsule in transitional zone; 5B: DWI (b value=1000 s/mm2) axial, no significant high signal is found; 5C: ADC axial, with no significant low signal is found. PI-RADS v2.1 score is 2 points; 5D: Pathological (HE ×100) shows prostatic hyperplasia. DWI: diffusion-weighted image; ADC: apparent diffusion coefficient; PI-RADS v2.1: Prostate Imaging Report and Data System version 2.1; WHO: World Health Organization; ISUP: International Society of Urological Pathology.

2.4 评估各独立指标和列线图模型的诊断效能

       列线图模型对PSA (4-20 ng/mL) PCa的诊断效能高于PI-RADS v2.1、PV、tPSA、年龄,详见表5图6

图6  列线图模型及各独立指标预测前列腺特异性抗原4~20 ng/mL前列腺癌的ROC曲线。ROC:受试者工作特征;AUC:曲线下面积;PI-RADS v2.1:前列腺影像报告和数据系统2.1版;PV:前列腺体积;tPSA:总前列腺特异性抗原。
Fig. 6  ROC curve of nomogram model and independent indicators for predicting prostate specific antigen (4-20 ng/mL) prostate cancer. ROC: receiver operating characteristic; AUC: area under the curve; PI-RADS v2.1: Prostate Imaging Report and Data System version 2.1; PV: prostate volume; tPSA: total prostate specific antigen.
表5  列线图模型及独立指标预测PSA (4-20 ng/mL) PCa的诊断效能
Tab. 5  The nomogram model and independent indicators predicted the diagnostic efficacy of PSA (4-20 ng/mL) PCa

3 讨论

       本研究经单、多因素logistic回归筛选了年龄、tPSA、PV和PI-RADS v2.1共4个临床及影像学指标,构建了预测PSA (4-20 ng/mL) PCa的列线图模型,该列线图模型(AUC:0.945,敏感度93.94%,特异度87.14%)诊断效能显著高于单独应用PI-RADS v2.1评分及其他预测指标。结果表明基于bp-MRI的PI-RADS v2.1联合临床指标筛查PCa诊断效能好,可行性较高,有望作为mp-MRI的潜在替代方案以优化检查。

3.1 单独使用PSA筛查PCa的局限性

       PSA是一种丝氨酸蛋白酶,主要由正常或有癌变倾向的前列腺细胞产生,PCa会破坏血—上皮屏障,导致血清PSA浓度明显增加,因此,它是早期筛查和检测PCa肿瘤生物标志物,但其缺乏特异性[21, 22]。本研究显示单独使用tPSA诊断PSA (4-20 ng/mL) PCa的AUC为0.737,敏感度和特异度较低,与既往研究结果类似[3, 23]。原因可能是PSA受到了多种因素的影响,如前列腺炎、PV、尿路感染等。因此单独使用PSA筛查、诊断PCa有一定的局限性。在临床中,PSA需结合影像学及其他相关指标来积极监测患PCa的风险及预后疗效。

3.2 bp-MRI的优势及诊断价值

       bp-MRI的优势[12, 24, 25, 26, 27]包括:(1)无对比剂的相关不良反应;(2)缩短了MRI扫描时间;(3)降低检查成本、减少经济及资源负担等。研究表明T2WI-FS与DWI组成的bp-MRI诊断PCa的准确性与标准的mp-MRI相似,且差异无统计学意义[26, 27, 28],因此使用bp-MRI诊断PCa更简单、便捷,亦可指导前列腺活检及临床分期。TAMADA等[29]发现基于bp-MRI的PI-RADS v2.1及PSA等指标对PCa的诊断特异性显著高于mp-MRI。本研究中基于bp-MRI的PI-RADS v2.1的AUC为0.816,敏感度和特异度分别为81.82%,66.43%,在预测PSA (4-20 ng/mL) PCa方面具有优势,这与既往研究结果类似[4, 30],不同的是本研究的PI-RADS v2.1评分是在bp-MRI协议下进行的。

