分享:
分享到微信朋友圈
X
综述
MRI在胰腺癌新辅助治疗疗效评估中的研究进展
伏庆琳 陈杰

Cite this article as: FU Q L, CHEN J. Advances of MRI in evaluating the efficacy of neoadjuvant therapy for pancreatic cancer[J]. Chin J Magn Reson Imaging, 2023, 14(10): 177-182.本文引用格式:伏庆琳, 陈杰. MRI在胰腺癌新辅助治疗疗效评估中的研究进展[J]. 磁共振成像, 2023, 14(10): 177-182. DOI:10.12015/issn.1674-8034.2023.10.032.


[摘要] 新辅助治疗(neoadjuvant treatment, NAT)提高了胰腺癌根治性切除的可能性,有助于改善患者预后。但患者个体间差异导致NAT疗效差别较大,故而早期、准确评价NAT疗效成为胰腺癌研究热点之一。MRI可以从解剖学和功能学角度间接反映肿瘤细胞和微环境的变化,无创评估治疗效果,弥补了其他影像检查技术的不足。本文就常规MRI和功能MRI技术包括扩散加权成像、体素内不相干运动、动态对比增强MRI、T1 mapping、T2 mapping,以及PET/MRI等技术在胰腺癌NAT疗效评估方面的研究现状展开综述,旨在协助临床制订有效的诊治策略;便于临床医生及科研人员更系统全面地理解胰腺癌NAT引起肿瘤微环境变化及其治疗相关反应影像学表现的差异。随着MRI功能序列的发展及多参数MRI研究的推进,未来有望构建一个基于MRI的胰腺癌综合序列评估体系。
[Abstract] Neoadjuvant treatment (NAT) improves the possibility of radical resection of pancreatic cancer and can help improve patient outcomes. However, the efficacy of NAT varies greatly among patients due to individual differences. Early and accurate evaluations of the efficacy of NAT has become one of the hotspots in pancreatic cancer. MRI, which can non-invasively evaluate the therapy response, indirectly reflects the changes of tumor cells and microenvironments from a anatomy and function and makes up for the insufficiency of other imaging techniques. This paper reviews the current status of conventional MRI and functional MRI techniques, including diffusion weighted imaging, intravoxel incoherent motion, dynamic contrast enhanced MRI, T1 mapping, T2 mapping and PET/MRI, in evaluating NAT efficacy in pancreatic cancer, so as to assist clinical to develop effective diagnosis and treatment strategies. It is convenient for clinicians and researchers to systematically and comprehensively understand the changes of tumor microenvironment caused by NAT in pancreatic cancer and the differences in imaging findings of treatment-related responses. With the development of functional MRI and the advancement of multi-parameter MRI, The MRI based comprehensive sequence evaluation system for pancreatic cancer is expected to be constructed in the future.
[关键词] 胰腺癌;胰腺恶性肿瘤;磁共振成像;新辅助治疗;疗效评估;预后
[Keywords] pancreatic cancer;pancreatic malignant tumor;magnetic resonance imaging;neoadjuvant treatment;efficacy evaluation;prognosis

伏庆琳    陈杰 *  

苏州大学附属第三医院放射科,常州 213003

通信作者:陈杰,E-mail:slqyuer@126.com

作者贡献声明:陈杰确定本研究的方向,对文章的知识性内容作批评性审阅,对稿件重要内容进行了修改,获得了国家自然科学基金面上项目资助;伏庆琳参与确定本研究方向,起草和撰写稿件,获取、分析以及解释本研究的数据;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 81971572
收稿日期:2023-06-30
接受日期:2023-10-04
中图分类号:R445.2  R735.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.10.032
本文引用格式:伏庆琳, 陈杰. MRI在胰腺癌新辅助治疗疗效评估中的研究进展[J]. 磁共振成像, 2023, 14(10): 177-182. DOI:10.12015/issn.1674-8034.2023.10.032.

0 前言

       胰腺癌是一种高度侵袭性的恶性肿瘤,预后极差,五年生存率约11%,是癌症相关死亡的第三大原因[1]。根治性切除是目前唯一可能治愈胰腺癌的方法。但由于胰腺癌恶性程度极高,80%~85%的患者在初诊时即已存在瘤周重要血管的侵犯[2],失去了直接手术治疗的机会。近年来,新辅助治疗(neoadjuvant treatment, NAT)已成为临界可切除及局部进展期胰腺癌患者的首选治疗策略。相较于立即手术组,NAT能够显著提高临界可切除胰腺癌患者的根治性切除率(81.7% vs. 58.7%)、治疗某些隐匿性微转移、降低患者术后早期复发或转移的风险,改善患者预后[3, 4]。但是肿瘤细胞异质性等个体间的差异常导致患者间NAT疗效差别较大,近30%的患者在治疗期间由于出现疾病进展向远处转移而丧失手术机会[5]。因此,及时准确评估NAT疗效在确定胰腺癌可切除性、指导后续治疗和降低药物毒性等方面具有重要意义。

