分享:
分享到微信朋友圈
X
临床研究
磁共振动脉自旋标记成像在2型糖尿病肾功能损伤及分期中的应用价值
刘键 吴瑜 徐敏 张训兰 陈恒志 王荣品 曾宪春

Cite this article as: LIU J, WU Y, XU M, et al. Application of ASL in renal function injury and staging of T2DM[J]. Chin J Magn Reson Imaging, 2023, 14(11): 90-96.本文引用格式:刘键, 吴瑜, 徐敏, 等. 磁共振动脉自旋标记成像在2型糖尿病肾功能损伤及分期中的应用价值[J]. 磁共振成像, 2023, 14(11): 90-96. DOI:10.12015/issn.1674-8034.2023.11.015.


[摘要] 目的 探讨动脉自旋标记(arterial spin labeling, ASL)成像定量评估2型糖尿病(type 2 diabetes mellitus, T2DM)肾脏血流灌注与肾功能损伤的相关性和临床应用价值。材料与方法 前瞻性招募不同程度肾功能损伤的T2DM患者,根据有无蛋白尿及估算肾小球滤过率(estimated glomerular filtration rate, eGFR)值将其分组:A组,T2DM患者,无蛋白尿;B组,出现蛋白尿且eGFR≥60 mL/(min·1.73 m2),即糖尿病肾病(diabetic kidney disease, DKD)Ⅰ~Ⅱ期;C组,15 mL/(min·1.73 m2)≤eGFR<60 mL/(min·1.73 m2),即DKD Ⅲ~Ⅳ期。同时纳入健康志愿者作为对照组。行双肾常规MRI平扫及ASL扫描获取双侧肾皮质肾血流量(renal blood flow, RBF)值,同时收集肾功能及尿常规等生化指标,分析各组肾皮质RBF值的差异性,以及相关指标的相关性、敏感性及最佳诊断阈值等。结果 左肾与右肾肾皮质RBF值差异无统计学意义(P均>0.05)。四组受试者肾皮质RBF值总体差异具有统计学意义(P均<0.001)。进一步两两比较:与对照组相比,A、B、C组肾皮质RBF值明显降低(P均<0.05),对照组为(174.28±23.89)mL/(100 g·min),A组降低为(159.66±28.54)mL/(100 g·min),B组降低为(142.16±19.49)mL/(100 g·min),C组最低为(122.55±18.59)mL/(100 g·min),降低比例依次为8%、18%、30%。与A、B两组比较,C组肾皮质RBF值明显降低(P均<0.05),降低比例分别为23%、14%。B组与A组相比,肾皮质RBF值降低(P均<0.05),降低比例为11%。肾皮质RBF值与血清肌酸酐(serum creatinine, Scr)呈负相关(r=-0.429, P<0.001),而与eGFR呈正相关(r=0.377, P<0.001)。肾皮质RBF值鉴别健康志愿者与T2DM的AUC值为0.651(95% CI: 0.520-0.768);鉴别T2DM与DKD的AUC值为0.734(95% CI: 0.619-0.829);鉴别早期DKD与中晚期DKD的AUC为0.760(95% CI: 0.580-0.891)。结论 ASL成像可无创定量评估肾脏血流灌注变化,且根据RBF减低可有效评估T2DM患者病情进展程度,有望成为无创评估T2DM患者肾功能损害的有效影像检查方法。
[Abstract] Objective To explore the correlation and clinical value of arterial spin labeling (ASL) in quantitatively evaluating renal blood flow (RBF) and renal injury in patients with type 2 diabetes mellitus (T2DM).Materials and Methods Prospective recruitment of T2DM patients with varying degrees of renal function impairment was conducted. The patients were grouped based on the presence or absence of proteinuria and the estimated glomerular filtration rate (eGFR). Group A included T2DM patients without proteinuria, group B consisted of patients with proteinuria and eGFR≥60 mL/(min·1.73 m²), representing diabetic kidney disease (DKD) stages Ⅰ-Ⅱ, and group C comprised patients with 15 mL/(min·1.73 m²)≤eGFR<60 mL/(min·1.73 m²), representing DKD stages Ⅲ-Ⅳ. Healthy volunteers were included as a control group. Dual-kidney routine MRI scans and ASL scans were performed to obtain RBF values in the cortical region of both kidneys. Additionally, biochemical indicators such as renal function and urine analysis were collected. Statistical analysis was conducted to compare the differences in cortical RBF values among the groups and assess the correlation, sensitivity, and optimal diagnostic thresholds of the relevant indicators.Results No significant difference in cortical RBF values was found between the left and right kidneys (all P>0.05). There was a significant overall difference in cortical RBF values among the four groups (all P<0.001). Compared to the control group (174.28±23.89) mL/(100 g·min), group A exhibited a decrease to (159.66±28.54) mL/(100 g·min), group B decrease to (142.16±19.49) mL/(100 g·min), and group C showed the lowest value at (122.55±18.59) mL/(100 g·min). The reductions in RBF values for groups A, B, and C were 8%, 18%, and 30%, respectively. Group C had a significant decrease in cortical RBF values compared to groups A and B (both P<0.05), with reductions of 23% and 14%, respectively. Group B also had a significant decrease compared to group A (P<0.05), with a reduction of 11%. Cortical RBF values showed a negative correlation with serum creatinine (Scr) levels (r=-0.429, P<0.001) and a positive correlation with eGFR (r=0.377, P<0.001). The area under the curve (AUC) values of cortical RBF in distinguishing healthy volunteers from T2DM were 0.651 (95% CI: 0.520-0.768), distinguishing T2DM from DKD were 0.734 (95% CI: 0.619-0.829), and distinguishing early-stage DKD from mid-to-late-stage DKD was 0.760 (95% CI: 0.580-0.891).Conclusions ASL imaging provides a noninvasive quantitative evaluation of RBF changes and can effectively assess the progression of T2DM based on decreased RBF. It holds promise as an effective imaging method for noninvasively evaluating renal function damage in patients with T2DM.
[关键词] 糖尿病,2型;糖尿病肾病;肾血流量;磁共振成像;动脉自旋标记
[Keywords] diabetes mellitus, type 2;diabetic kidney disease;renal blood flow;magnetic resonance imaging;arterial spin labeling