3.3 联合PI-RADS v2.1的列线图模型预测PCa的诊断效能

       列线图是将logistic 回归方程中多个预测指标间的函数关系,画成相应具有刻度的直线计算图,简单易懂,能够针对每位患者提供个体化的风险预测。近年来,文献报道联合PSA的诺莫图模型可用于预测PCa[30, 31]。WEN等[30]以PSAD、PI-RADS v2.1建立的诺莫图模型AUC为0.940。MA等[31]结合年龄、PSAD、PI-RADS v2.1评分构建列线图模型,在训练组中模型的AUC为0.938,在外部验证组中,其AUC值为0.914,决策曲线显示该模型的净效益明显高于PI-RADS v2.1评分和PSAD,其具有良好的临床疗效。这与本研究结果类似。联合预测模型将显著提升PCa的预测精度与效能。另外本研究结果显示PI-RADS v2.1评分≥3分为诊断阈值,敏感度为81.82%,特异度为66.43%,这与中国肿瘤整合诊治指南[32]提出的临床诊疗指导一致。本研究与上述研究[30, 31]不同之处在于:(1)针对PSA(4-20 ng/mL)特殊区间的PCa患者,且模型纳入了bp-MRI的PI-RADS v2.1评分;(2)列线图模型在不增加费用的前提下更进一步提高PSA (4-20 ng/mL) PCa的诊断准确性,有助于医师做出更精准的个体化评估。

3.4 本研究的局限性

       本研究存在以下的局限性:(1)这是一个回顾性、单中心研究,纳入的样本量较小,因此存在抽样误差及选择的偏倚;(2)TRUS系统穿刺确诊PCa仍存在假阴性结果,所以更需进一步行多中心联合研究,对数据的有效性进行验证;(3)本研究只进行了内部验证,还需外部验证来确认该模型的有效性。

4 结论

       综上所述,基于bp-MRI的PI-RADS v2.1联合临床指标构建的列线图模型,可用于PSA (4-20 ng/mL) PCa的无创预测,并进一步提高PCa的诊断准确性,为临床决策提供依据。