       胰腺癌NAT引起的肿瘤坏死、间质纤维化和炎症反应等常会干扰疗效评估的准确性。MRI具有较高的软组织分辨力,能更加清晰地显示病灶及其周围结构,已成为胰腺癌诊断、分期及疗效评估的重要工具。近几年随着技术发展,越来越多的功能MRI技术被用于胰腺癌疗效评估,这些功能MRI技术能够早期监测治疗前后肿瘤微环境的变化从而判断肿瘤生物学行为及辅助临床,有助于治疗方案的调整,改善患者预后。现在常用的技术主要包括扩散加权成像(diffusion weighted imaging, DWI)、体素内不相干运动(intravoxel incoherent motion, IVIM)、动态对比增强MRI(dynamic contrast-enhanced-MRI, DCE-MRI)、T1 mapping、T2 mapping技术和PET/MRI等。本文旨在对目前常规及功能MRI技术在胰腺癌NAT疗效评估中的研究现状作一综述,为后续研究提供思路。

1 常规MRI

       常规MRI是目前最常用的评估肿瘤治疗反应的技术,其主要是通过对治疗前后肿瘤大小和病灶内部及其周围信号强度的变化进行定量和定性评估。在临床实践中,基于实体肿瘤疗效评价标准,通过CT或MRI测量NAT前后肿瘤大小的变化评估疗效仍是最主要的方法。MRI相较于CT具有更好的软组织对比度,虽然研究发现增强CT和MRI在基于胰腺癌NAT前后肿瘤大小变化的疗效评估方面并无显著差异[6],但其在肝脏转移病灶的检测方面敏感度更高(83% vs. 45%, P=0.01)[7]。在定性评估方面,NAT后增强MRI上肿瘤与血管毗邻处的脂肪信号影即“晕征”,能相对更好地区分残留的肿瘤组织与化疗后诱导的纤维组织成分,反映瘤周血管实际受累情况,其在诱导化疗后的形态学反应评估方面相较于增强CT价值更大[8]

       尽管许多指南强调治疗前后肿瘤大小变化对于评估疗效的重要性,但是胰腺癌NAT诱发的肿瘤坏死、间质纤维化、水肿和炎性反应等发病机理改变常会干扰治疗前后肿瘤的体积大小、外观及邻近血管受累等情况的准确评估[9],单纯基于肿瘤大小改变的实体瘤疗效评价标准甚至会导致胰腺癌NAT后的不可切除性的高估,使部分本可接受根治性切除的患者失去最佳手术机会[10]。常规MRI对于治疗相关反应的敏感度、特异度及准确率相对较低,临床价值受到一定限制。随着技术发展,越来越多的功能MRI技术可以通过对组织细胞结构、肿瘤基质、纤维化程度和功能代谢等变化进行多参数定量分析[11, 12],早期评估胰腺癌对NAT的反应,弥补了常规MRI技术的不足。

2 DWI

       DWI是一种通过表观扩散系数(apparent diffusion coefficient, ADC)定量反映组织内水分子扩散运动的无创性功能成像技术。ADC值受到多种因素的影响,包括组织细胞密度、细胞膜完整性、细胞外间质纤维化程度和液体黏度等。胰腺癌肿瘤细胞丰富、排列紧密,细胞外间隙较小,水分子弥散受限;NAT后由于肿瘤细胞坏死、细胞内大分子物质的流失使得细胞外间隙扩大,ADC值增加。研究显示,DWI用于胰腺癌NAT疗效评估的准确性较常规MRI高[13]。OKADA等[14]通过一项前瞻性队列研究表明治疗前/后全肿瘤ADC值与NAT后肿瘤细胞破坏率之间存在显著相关性(r=0.630, P<0.001; r=0.714, P<0.001);且治疗后全肿瘤ADC值>1.40×10-3 mm2/s可以作为临界可切除胰腺癌肿瘤细胞破坏率>50%和根治性切除率增加的预测因子,敏感度、特异度和准确度分别为100%、81%、89%和88%、70%、75%。然而,由于不同研究中样本量的大小、b值及感兴趣区域选择等方面的差异,ADC值评价胰腺癌疗效的结果也存在差异。例如,OKADA等[14]研究发现治疗后全肿瘤ADC值和与血管接触部位的ADC值与肿瘤细胞破坏率均呈显著相关性,但由于肿瘤细胞本身分布的异质性外加治疗后引起的明显非均质性改变[15],与血管接触部位的ADC值预测治疗反应的敏感度、特异度和准确度不及全肿瘤ADC值价值高。而ZIMMERMANN等[16]的研究却发现肿瘤平均ADC值在NAT前后的变化差异不具有统计学意义(P=0.468),不能用于NAT疗效评估。造成该结果的原因除了MRI硬件设施及合适的b值选择外,还可能因为在勾画感兴趣区域时没有避开坏死、囊变及血管区域,ADC值不能真实反映肿瘤的实体情况。NISHIOFUKU等[17]通过一项研究比较了NAT前后除外肿瘤坏死、囊变及血管区域的选定区域ADC值与全肿瘤ADC值的变化在评估胰腺癌预后方面的价值,结果表明治疗前后选定区域ADC值的变化是不可切除胰腺癌患者无进展生存期和总生存期最有价值的预测性指标,进一步论证了感兴趣区域的勾画对于测量ADC值的重要性。因此,未来研究通过优化MRI硬件、场强、呼吸补偿采集和b值选择方面构建标准化DWI实施方案的同时,也应关注测量分析方法的优化,提高诊断准确度。