刘键    吴瑜    徐敏    张训兰    陈恒志    王荣品    曾宪春 *  

贵州省人民医院医学影像科,贵阳 550002

通信作者:曾宪春,E-mail:zengxianchun04@foxmail.com

作者贡献声明:曾宪春设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金资金资助;刘键起草和撰写稿件,获取、分析或解释本研究的数据;吴瑜、徐敏、张训兰、陈恒志、王荣品参与资料的分析与解释,撰写论文或对其学术内容的重要方面进行了关键修改,对最终要发表的论文版本进行了全面的审阅和把关;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82060314
收稿日期:2023-04-30
接受日期:2023-08-09
中图分类号:R445.2  R587.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.11.015
本文引用格式:刘键, 吴瑜, 徐敏, 等. 磁共振动脉自旋标记成像在2型糖尿病肾功能损伤及分期中的应用价值[J]. 磁共振成像, 2023, 14(11): 90-96. DOI:10.12015/issn.1674-8034.2023.11.015.

0 前言

       糖尿病(diabetes mellitus, DM)是一组因胰岛素绝对或相对分泌不足和(或)胰岛素利用障碍引起的代谢紊乱性疾病,已成为当今最常见和严重的慢性疾病之一[1],全球患病率正逐年上升,预计到2045年患者将超过7.8亿[2]。其中以2型糖尿病(type 2 diabetes mellitus, T2DM)高发,占我国DM患者的95%以上[3]。T2DM损害肾脏结构和功能进而引发糖尿病肾病(diabetic kidney disease, DKD),是患者致死的重要原因[4]。据研究表明[5],肾组织血流灌注受损从而导致肾脏缺氧是DKD发生发展的关键因素。而目前尚缺乏评估肾脏血流灌注功能的“金标准”,亟待寻找一种能在整个器官水平和局部组织水平上量化肾脏血流灌注改变的方法。动脉自旋标记(arterial spin labeling, ASL)成像是一种MRI无创定量技术,可直接量化组织的血流灌注情况[6],早期主要应用于脑组织研究中,并展现出巨大的应用潜力[7, 8, 9, 10]。现已应用于急性肾损伤、肾移植、慢性肾脏疾病和代谢综合征等研究的肾脏灌注成像中[11, 12, 13, 14, 15],但ASL在T2DM肾脏损伤严重程度评估中的应用价值仍有待进一步研究。因此,本研究旨在通过ASL成像技术量化T2DM肾脏血流动力学变化,并与肾功能损害程度对比,为T2DM肾功能损伤及分期评估探寻一种无创、定量的检查方法。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经贵州省人民医院伦理委员会批准,批准文号:伦审(科研)2022-02号,所有受试者均已签署知情同意书。前瞻性招募2021年10月至2022年12月经本院确诊为T2DM及T2DM所致DKD患者为实验组,纳入标准:(1)临床诊断为T2DM或DKD;(2)年龄18~80岁。参照诊疗指南及专家共识[16, 17],根据有无蛋白尿和估算肾小球滤过率(estimated glomerular filtration rate, eGFR)值将其分为三组:A组(T2DM患者,无蛋白尿)、B组[有蛋白尿且eGFR≥60 mL/(min·1.73 m2),即DKD Ⅰ~Ⅱ期]和C组[15 mL/(min·1.73 m2)≤eGFR<60 mL/(min·1.73 m2),即DKD Ⅲ~Ⅳ期]。同时纳入健康志愿者20例作为对照组,纳入标准:(1)年龄18~80岁;(2)近1年血糖、尿常规、肾功能检查正常。实验组及对照组排除标准:(1)有其他明确原因导致肾损伤及肾脏血流循环障碍者;(2)呼吸配合不佳;(3)有MRI检查禁忌证。