[1]
GURWIN A, KOWALCZYK K, KNECHT-GURWIN K, et al. Alternatives for MRI in prostate cancer diagnostics-review of current ultrasound-based techniques[J/OL]. Cancers, 2022, 14(8): 1859 [2023-03-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028694. DOI: 10.3390/cancers14081859.
[2]
闵淑慧, 胡依, 郭芮绮, 等. 1990—2019年中国前列腺癌疾病负担分析及趋势预测[J]. 中国肿瘤, 2023, 32(3): 171-177. DOI: 10.11735/j.issn.1004-0242.2023.03.A002.
MIN S H, HU Y, GUO R Q, et al. Analysis of disease burden of prostate cancer in China from 1990 to 2019 and trend prediction[J]. China Cancer, 2023, 32(3): 171-177. DOI: 10.11735/j.issn.1004-0242.2023.03.A002.
[3]
DUFFY M J. Biomarkers for prostate cancer: prostate-specific antigen and beyond[J]. Clin Chem Lab Med, 2020, 58(3): 326-339. DOI: 10.1515/cclm-2019-0693.
[4]
WANG Z B, WEI C G, ZHANG Y Y, et al. The role of PSA density among PI-RADS v2.1 categories to avoid an unnecessary transition zone biopsy in patients with PSA 4-20 ng/mL[J/OL]. Biomed Res Int, 2021, 2021: 3995789 [2023-02-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523253. DOI: 10.1155/2021/3995789.
[5]
MARTIN P R, COOL D W, FENSTER A, et al. A comparison of prostate tumor targeting strategies using magnetic resonance imaging-targeted, transrectal ultrasound-guided fusion biopsy[J]. Med Phys, 2018, 45(3): 1018-1028. DOI: 10.1002/mp.12769.
[6]
WANG C M, YUAN L, SHEN D Y, et al. Combination of PI-RADS score and PSAD can improve the diagnostic accuracy of prostate cancer and reduce unnecessary prostate biopsies[J/OL]. Front Oncol, 2022, 12: 1024204 [2023-03-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709422. DOI: 10.3389/fonc.2022.1024204.
[7]
KANDIRALI E, TEMIZ M Z, ÇOLAKEROL A, et al. Does the prostate volume always effect cancer detection rate in prostate biopsy? Additional role of prostate-specific antigen levels: a retrospective analysis of 2079 patients[J]. Turk J Urol, 2019, 45(2): 103-107. DOI: 10.5152/tud.2018.66909.
[8]
CHEN M, MA T, LI J, et al. Diagnosis of prostate cancer in patients with prostate-specific antigen (PSA) in the gray area: Construction of 2 predictive models[J/OL]. Med Sci Monit, 2021, 27: e929913 [2023-03-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879585. DOI: 10.12659/MSM.929913.
[9]
王慧慧, 高歌, 何群, 等. 基于前列腺逐层切片病理PI-RADS v2.1与PI-RADS v2的评分比较[J]. 磁共振成像, 2022, 13(4): 120-123. DOI: 10.12015/issn.1674-8034.2022.04.023.
WANG H H, GAO G, HE Q, et al. Comparison of scores between PI-RADS v2.1 and PI-RADS v2 based on prostate slice-by-slice pathology[J]. Chin J Magn Reson Imag, 2022, 13(4): 120-123. DOI: 10.12015/issn.1674-8034.2022.04.023.
[10]
LUO R, ZENG Q X, CHEN H S. Artificial intelligence algorithm-based MRI for differentiation diagnosis of prostate cancer[J/OL]. Comput Math Methods Med, 2022, 2022: 8123643 [2023-02-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256308. DOI: 10.1155/2022/8123643.
[11]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[12]
BARRETT T, RAJESH A, ROSENKRANTZ A B, et al. PI-RADS version 2.1: one small step for prostate MRI[J]. Clin Radiol, 2019, 74(11): 841-852. DOI: 10.1016/j.crad.2019.05.019.
[13]
PAN Y S, SHEN C, CHEN X F, et al. bpMRI and mpMRI for detecting prostate cancer: A retrospective cohort study[J/OL]. Front Surg, 2023, 9: 1096387 [2023-02-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885087. DOI: 10.3389/fsurg.2022.1096387.
[14]
BREMBILLA G, GIGANTI F, SIDHU H, et al. Diagnostic accuracy of abbreviated Bi-parametric MRI (a-bpMRI) for prostate cancer detection and screening: A multi-reader study[J/OL]. Diagnostics, 2022, 12(2): 231 [2023-02-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871361. DOI: 10.3390/diagnostics12020231.
[15]
SCIALPI M. Simplified PI-RADS-based biparametric MRI: A rationale for detecting and managing prostate cancer[J]. Clin Imaging, 2021, 80: 290-291. DOI: 10.1016/j.clinimag.2021.07.024.
[16]
HAN C, LIU S, QIN X B, et al. MRI combined with PSA density in detecting clinically significant prostate cancer in patients with PSA serum levels of 4∼10 ng/mL: Biparametric versus multiparametric MRI[J]. Diagn Interv Imaging, 2020, 101(4): 235-244. DOI: 10.1016/j.diii.2020.01.014.
[17]
CHANG T H, LIN W R, TSAI W K, et al. Zonal adjusted PSA density improves prostate cancer detection rates compared with PSA in Taiwan residents males with PSA<20 ng/ml[J/OL]. BMC Urol, 2020, 20(1): 151 [2022-12-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542736. DOI: 10.1186/s12894-020-00717-z.