3 IVIM

       IVIM是基于多b值的DWI双指数模型,可将弥散与灌注分离,通过计算获得真扩散系数(true diffusion coefficient, D)值、假扩散系数(pseudo-diffusion coefficient, D*)值及灌注分数(perfusion fraction, f)值,从而定量反映病变组织中水分子扩散特性及毛细血管微循环灌注情况,较DWI可更加准确地反映肿瘤微观特征,对于胰腺癌某些病理特征如纤维化程度的评估,其敏感性和准确性更高[18]。其中D值代表真实水分子扩散情况,排除了血流灌注影响;D*反映组织微循环灌注信息;f值为体素内微循环灌注效应与总扩散效应之比,反映D和D*两者间作用权重。研究表明,治疗前D值越低,术后总生存期和无病生存期越短,局部复发风险越高[19],这可能是由于D值越低,肿瘤细胞密度及间质纤维化程度就越高,使得肿瘤局部侵袭能力增强,增加了癌细胞的恶性程度和治疗耐药性。NAT诱导肿瘤细胞发生坏死、凋亡,并伴有不同程度的间质纤维化、水肿和炎症反应,使得细胞间隙增宽,D值增高[20, 21]。PIJNAPPEL等[22]研究结果显示治疗前f值对于NAT后预测总生存期价值更高,在最佳阈值下其AUC为0.85,敏感度为80%、特异度为85%。但由于D*和f值更易受b值选择影响,对噪声敏感,且肿瘤组织由于其脉管系统稳定性差,可能存在无效的微循环灌注,其参数的稳定性及可重复性欠佳[23],在疗效评估方面依然存在争议,还有待进一步深入探索和验证。

4 DCE-MRI

       DCE-MRI利用肿瘤与正常组织之间微循环状态的差异,可对血管通透性及组织血流灌注情况进行定量分析[24]。目前常用的一些定量参数指标包括:容积转移常数(volume transfer constant, Ktrans)、组织间隙-血浆速率常数(interstitium-to-plasmarate constant, Kep)、血管外细胞外间隙容积分数(fractional extracellular space volume, Ve)和反映一定时间内进入肿瘤组织中对比剂量的初始曲线下面积(initial area under the time signal curve, iAUC)。胰腺癌由于其致密的纤维间质,阻碍了肿瘤灌注和抗癌药物的传递。Ktrans表示对比剂从血管内渗透到组织间隙的速率,大小主要由组织中血流灌注量及血管通透性决定,其被认为是评估胰腺癌NAT疗效最具应用前景的DCE-MRI定量参数。研究表明,肿瘤灌注增加与胰腺癌化疗反应呈正相关,NAT前治疗有效组肿瘤Ktrans值显著高于治疗无效组[25, 26]。当Ktrans>0.12 min-1,其区分反应应答与无应答的敏感度、特异度及AUC分别为85.7%、76.7%、0.849[27]。TANG等[28]对40例局部进展期及转移性胰腺癌患者NAT前的基线DCE-MRI图像进行研究,发现治疗有效组全肿瘤、瘤周及邻近非肿瘤区域的Ktrans值以及瘤周区域的Kep值均高于无效组;当瘤周Kep=1.318 min-1时,其预测胰腺癌NAT反应的敏感度、特异度及AUC分别为77%、85%、0.806。这可能是由于Ktrans值与Kep值均与毛细血管通透性有关,NAT前数值越高,提示肿瘤组织毛细血管越丰富,渗透性越高,不仅利于化疗药物向组织间隙运输,还利于氧气进入,提高放疗敏感性。而Ve和60 s曲线下起始面积(iAUC60)在治疗前后的变化差异无统计学意义(P值为0.140~0.968),不能用于疗效的评估。除Ktrans外,其余DCE-MRI参数指标对于胰腺癌疗效评估的价值还有待商榷。受限于扫描技术的规范性,尚无统一理想的药代动力学模型,使得DCE-MRI的横向比较存在困难。