1.2 仪器与方法

       采用GE 3.0 T超导MRI扫描仪(Discovery MR 750W, GE Healthcare, Milwaukee, WI)及8通道体部专用相控阵线圈完成MRI检查。所有受试者均在检查前禁食、禁水4~6 h,并在检查前进行规范呼吸屏气训练。在单次屏气下行双肾常规T2WI轴位和冠状位扫描,扫描范围包括双肾上缘至双肾下缘,扫描参数:TR 1060 ms,TE 123 ms,翻转角150°,FOV 350 mm×350 mm,层厚7 mm,矩阵384×256。采用3D脉冲式ASL(pulsed ASL, PASL)行双肾ASL冠状位扫描,在肾动脉水平上方10 cm处进行腹主动脉轴向平面标记,标记后延迟1500 ms,嘱患者在呼气末屏气扫描,每次屏气时间为18 s,共4次,获得双肾血流灌注参数图,扫描参数:标记后延迟时间(post label delay, PLD)1500 ms,TR 7000 ms,TE 19 ms,翻转角90°,FOV 380 mm×380 mm,层厚7 mm,矩阵96×96。RBF值按公式(1)、(2)、(3)计算。

       f为灌注率,单位为mL/(100 g•min);λ为血液中水分子组成系数,λ=0.9 mL/g;α为反转效率,α=0.75;T1,blood为动脉血纵向弛豫时间;△为标记像与未标记像的纵向磁化矢量差值;△t为动脉通过时间;t为标记后开始成像时间;M0为平衡磁化强度;τ为脉冲持续时间,τ=1600 ms;ω为标记后延迟时间,ω=1500 ms;R1app为纵向松弛速度;R1为无血流状态下纵向松弛速率。

1.3 图像分析

       将ASL血流灌注参数图传至GE AW4.6工作站。由2名具有10年以上腹部影像诊断经验的副主任医师采用双盲法进行双侧肾皮质肾血流量(renal blood flow, RBF)值测量。先确定肾皮质位置,再分别于肾门中心层面每侧肾脏上、中、下极肾皮质内各勾画2个圆形ROI测量RBF值,需避开血管及伪影,ROI范围为4~20 mm2,并取2名医生测量平均值作为最终测量值,分别记录左右肾的平均RBF值[18]图1)。

图1  男,57岁,糖尿病肾病Ⅱ期患者。1A:双肾血流灌注参数图,双侧肾脏肾门中心层面上、中、下极肾皮质内各勾画2个圆形ROI;1B:双肾血流灌注伪彩图,色阶0~200,色阶越高,RBF值越大。
Fig. 1  A 57-year-old male with diabetic kidney disease (DKD) Ⅱ. 1A: Bilateral renal perfusion images show two circular ROI drawn in the upper, middle, and lower poles of the renal cortex on the central plane of the renal hilum of both kidneys. 1B: RBF color image of both kidneys. The color level is 0-200, and the higher of color level, the greater of RBF.