[18]
潘敏杰, 祁峰, 承逸飞, 等. 基于bpMRI的前列腺活检对PSA≤20 ng/ml前列腺癌诊断价值的研究[J]. 中华泌尿外科杂志, 2021, 42(1): 18-22. DOI: 10.3760/cma.j.cn112330-20200302-00145.
PAN M J, QI F, CHENG Y F, et al. The value of utilizing bpMRI in prostate biopsy in the detection of prostate cancer with PSA≤20 ng/ml[J]. Chin J Urol, 2021, 42(1): 18-22. DOI: 10.3760/cma.j.cn112330-20200302-00145.
[19]
陆健斐, 冯蕾, 卜锐, 等. 磁共振一经直肠超声认知融合引导下前列腺靶向穿刺联合系统穿刺对血清前列腺特异性抗原水平4~20 ng/mL患者的前列腺癌诊断有效性[J]. 分子影像学杂志, 2021, 44(6): 932-936. DOI: 10.12122/j.issn.1674-4500.2021.06.09.
LU J F, FENG L, BU R, et al. Effectiveness of magnetic resonance imaging-transrectal ultrasound-guided cognitive fusion targeted prostate biopsy combined with systematic prostate biopsy for prostate cancer patients with PSA Level 4-20 ng/m L[J]. J Mol Imag, 2021, 44(6): 932-936. DOI: 10.12122/j.issn.1674-4500.2021.06.09.
[20]
SCOTT R, MISSER S K, CIONI D, et al. PI-RADS v2.1: What has changed and how to report[J/OL]. SA J Radiol, 2021, 25(1): 2062 [2022-12-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252188. DOI: 10.4102/sajr.v25i1.2062.
[21]
赵莹莹, 方陈, 吴声连, 等. 基于Bp-MRI影像组学预测前列腺病变良恶性的效能及风险评估[J]. 磁共振成像, 2022, 13(8): 43-47. DOI: 10.12015/issn.1674-8034.2022.08.008.
ZHAO Y Y, FANG C, WU S L, et al. Prediction and risk assessment of benign and malignant prostate lesions based on Bp-MRI radiomics[J]. Chin J Magn Reson Imag, 2022, 13(8): 43-47. DOI: 10.12015/issn.1674-8034.2022.08.008.
[22]
CUSSENOT O, RENARD-PENNA R, MONTAGNE S, et al. Clinical performance of magnetic resonance imaging and biomarkers for prostate cancer diagnosis in men at high genetic risk[J]. BJU Int, 2023, 131(6): 745-754. DOI: 10.1111/bju.15968.
[23]
MCCORMICK M E, HAILE Z T. The impact of receipt of information on prostate-specific antigen testing on screening with the prostate-specific antigen test[J]. J Cancer Educ, 2023, 38(4): 1313-1321. DOI: 10.1007/s13187-023-02264-1.
[24]
KNAAPILA J. Editorial for "biparametric magnetic resonance imaging-derived nomogram to detect clinically significant prostate cancer by targeted biopsy for index lesion"[J]. J Magn Reson Imaging, 2022, 56(2): 425-426. DOI: 10.1002/jmri.27897.
[25]
PORTER K K, KING A, GALGANO S J, et al. Financial implications of biparametric prostate MRI[J]. Prostate Cancer Prostatic Dis, 2020, 23(1): 88-93. DOI: 10.1038/s41391-019-0158-x.
[26]
SUSHENTSEV N, CAGLIC I, SALA E, et al. The effect of capped biparametric magnetic resonance imaging slots on weekly prostate cancer imaging workload[J/OL]. Br J Radiol, 2020, 93(1108): 20190929 [2022-12-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362922. DOI: 10.1259/bjr.20190929.
[27]
ALABOUSI M, SALAMEH J P, GUSENBAUER K, et al. Biparametric vs multiparametric prostate magnetic resonance imaging for the detection of prostate cancer in treatment-naïve patients: a diagnostic test accuracy systematic review and meta-analysis[J]. BJU Int, 2019, 124(2): 209-220. DOI: 10.1111/bju.14759.
[28]
WANG G, YU G, CHEN J, et al. Can high b-value 3.0 T biparametric MRI with the Simplified Prostate Image Reporting and Data System (S-PI-RADS) be used in biopsy-naïve men?[J]. Clin Imaging, 2022, 88: 80-86. DOI: 10.1016/j.clinimag.2021.06.024.
[29]
TAMADA T, KIDO A, YAMAMOTO A, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2.1[J]. J Magn Reson Imag, 2021, 53(1): 283-291. DOI: 10.1002/jmri.27283.
[30]
WEN J, TANG T T, JI Y G, et al. PI-RADS v2.1 combined with prostate-specific antigen density for detection of prostate cancer in peripheral zone[J/OL]. Front Oncol, 2022, 12: 861928 [2023-2-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024291. DOI: 10.3389/fonc.2022.861928.
[31]
MA Z N, WANG X C, ZHANG W C, et al. Developing a predictive model for clinically significant prostate cancer by combining age, PSA density, and mpMRI[J/OL]. World J Surg Oncol, 2023, 21(1): 83 [2023-3-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990202. DOI: 10.1186/s12957-023-02959-1.
[32]
樊代明. 中国肿瘤整合诊治指南[M]. 天津: 天津科学技术出版社, 2022: 1-68.
FAN D M. CACA Guidelines for holistic lntegrative management of cancer[M]. Tianjin: Tianjin Scientific & Technical Publishers, 2022: 1-68.

上一篇 合成MRI鉴别乳腺环形强化病变良恶性的应用价值
下一篇 BP-MRI联合临床预测指标对前列腺癌的诊断价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2