5 T1 mapping和T2 mapping

       T1 mapping和T2 mapping技术分别又称纵向和横向弛豫时间定量成像技术,可测量体素内纵向弛豫时间(T1)和横向弛豫时间(T2),定量分析生物组织特性,目前主要应用于心肌疾病的诊断和纤维化程度的评估中[29, 30]。增强前后T1值的变化反映了细胞外间隙造影剂的含量,与纤维间质的含量有关,而纤维化的程度越重越可能阻碍药物的传递,从而影响NAT的疗效,所以T1值可能是一个潜在的评估NAT疗效的有效指标。KANG等[31]利用多参数MRI评估胰腺癌对NAT的反应,包括DCE-MRI、IVIM-DWI、T1 mapping及T2* mapping技术,研究发现NAT前增强前后T1值的变化(ΔR1)是预测肿瘤反应及无进展生存期的独立预测因子,其AUC值为0.80;当ΔR1≥1.31 s-1,其预测肿瘤NAT反应的敏感度、特异度及准确度分别为71.4%、92.6%、85.4%。在一项胰腺癌动物实验中发现,根据T2 mapping直方图计算的四分位间距能定量反映肿瘤异质性,早期敏感地检测放疗诱导的肿瘤细胞数量和活力的变化[32]。相较于T2WI及DWI,T2 mapping对放疗3天后诱导的肿瘤变化更具敏感性,可作为早期评估放疗反应的一项潜在生物标志物。该研究为T2 mapping技术在胰腺癌NAT疗效评估中的应用提供了重要佐证。目前基于T1 mapping和T2 mapping技术评估胰腺癌治疗相关反应的研究多为小样本或动物实验,实际临床价值仍需大样本、前瞻性研究进行验证。

6 PET/MRI

       PET/MRI作为一种较新的多模态成像技术,结合了功能成像和代谢成像技术,实现了人体解剖、生理代谢与生物学功能信息的实时融合,并且减少了运动伪影,使组织轮廓显示更清楚。其作为一种全身性检查技术,在寻找原发病灶、转移灶,以及肿瘤分期、评估肿瘤负荷、治疗效果等方面具有一定优势[33, 34]。研究表明,NAT后2–4周基于PET/MRI的功能参数指标,如代谢肿瘤体积、总病变糖酵参数和ADC值等在治疗有效和无效者之间就存在着显著差异,而基于T2WI测量的肿瘤大小在治疗前后并无显著差异[35, 36]。上述结果表明NAT引起的肿瘤组织代谢和功能变化发生在形态学变化之前,PET/MRI相较于常规MRI能更早更准确地区分治疗应答和无应答者,为后续治疗方案的调整及选择提供依据。而PANDA等[37]研究却发现PET/MRI诊断NAT后肿瘤反应的价值(AUC为0.75~0.87)并没有较CT单独诊断(AUC为0.71~0.87)的价值高,NAT前后基于CT测量的肿瘤体积相对变化率和基于PET/MRI测量的根据血清葡萄糖水平校正的最大标准摄取值变化率在最佳阈值下评估疗效的敏感度、特异度及AUC值分别为86% vs. 95%、75% vs. 76%、0.87 vs. 0.86。值得注意的是,PET/MRI在利用标准摄取值评估NAT疗效时还存在一定的局限性:标准摄取值不仅受肿瘤负荷和侵袭性的影响,NAT诱导的周围组织的炎性反应也会导致其假性升高。因此,NAT后正确的PET/MRI检查时机对提高其预测价值具有重要意义。目前多数研究认为NAT后8周是FDG-PET检查的一个较好时机[38]。切除的病理标本证实8周后胰周未见明显炎症细胞浸润[39]。此外在实际临床中也应权衡两者联合的诊断价值与经济效益。

7 其他

       影像组学旨在通过从影像图像中提取高通量信息进行深层次挖掘分析,建立相关预测模型辅助临床诊疗。近几年,随着影像组学的快速发展,CT影像组学在NAT疗效评估中的价值已被多数研究证实[40, 41, 42]。SIMPSON等[43]研究表明,低场强(0.35 T)MRI图像中也可能包含有关胰腺癌患者对治疗反应的预测信息,具有辅助临床评估疗效的潜力。NAT会诱导胰腺癌肿瘤组织发生明显的纤维化,其中以Ⅰ型胶原蛋白为主,而肿瘤纤维化程度与NAT后患者总生存期及无病生存期密切相关,肿瘤组织胶原比例面积每增加10%,患者死亡或复发风险降低约50%[44]。但是当前CT和MRI技术还无法准确区分出残留的肿瘤组织和新增的纤维组织。ERSTAD等[44]研究表明,新型的靶向Ⅰ型胶原蛋白MR探针CM-101可以选择性结合Ⅰ型胶原纤维,在富含Ⅰ型胶原纤维的区域信号显著增加,且探针的清除也会延迟,NAT后靶肿瘤区域表现为相对持续性强化(P=0.027),从而有助于明确肿瘤边界、定量评估NAT诱导的肿瘤纤维化程度。因此,将CM-101应用于人体可能会提供一种新的成像技术,以监测NAT后的纤维化程度,评估患者的生存预后。