1.4 生化指标

       MRI检查前一周采集A、B、C三组受试者的空腹静脉血,检测血清肌酐(serum creatinine, Scr)、尿素氮(blood urea nitrogen, BUN)、尿酸(uric acid, UA)和空腹血糖(fasting plasma glucose, FPG);同时留取适量尿液(注意女性避开月经期),检测尿微量白蛋白(urinary microalbuminuria, UMA),计算尿白蛋白/肌酐比值(urinary albumin to creatinine ratio, UACR);使用简化肾脏病膳食改良试验(modification of diet in renal disease study, MDRD)公式计算eGFR,eGFR=(186×Scr)-(1.154×年龄)-0.203×(女性0.742)。

1.5 统计学分析

       采用SPSS 26.0(https://www.ibm.com/cn-zh/analytics/spss-statistics-software)统计学软件进行统计分析。采用单样本K-S检验正态性,服从正态分布以(x¯±s)描述,不服从正态分布以MQ1,Q3)表示。采用组内相关系数(intra-class correlation coefficient, ICC)评价肾皮质RBF值测量一致性。采用配对t检验比较左右侧肾皮质RBF值差异。多组间比较服从正态分布采用单因素方差分析,不服从正态分布采用Kruskal-Wallis H检验,多重比较采用LSD法。服从正态分布的数据的相关性检验采用Pearson相关系数,不服从正态分布则采用Spearman相关系数进行分析。采用受试者工作特征(receiver operating characteristic, ROC)曲线分析肾皮质RBF值对T2DM肾功能损伤的诊断价值。检验水准为双侧检验α=0.05。

2 结果

2.1 一般资料

       本研究纳入T2DM及DKD患者共94例,排除肾脏器质性病变6例,ASL扫描共需4次屏气,12名患者因多次屏气呼吸运动配合不佳致图像质量不佳而排除,最终行ASL扫描76例,其中男40例,女36例,年龄26~74(55±10)岁。同时纳入20例健康志愿者作为健康对照组,其中男8例,女12例,年龄42~67(54±2)岁(表1)。

表1  患者基本临床信息
Tab. 1  Participant demographic characteristics

2.2 左右侧肾皮质RBF值比较

       2名影像科医生所测肾皮质RBF值的ICC为0.866(95% CI: 0.822-0.900),ICC>0.75表明肾皮质RBF值具有较高的可重复性。进而对双肾皮质RBF值进行比较,差异无统计学意义(P均>0.05)(表2)。故将双肾平均肾皮质RBF值作为最终测量结果进行后续统计学分析。

表2  肾脏损伤程度不同的T2DM患者肾脏血流灌注差异比较
Tab. 2  Comparison of renal blood perfusion in T2DM with different degree of renal injury

2.3 肾皮质RBF值组间比较

       对照组、A组、B组、C组肾皮质RBF值总体差异显著(左肾:F=11.705,P<0.001;右肾:F=12.822,P<0.001;双肾:F=13.293,P<0.001)。进一步两两比较:A、B、C各组与对照组相比,肾皮质RBF值显著降低(P均<0.05),对照组为(174.28±23.89)mL/(100 g•min),A组降低为(159.66±28.54)mL/(100 g•min),B组降低为(142.16±19.49)mL/(100 g•min),C组最低为(122.55±18.59)mL/(100 g•min),降低比例依次为8%、18%、30%;与A、B两组比较,C组的肾皮质RBF值显著降低(P均<0.05),降低比例分别为23%、14%;B组与A组相比,肾皮质RBF值显著降低(P均<0.05),降低比例为11%(表2图23)。

图2  肾脏损伤程度不同的2型糖尿病(T2DM)患者双肾血流灌注箱式图。健康对照组、T2DM、糖尿病肾病(DKD)Ⅰ~Ⅱ期、DKD Ⅲ~Ⅳ期双侧肾皮质RBF值呈递减趋势。*:P<0.05,**:P<0.01,***:P<0.001。RBF:肾血流量。
Fig. 2  Bilateral renal perfusion box map in type 2 diabetes mellitus (T2DM) with different degree of renal injury. The renal blood flow (RBF) of bilateral renal cortex of healthy control, diabetic kidney disease (DKD) Ⅰ-Ⅱ and DKD Ⅲ-Ⅳ show a decreasing trend. *: P<0.05, **: P<0.01, ***: P<0.001.
图3  肾脏损伤程度不同的T2DM患者双肾血流灌注情况。3A、3C、3E、3G为双肾RBF参数图,3B、3D、3F、3H为双肾RBF伪彩图,色阶0~200,色阶越高,RBF值越大。3A~3B:男,48岁,健康志愿者,右肾皮质RBF值为210.46 mL/(100 g·min),左肾皮质RBF值为228.22 mL/(100 g·min);3C~3D:女,56岁,T2DM患者,右肾皮质RBF值为181.16 mL/(100 g·min),左肾皮质RBF值为173.21 mL/(100 g·min);3E~3F:男,57岁,糖尿病肾病(DKD)Ⅱ期患者,右肾皮质RBF值为147.82 mL/(100 g·min),左肾皮质RBF值为154.30 mL/(100 g·min);3G~3H:女,53岁,DKD Ⅳ期患者,右肾皮质RBF值为123.49 mL/(100 g·min),左肾皮质RBF值为117.94 mL/(100 g·min)。随DKD病程进展肾皮质RBF值呈递减趋势。RBF:肾血流量。
Fig. 3  Bilateral renal perfusion in type 2 diabetes mellitus (T2DM) with different degrees of renal injury. 3A, 3C, 3E, 3G: Renal blood flow (RBF) images of both kidneys. 3B, 3D, 3F, 3H: RBF color images of both kidneys. The color level is 0-200, and the higher of color level, the greater of RBF. 3A-3B: A 48-year-old healthy male, the RBF of the right renal cortex is 210.46 mL/(100 g·min), and that of the left renal cortex is 228.22 mL/(100 g·min); 3C-3D: A 56-year-old female with T2DM, the RBF of the right renal cortex is 181.16 mL/(100 g·min), and that of the left renal cortex is 173.21 mL/(100 g·min); 3E-3F: A 57-year-old male with DKD Ⅱ, the RBF of the right renal cortex is 147.82 mL/(100 g·min), and that of the left renal cortex is 154.30 mL/(100 g·min); 3G-3H: A 53-year-old female with DKD Ⅳ, the RBF of the right renal cortex is 123.49 mL/(100 g·min), and that of the left renal cortex is 117.94 mL/(100 g·min). The RBF in the renal cortex shows a decreasing trend with the progression of DKD.

2.4 肾皮质RBF值与生化指标的相关性分析

       肾皮质RBF值与Scr呈负相关(r=-0.429, P<0.001),而与eGFR呈正相关(r=0.377, P<0.001)。但与BUN、UMA、UACR相关性较弱(r=-0.300, P<0.001; r=-0.276, P<0.05; r=-0.327, P<0.001)(图4)。

图4  肾皮质RBF与生化指标的相关性散点图。4A:肾皮质RBF值与血清肌酸酐(Scr)呈负相关;4B:肾皮质RBF值与估算肾小球滤过率(eGFR)呈正相关。RBF:肾血流量。
Fig. 4  The scatter plot of the correlation between renal blood flow (RBF) and biochemical indexes in renal cortex. 4A: The RBF in renal cortex is negatively correlated with serum creatinine (Scr); 4B: The RBF of renal cortex is positively correlated with estimated glomerular filtration rate (eGFR).

2.5 肾皮质RBF值诊断效能ROC曲线分析

       肾脏ASL的肾皮质RBF值诊断不同肾功能阶段T2DM患者的ROC曲线结果见表3。ASL肾皮质RBF值鉴别正常与T2DM的AUC值为0.651(95% CI: 0.520-0.768),截断值为158.9 mL/(100 g·min)(图5A);鉴别T2DM与DKD的AUC值为0.734(95% CI: 0.619-0.829),截断值为140.8 mL/(100 g∙min)(图5B);鉴别早期DKD与中晚期DKD的AUC为0.760(95% CI: 0.580-0.891),截断值为134.9 mL/(100 g∙min)(图5C)。

图5  肾脏ASL诊断T2DM及DKD的ROC曲线。5A:鉴别诊断正常与T2DM;5B:鉴别诊断T2DM与DKD;5C:鉴别诊断早期DKD与中晚期DKD。ASL:动脉自旋标记;T2DM:2型糖尿病;DKD:糖尿病肾病;ROC:受试者工作特征。
Fig. 5  ROC curves for ASL diagnosis of T2DM and DKD in the kidneys. 5A: Discrimination between normal and T2DM; 5B: Discrimination between T2DM and DKD; 5C: Discrimination between early-stage DKD and mid-to-late-stage DKD. ASL: arterial spin labeling; T2DM: type 2 diabetes mellitus; DKD: diabetic kidney disease; ROC: receiver operating characteristic.
表3  肾脏ASL对T2DM肾脏损伤严重程度的诊断效能
Tab. 3  Diagnostic efficacy of renal ASL in the severity of renal injury in T2DM

3 讨论

       本研究采用ASL无创评估T2DM患者的肾脏血流动力学损害程度,是目前肾脏ASL在T2DM中最大的研究队列之一。本研究表明,与健康人群相比,在eGFR正常的T2DM患者中可观察到肾脏血流灌注功能受损,且随T2DM肾脏损害加重RBF呈递减趋势。此外,ASL有望成为T2DM患者肾功能损伤分期的有效影像检查方法。