       近几年,越来越多的功能MRI技术在实体瘤疗效评估中的价值得到了证实。例如,郑祥等[45]通过研究表明扩散峰度成像可以反映早期放疗所致的肿瘤微观结构的改变,从而用于宫颈癌早期疗效评估及预测。氢质子磁共振波谱成像相较于DCE-MRI及DWI能更早地评估乳腺癌NAT后的反应[46]。酰胺质子转移成像利用组织内酰胺质子与自由水中氢质子的交换以产生MR对比度,反映组织内蛋白质代谢情况。NAT后由于肿瘤细胞增殖减慢,蛋白质合成减少,酰胺质子转移信号会减低,从而用于直肠癌疗效评估[47, 48]。但目前针对这些技术的研究主要还是集中在胰腺癌的诊断方面[49],在NAT疗效评估方面尚未有相关报道,未来有待进一步研究证实。

8 总结和展望

       MRI具有多参数任意角度成像、无电离辐射、软组织分辨率高等优点,可重复、无创地对胰腺癌肿瘤细胞结构、组织纤维化程度及肿瘤微环境变化进行早期量化评估。相较于传统的实体瘤疗效评估标准,MRI在胰腺癌NAT疗效评估中取得了较好的成果,但仍然存在一定的局限性:第一,样本量较小,且主要是基于单一序列的回顾性研究,后续可扩大样本量,开展前瞻性多模态联合评估研究来解决这一问题;第二,b值的选择尚无统一标准,使得DWI和IVIM参数指标的稳定性和可重复性易受到影响,后续有待相关指南对胰腺癌扫描标准进行统一规范化;第三,感兴趣区域的勾画将对各个参数指标的稳定性产生影响,可能会因为局部的组织学特征而影响其对总体疗效的评估价值,后续应关注测量分析方法的优化,提高诊断准确度;第四,治疗后评估时间节点选择的不统一性,特别是涉及PET/MRI中的标准摄取值时,在重视“早期”评估疗效的同时,也应注意其值是否为假性升高,后续还有待进一步研究来明确该时间点;第五,NAT后缺乏客观统一的病理评估标准,使得影像评估的结果也受到影响,后续有待临床进一步规范评估标准。

       综上所述,由于现阶段各种评估参数各有优劣,相较于单一成像技术,多模态MRI联合技术可提供更全面的肿瘤代谢、血流灌注及瘤周改变等信息,提高诊断准确率。未来,随着MRI功能序列的发展及多参数MRI研究的推进,有望构建一个基于MRI的胰腺癌综合序列评估体系,为胰腺癌NAT疗效的早期无创性评估提供更多有价值的影像学客观依据。