3.1 肾脏ASL成像与T2DM肾脏血流灌注

       T2DM全球高发且呈逐年上升趋势,终末期DKD是其严重且常见的并发症之一,已成为21世纪重大健康隐患[1, 19, 20]。静息状态下,肾脏约占人体20%~25%的心输出量,从而保证血浆被肾小球充分滤过,因此肾脏对调节体液平衡、维持内环境稳态至关重要,肾脏血流灌注改变可能会导致肾脏滤过功能受损[21]。目前主要以eGFR及尿白蛋白等生化指标作为T2DM肾功能损伤的评价指标[22],但DKD病程进展可能与尿白蛋白排泄及eGFR降低不一致,生化指标尚不足以准确评价T2DM肾脏损害程度[23]。因此,以非侵入性检查方法定量评估T2DM肾脏灌注和滤过功能改变,对准确诊断和客观评估肾功能损害严重程度具有重要意义。ASL可利用氢质子作为内源性对比剂,通过“标记像”与“未标记像”的信号强度差反映组织血流灌注情况[24, 25]。早期受胃肠道气体及呼吸运动影响而导致磁场不均匀性增加,图像信噪比降低,限制其在腹部推广应用[26]。随着MRI扫描仪及ASL标记方法的优化升级,使ASL得以应用于腹部成像中[24, 27]。PASL可采用单个短脉冲或有限脉冲数标记血流,缩短成像时间,可通过短时间屏气快速成像以减少运动伪影;而采用3D运动校正的伪连续ASL(pseudo-continuous ASL, pCASL)技术可通过自由呼吸减少扫描时间。但总体而言,PASL具有更好的信噪比及可重复性[28],故本研究采用PASL标记方法。此外,肾总血流量80%~85%位于肾皮质内,因而肾脏血流灌注具有区域性[5]。正是由于肾髓质血供较少,ASL对髓质血流变化敏感性低,且反映肾脏滤过功能的肾小球主要位于皮质内,故本研究主要选择肾皮质RBF值进行分析探讨。

3.2 T2DM患者肾脏血流动力学变化

       本研究表明T2DM患者肾皮质RBF值显著降低为159.66 mL/(100 g∙min),与大部分研究一致[18, 29]。而BROWN等[30]研究中T2DM患者肾皮质RBF值较健康者显著升高,可能因该研究T2DM患者仅有2例所致。T2DM长期慢性高血糖将导致肾脏毛细血管内皮损伤、肾小球基底膜增厚和肾间质纤维化,最终导致入球小动脉阻力增加,RBF减少[31]。早在eGFR正常的T2DM患者中T2DM肾脏血流灌注功能可能已发生改变[32],应尽早关注T2DM肾脏血流灌注改变,及时采取干预措施,预防病程进展。

3.3 DKD患者肾脏血流动力学变化

       本研究中DKD Ⅰ~Ⅱ期肾皮质RBF值持续减低为142.16 mL/(100 g∙min),与MORA-GUTIÉRREZ等[32]研究一致。DKD早期肾脏微观结构及功能已发生改变,导致肾脏血流灌注显著降低,ASL有望在尿微量白蛋白发生变化之前及时发现肾脏血流动力学变化。随T2DM肾脏损害程度加重,RBF持续降低[30, 31, 32],DKD Ⅲ~Ⅳ期肾皮质RBF值降低至122.55 mL/(100 g∙min)。肾皮质RBF值与eGFR呈正相关[18, 32],与尿素氮、血肌酐、尿白蛋白及尿白蛋白/肌酐水平呈负相关[33, 34],ASL有助于反映T2DM肾脏滤过功能受损程度,但本研究中相关系数较小,可能由于中晚期DKD患者样本量偏少所致。通过ROC曲线分析表明,肾皮质RBF值对于鉴别正常与T2DM患者、T2DM与DKD患者,以及判断DKD的严重程度均有良好的诊断效能,对于T2DM患者肾功能分期具有重要辅助价值,是诊断DKD的有效量化参数。但关于T2DM不同研究中肾皮质RBF数值差异较大,健康者肾皮质RBF范围为139~427 mL/(100 g∙min),在不同疾病患者中为83~412 mL/(100 g∙min)[27],可能与各项研究所使用MRI扫描仪的场强、型号、成像序列、成像参数、后处理平台及受试者屏气配合等不同有关。但总体而言,ASL可作为测量肾皮质RBF值的MRI无创定量技术,肾皮质RBF值可用于监测不同病程中T2DM患者肾脏血流灌注及肾功能变化情况,可作为无创评估T2DM肾脏功能受损程度的影像学指标,但有待扫描方案标准化和在大规模多中心纵向研究中进行验证。

3.4 局限性

       本研究存在一定局限性:首先,由于肾皮质为肾脏血流最丰富区域,因此仅评估肾皮质的RBF值,尚未对肾髓质血流灌注情况进行研究;其次,未纳入DKD Ⅴ期的患者,且为单中心研究,课题组将在其后的研究中纳入DKD Ⅴ期患者并扩大样本量进行多中心研究。

4 结论

       综上所述,ASL成像可无创定量评估肾脏血流动力学变化,并根据RBF减低直观量化T2DM肾脏损伤程度,有望成为无创评估T2DM患者肾功能损害及分期的有效影像检查方法。

[1]
HUA F. New insights into diabetes mellitus and its complications: a narrative review[J/OL]. Ann Transl Med, 2020, 8(24): 1689 [2023-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812242/. DOI: 10.21037/atm-20-7243.
[2]
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119 [2023-03-27]. https://www.diabetesresearchclinicalpractice.com/article/S0168-8227(21)00478-2/fulltext. DOI: 10.1016/j.diabres.2021.109119.
[3]
MA R C W. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018, 61(6): 1249-1260. DOI: 10.1007/s00125-018-4557-7.
[4]
American Diabetes Association. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2021[J]. Diabetes Care, 2021, 44(Suppl 1): S151-S167. DOI: 10.2337/dc21-S011.
[5]
KENNEDY-LYDON T M, CRAWFORD C, WILDMAN S S, et al. Renal pericytes: regulators of medullary blood flow[J]. Acta Physiol, 2013, 207(2): 212-225. DOI: 10.1111/apha.12026.
[6]
WILLIAMS D S, DETRE J A, LEIGH J S, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Proc Natl Acad Sci U S A, 1992, 89(1): 212-216. DOI: 10.1073/pnas.89.1.212.
[7]
LUO W, WANG J, CHEN M M, et al. Alterations of cerebral blood flow and its connectivity in olfactory-related brain regions of type 2 diabetes mellitus patients[J/OL]. Front Neurosci, 2022, 16: 904468 [2023-03-27]. https://www.frontiersin.org/articles/10.3389/fnins.2022.904468/full. DOI: 10.3389/fnins.2022.904468.
[8]
LIU J K, YANG X, LI Y, et al. Cerebral blood flow alterations in type 2 diabetes mellitus: a systematic review and meta-analysis of arterial spin labeling studies[J/OL]. Front Aging Neurosci, 2022, 14: 847218 [2023-03-27]. https://www.frontiersin.org/articles/10.3389/fnagi.2022.847218/full. DOI: 10.3389/fnagi.2022.847218.
[9]
LI M R, LI Y F, ZHAO K, et al. Changes in the structure, perfusion, and function of the hippocampus in type 2 diabetes mellitus[J/OL]. Front Neurosci, 2022, 16: 1070911 [2023-03-27]. https://www.frontiersin.org/articles/10.3389/fnins.2022.1070911/full. DOI: 10.3389/fnins.2022.1070911.
[10]
ZHANG Y, ZHANG X L, MA G Y, et al. Neurovascular coupling alterations in type 2 diabetes: a 5-year longitudinal MRI study[J/OL]. BMJ Open Diabetes Res Care, 2021, 9(1): e001433 [2023-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816934/. DOI: 10.1136/bmjdrc-2020-001433.
[11]
MAO W, DING Y Q, DING X Q, et al. Capability of arterial spin labeling and intravoxel incoherent motion diffusion-weighted imaging to detect early kidney injury in chronic kidney disease[J]. Eur Radiol, 2023, 33(5): 3286-3294. DOI: 10.1007/s00330-022-09331-z.
[12]
WANG B, WANG Y F, LI L N, et al. Diffusion kurtosis imaging and arterial spin labeling for the noninvasive evaluation of persistent post-contrast acute kidney injury[J]. Magn Reson Imaging, 2022, 87: 47-55. DOI: 10.1016/j.mri.2021.12.004.
[13]
WANG W, YU Y M, LI X, et al. Early detection of subclinical pathology in patients with stable kidney graft function by arterial spin labeling[J]. Eur Radiol, 2021, 31(5): 2687-2695. DOI: 10.1007/s00330-020-07369-5.
[14]
VALENTIN B, STABINSKA J, REURIK F, et al. Feasibility of renal perfusion quantification by Fourier decomposition MRI[J]. Magn Reson Imaging, 2022, 85: 3-9. DOI: 10.1016/j.mri.2021.10.003.