[1]
SIEGEL R, MILLER K, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[2]
PARK W, CHAWLA A, O'REILLY E M. Pancreatic cancer: a review[J]. JAMA, 2021, 326(9): 851-862. DOI: 10.1001/jama.2021.13027.
[3]
JUNG H S, KIM H S, KANG J S, et al. Oncologic benefits of neoadjuvant treatment versus upfront surgery in borderline resectable pancreatic cancer: a systematic review and meta-analysis[J/OL]. Cancers, 2022, 14(18): 4360 [2023-03-28]. https://pubmed.ncbi.nlm.nih.gov/36139520/. DOI: 10.3390/cancers14184360.
[4]
ADAM M A, NASSOUR I, HOEHN R, et al. Neoadjuvant chemotherapy for pancreatic adenocarcinoma lessens the deleterious effect of omission of adjuvant chemotherapy[J]. Ann Surg Oncol, 2021, 28(7): 3800-3807. DOI: 10.1245/s10434-020-09446-x.
[5]
TSAI S, CHRISTIANS K K, GEORGE B, et al. A phase Ⅱ clinical trial of molecular profiled neoadjuvant therapy for localized pancreatic ductal adenocarcinoma[J]. Ann Surg, 2018, 268(4): 610-619. DOI: 10.1097/SLA.0000000000002957.
[6]
YANG P P, MAO K Z, GAO Y S, et al. Tumor size measurements of pancreatic cancer with neoadjuvant therapy based on RECIST guidelines: is MRI as effective as CT?[J/OL]. Cancer Imaging, 2023, 23(1): 8 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/36653861/. DOI: 10.1186/s40644-023-00528-z.
[7]
ALABOUSI M, MCINNES M D, SALAMEH J P, et al. MRI vs. CT for the detection of liver metastases in patients with pancreatic carcinoma: a comparative diagnostic test accuracy systematic review and meta-analysis[J]. J Magn Reson Imaging, 2021, 53(1): 38-48. DOI: 10.1002/jmri.27056.
[8]
STOOP T F, VAN VELDHUISEN E, VAN RIJSSEN L B, et al. Added value of 3T MRI and the MRI-halo sign in assessing resectability of locally advanced pancreatic cancer following induction chemotherapy (IMAGE-MRI): prospective pilot study[J]. Langenbecks Arch Surg, 2022, 407(8): 3487-3499. DOI: 10.1007/s00423-022-02653-y.
[9]
JANG J K, BYUN J H, KANG J H, et al. CT-determined resectability of borderline resectable and unresectable pancreatic adenocarcinoma following FOLFIRINOX therapy[J]. Eur Radiol, 2021, 31(2): 813-823. DOI: 10.1007/s00330-020-07188-8.
[10]
MICHELAKOS T, PERGOLINI I, CASTILLO C F, et al. Predictors of resectability and survival in patients with borderline and locally advanced pancreatic cancer who underwent neoadjuvant treatment with FOLFIRINOX[J]. Ann Surg, 2019, 269(4): 733-740. DOI: 10.1097/SLA.0000000000002600.
[11]
KLAASSEN R, STEINS A, GURNEY-CHAMPION O J, et al. Pathological validation and prognostic potential of quantitative MRI in the characterization of pancreas cancer: preliminary experience[J]. Mol Oncol, 2020, 14(9): 2176-2189. DOI: 10.1002/1878-0261.12688.
[12]
MAYER P, FRITZ F, KOELL M, et al. Assessment of tissue perfusion of pancreatic cancer as potential imaging biomarker by means of Intravoxel incoherent motion MRI and CT perfusion: correlation with histological microvessel density as ground truth[J/OL]. Cancer Imaging, 2021, 21(1): 13 [2022-06-20]. https://pubmed.ncbi.nlm.nih.gov/33468259/. DOI: 10.1186/s40644-021-00382-x.
[13]
HUSSIEN N, HUSSIEN R S, SAAD D H A, et al. The role of MRI pancreatic protocol in assessing response to neoadjuvant therapy for patients with borderline resectable pancreatic cancer[J/OL]. Front Oncol, 2021, 11: 796317 [2022-06-16]. https://pubmed.ncbi.nlm.nih.gov/35096596/. DOI: 10.3389/fonc.2021.796317.
[14]
OKADA K I, KAWAI M, HIRONO S, et al. Diffusion-weighted MRI predicts the histologic response for neoadjuvant therapy in patients with pancreatic cancer: a prospective study (DIFFERENT trial)[J]. Langenbecks Arch Surg, 2020, 405(1): 23-33. DOI: 10.1007/s00423-020-01857-4.
[15]
LEE S, KIM S H, PARK H K, et al. Pancreatic ductal adenocarcinoma: rim enhancement at MR imaging predicts prognosis after curative resection[J]. Radiology, 2018, 288(2): 456-466. DOI: 10.1148/radiol.2018172331.
[16]
ZIMMERMANN C, DISTLER M, JENTSCH C, et al. Evaluation of response using FDG-PET/CT and diffusion weighted MRI after radiochemotherapy of pancreatic cancer: anon-randomized, monocentric phase Ⅱ clinical trial-PaCa-DD-041 (Eudra-CT 2009-011968-11)[J]. Al, 2021, 197(1): 19-26. DOI: 10.1007/s00066-020-01654-4.
[17]
NISHIOFUKU H, TANAKA T, MARUGAMI N, et al. Increased tumour ADC value during chemotherapy predicts improved survival in unresectable pancreatic cancer[J]. Eur Radiol, 2016, 26(6): 1835-1842. DOI: 10.1007/s00330-015-3999-2.
[18]
LIU Q, ZHANG J G, JIANG M, et al. Evaluating the histopathology of pancreatic ductal adenocarcinoma by intravoxel incoherent motion-diffusion weighted imaging comparing with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 670085 [2022-09-20]. https://pubmed.ncbi.nlm.nih.gov/34249707/. DOI: 10.3389/fonc.2021.670085.
[19]
QU C, ZENG P E, WANG H Y, et al. Preoperative multiparametric quantitative magnetic resonance imaging correlates with prognosis and recurrence patterns in pancreatic ductal adenocarcinoma[J/OL]. Cancers, 2022, 14(17): 4243 [2022-09-29]. https://pubmed.ncbi.nlm.nih.gov/36077777/. DOI: 10.3390/cancers14174243.
[20]
WU L, LI J, FU C X, et al. Chemotherapy response of pancreatic cancer by diffusion-weighted imaging (DWI) and intravoxel incoherent motion DWI (IVIM-DWI) in an orthotopic mouse model[J]. MAGMA, 2019, 32(4): 501-509. DOI: 10.1007/s10334-019-00745-3.
[21]
KLAASSEN R, GURNEY-CHAMPION O J, ENGELBRECHT M R W, et al. Evaluation of six diffusion-weighted MRI models for assessing effects of neoadjuvant chemoradiation in pancreatic cancer patients[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1052-1062. DOI: 10.1016/j.ijrobp.2018.04.064.
[22]
PIJNAPPEL E N, WASSENAAR N P M, GURNEY-CHAMPION O J, et al. Phase Ⅰ/Ⅱ study of LDE225 in combination with gemcitabine and nab-paclitaxel in patients with metastatic pancreatic cancer[J/OL]. Cancers, 2021, 13(19): 4869 [2023-06-28]. https://pubmed.ncbi.nlm.nih.gov/34638351/. DOI: 10.3390/cancers13194869.
[23]
赵佳, 李华兵. 磁共振体素内不相干运动成像在直肠癌临床诊疗中的应用进展[J]. 磁共振成像, 2021, 12(12): 108-111. DOI: 10.12015/issn.1674-8034.2021.12.026.
ZHAO J, LI H B. Application progress of intravoxel incoherent motion imaging in clinical diagnosis and treatment of rectal cancer[J]. Chin J Magn Reson Imag, 2021, 12(12): 108-111. DOI: 10.12015/issn.1674-8034.2021.12.026.
[24]
ZABORIENĖ I, STRAKŠYTĖ V, IGNATAVIČIUS P, et al. Dynamic contrast-enhanced magnetic resonance imaging for measuring perfusion in pancreatic ductal adenocarcinoma and different tumor grade: a preliminary single center study[J/OL]. Diagnostics, 2023, 13(3): 521 [2023-04-01]. https://pubmed.ncbi.nlm.nih.gov/36766626/. DOI: 10.3390/diagnostics13030521.
[25]
KIM H, MORGAN D E, SCHEXNAILDER P, et al. Accurate therapeutic response assessment of pancreatic ductal adenocarcinoma using quantitative dynamic contrast-enhanced magnetic resonance imaging with a point-of-care perfusion phantom: a pilot study[J]. Invest Radiol, 2019, 54(1): 16-22. DOI: 10.1097/RLI.0000000000000505.
[26]
KINH DO R, REYNGOLD M, PAUDYAL R, et al. Diffusion-weighted and dynamic contrast-enhanced MRI derived imaging metrics for stereotactic body radiotherapy of pancreatic ductal adenocarcinoma: preliminary findings[J]. Tomography, 2020, 6(2): 261-271. DOI: 10.18383/j.tom.2020.00015.
[27]
FUKUKURA Y, KUMAGAE Y, FUJISAKI Y, et al. Extracellular volume fraction with MRI: As an alternative predictive biomarker to dynamic contrast-enhanced MRI for chemotherapy response of pancreatic ductal adenocarcinoma[J/OL]. Eur J Radiol, 2021, 145: 110036 [2022-06-26]. https://pubmed.ncbi.nlm.nih.gov/34814039/. DOI: 10.1016/j.ejrad.2021.110036.
[28]
TANG W, LIU W, LI H M, et al. Quantitative dynamic contrast-enhanced MR imaging for the preliminary prediction of the response to gemcitabine-based chemotherapy in advanced pancreatic ductal carcinoma[J/OL]. Eur J Radiol, 2019, 121: 108734 [2022-06-26]. https://pubmed.ncbi.nlm.nih.gov/31743881/. DOI: 10.1016/j.ejrad.2019.108734.
[29]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication ofMyocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017.
[30]
O'BRIEN A T, GIL K E, VARGHESE J, et al. T2 mapping in myocardial disease: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 33 [2023-04-01]. https://pubmed.ncbi.nlm.nih.gov/35659266/. DOI: 10.1186/s12968-022-00866-0.
[31]
KANG J H, LEE S S, KIM J H, et al. Multiparametric MRI for prediction of treatment response to neoadjuvant FOLFIRINOX therapy in borderline resectable or locally advanced pancreatic cancer[J]. Eur Radiol, 2021, 31(2): 864-874. DOI: 10.1007/s00330-020-07134-8.
[32]
TOMASZEWSKI M R, DOMINGUEZ-VIQUEIRA W, ORTIZ A, et al. Heterogeneity analysis of MRI T2 maps for measurement of early tumor response to radiotherapy[J/OL]. NMR Biomed, 2021, 34(3): e4454 [2023-04-01]. https://pubmed.ncbi.nlm.nih.gov/33325086/. DOI: 10.1002/nbm.4454.
[33]
ZHANG Z Z, ZHOU N N, GUO X Y, et al. Pretherapeutic assessment of pancreatic cancer: comparison of FDG PET/CT plus delayed PET/MR and contrast-enhanced CT/MR[J/OL]. Front Oncol, 2021, 11: 790462 [2022-09-29]. https://pubmed.ncbi.nlm.nih.gov/35096590/. DOI: 10.3389/fonc.2021.790462.
[34]
LI J D, FU C J, ZHAO S, et al. The progress of PET/MRI in clinical management of patients with pancreatic malignant lesions[J/OL]. Front Oncol, 2023, 13: 920896 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/37188192/. DOI: 10.3389/fonc.2023.920896.
[35]
WANG Z J, BEHR S, CONSUNJI M V, et al. Early response assessment in pancreatic ductal adenocarcinoma through integrated PET/MRI[J]. AJR Am J Roentgenol, 2018, 211(5): 1010-1019. DOI: 10.2214/AJR.18.19602.
[36]
HARDER F N, JUNGMANN F, KAISSIS G A, et al. 18F-FDG PET/MRI enables early chemotherapy response prediction in pancreatic ductal adenocarcinoma[J/OL]. EJNMMI Res, 2021, 11(1): 70 [2022-06-16]. https://pubmed.ncbi.nlm.nih.gov/34322781/. DOI: 10.1186/s13550-021-00808-4.
[37]
PANDA A, GARG I, TRUTY M J, et al. Borderline resectable and locally advanced pancreatic cancer: FDG PET/MRI and CT tumor metrics for assessment of pathologic response to neoadjuvant therapy and prediction of survival[J]. AJR Am J Roentgenol, 2021, 217(3): 730-740. DOI: 10.2214/AJR.20.24567.
[38]
XU J W, ZHAN H X, LI F, et al. Neoadjuvant therapy for pancreatic cancer: limitations and advances of response assessment (Review)[J/OL]. Oncol Rep, 2021, 45(4): 26 [2023-09-20]. https://pubmed.ncbi.nlm.nih.gov/33649823/. DOI: 10.3892/or.2021.7977.
[39]
AKITA H, TAKAHASHI H, OHIGASHI H, et al. FDG-PET predicts treatment efficacy and surgical outcome of pre-operative chemoradiation therapy for resectable and borderline resectable pancreatic cancer[J]. Eur J Surg Oncol, 2017, 43(6): 1061-1067. DOI: 10.1016/j.ejso.2017.03.015.
[40]
方杰, 黄小华, 刘念, 等. 影像组学在胰腺癌疗效评估中的研究进展[J]. 磁共振成像, 2021, 12(10): 105-108. DOI: 10.12015/issn.1674-8034.2021.10.027.
FANG J, HUANG X H, LIU N, et al. Research progress of radiomics in evaluation of curative effect of pancreatic cancer[J]. Chin J Magn Reson Imag, 2021, 12(10): 105-108. DOI: 10.12015/issn.1674-8034.2021.10.027.
[41]
DUAN Y L, YANG G J, MIAO W J, et al. Computed tomography-based radiomics analysis for prediction of response to neoadjuvant chemotherapy in breast cancer patients[J]. J Comput Assist Tomogr, 2023, 47(2): 199-204. DOI: 10.1097/RCT.0000000000001426.
[42]
ROSSI G, ALTABELLA L, SIMONI N, et al. Computed tomography-based radiomic to predict resectability in locally advanced pancreatic cancer treated with chemotherapy and radiotherapy[J]. World J Gastrointest Oncol, 2022, 14(3): 703-715. DOI: 10.4251/wjgo.v14.i3.703.
[43]
SIMPSON G, SPIELER B, DOGAN N, et al. Predictive value of 0.35T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: a pilot study[J]. Med Phys, 2020, 47(8): 3682-3690. DOI: 10.1002/mp.14200.
[44]
ERSTAD D J, SOJOODI M, TAYLOR M S, et al. Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI[J]. Clin Cancer Res, 2020, 26(18): 5007-5018. DOI: 10.1158/1078-0432.CCR-18-1359.
[45]
郑祥, 沈芳敏, 郑德春, 等. 磁共振扩散峰度成像评价宫颈癌放疗早期疗效的应用价值[J]. 磁共振成像, 2023, 14(2): 68-72, 82. DOI: 10.12015/issn.1674-8034.2023.02.012.
ZHENG X, SHEN F M, ZHENG D C, et al. The application of magnetic resonance diffusion kurtosis imaging in efficacy evaluation of early radiotherapy of cervical carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(2): 68-72, 82. DOI: 10.12015/issn.1674-8034.2023.02.012.
[46]
鲁忠燕, 张皓, 岳梦颖, 等. ~1H-MRS在乳腺癌中的研究进展[J]. 磁共振成像, 2021, 12(1): 112-114. DOI: 10.12015/issn.1674-8034.2021.01.027.
LU Z Y, ZHANG H, YUE M Y, et al. Research progress of ~1H-MRS in breast cancer[J]. Chin J Magn Reson Imag, 2021, 12(1): 112-114. DOI: 10.12015/issn.1674-8034.2021.01.027.
[47]
马文婷, 王莉莉, 魏照坤, 等. 酰胺质子转移成像在直肠癌中的研究进展[J]. 磁共振成像, 2023, 14(3): 189-192, 197. DOI: 10.12015/issn.1674-8034.2023.03.035.
MA W T, WANG L L, WEI Z K, et al. Research progress of amide proton transfer imaging in rectal neoplasms[J]. Chin J Magn Reson Imag, 2023, 14(3): 189-192, 197. DOI: 10.12015/issn.1674-8034.2023.03.035.
[48]
LI J, LIN L J, GAO X M, et al. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma[J/OL]. Front Oncol, 2021, 11: 783544 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/35047400/. DOI: 10.3389/fonc.2021.783544.
[49]
GRANATA V, FUSCO R, SANSONE M, et al. Magnetic resonance imaging in the assessment of pancreatic cancer with quantitative parameter extraction by means of dynamic contrast-enhanced magnetic resonance imaging, diffusion kurtosis imaging and intravoxel incoherent motion diffusion-weighted imaging[J/OL]. Therap Adv Gastroenterol, 2020, 13: 1756284819885052 [2023-09-20]. https://pubmed.ncbi.nlm.nih.gov/32499833/. DOI: 10.1177/1756284819885052.

上一篇 功能磁共振及放射组学在肝移植中的研究进展
下一篇 MRI评估宫颈癌盆腔淋巴结转移的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2