[15]
LI X, WANG W, CHENG D R, et al. Perfusion and oxygenation in allografts with transplant renal artery stenosis: evaluation with functional magnetic resonance imaging[J/OL]. Clin Transplant, 2022, 36(11): e14806 [2023-03-27]. https://onlinelibrary.wiley.com/doi/10.1111/ctr.14806. DOI: 10.1111/ctr.14806.
[16]
中华医学会肾脏病学分会专家组. 糖尿病肾脏疾病临床诊疗中国指南[J]. 中华肾脏病杂志, 2021, 37(3): 255-304. DOI: 10.3760/cma.j.cn441217-20201125-00041.
Expert Group of Chinese Society of Nephrology. Chinese guidelines for diagnosis and treatment of diabetic kidney disease[J]. Chinese Journal of Nephrology, 2021, 37(3): 255-304. DOI: 10.3760/cma.j.cn441217-20201125-00041.
[17]
中华医学会肾脏病学分会专家组. 糖尿病肾脏疾病诊断、预后评估和生物标志物应用专家共识[J]. 中华肾脏病杂志, 2022, 38(8): 771-784. DOI: 10.3760/cma.j.cn441217-20220106-00112.
Chinese Society of Nephrology. Expert consensus on diagnosis, prognosis evaluation and biomarker application of diabetic kidney disease[J] . Chinese Journal of Nephrology, 2022, 38(8): 771-784. DOI: 10.3760/cma.j.cn441217-20220106-00112.
[18]
刘波, 梁明龙, 张久权, 等. 动脉自旋标记MRI评估2型糖尿病患者肾皮质灌注水平[J]. 中国医学影像技术, 2017, 33(5): 747-751. DOI: 10.13929/j.1003-3289.201608105.
LIU B, LIANG M L, ZHANG J Q, et al. Assessment of renal cortex blood flow with arterial spin labeling MRI in patients with type 2 diabetes[J]. Chin J Med Imag Technol, 2017, 33(5): 747-751. DOI: 10.13929/j.1003-3289.201608105.
[19]
PRASAD N, VEERANKI V, BHADAURIA D, et al. Non-diabetic kidney disease in type 2 diabetes mellitus: a changing spectrum with therapeutic ascendancy[J/OL]. J Clin Med, 2023, 12(4): 1705 [2023-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964578/. DOI: 10.3390/jcm12041705.
[20]
SRIDHAR V S, YAU K, BENHAM J L, et al. Sex and gender related differences in diabetic kidney disease[J]. Semin Nephrol, 2022, 42(2): 170-184. DOI: 10.1016/j.semnephrol.2022.04.007.
[21]
ZHANG J L, LEE V S. Renal perfusion imaging by MRI[J]. J Magn Reson Imaging, 2020, 52(2): 369-379. DOI: 10.1002/jmri.26911.
[22]
CHEN X Y, XIAO W X, LI X C, et al. In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria[J]. Front Med, 2014, 8(4): 471-476. DOI: 10.1007/s11684-014-0365-8.
[23]
LEE C H, LAM K S L. Biomarkers of progression in diabetic nephropathy: the past, present and future[J]. J Diabetes Investig, 2015, 6(3): 247-249. DOI: 10.1111/jdi.12329.
[24]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[25]
HERNANDEZ-GARCIA L, ARAMENDÍA-VIDAURRETA V, BOLAR D S, et al. Recent technical developments in ASL: a review of the state of the art[J]. Magn Reson Med, 2022, 88(5): 2021-2042. DOI: 10.1002/mrm.29381.
[26]
BECKER A S, ROSSI C. Renal arterial spin labeling magnetic resonance imaging[J/OL]. Nephron, 2017, 135(1): 1-5 [2023-03-27]. https://sci-hub.ru/10.1159/000450797. DOI: 10.1159/000450797.
[27]
ODUDU A, NERY F, HARTEVELD A A, et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper[J/OL]. Nephrol Dial Transplant, 2018, 33(suppl_2): ii15-ii21 [2023-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106644/. DOI: 10.1093/ndt/gfy180.
[28]
HARTEVELD A A, BOER A D, FRANKLIN S L, et al. Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI[J]. MAGMA, 2020, 33(1): 81-94. DOI: 10.1007/s10334-019-00806-7.
[29]
王逸敏, 刘爱连, 刘静红, 等. 动脉自旋标记与多期增强技术评估不同年龄正常人肾血流[J]. 中国医学影像技术, 2017, 33(2): 265-270. DOI: 10.13929/j.1003-3289.201606164.
WANG Y M, LIU A L, LIU J H, et al. Arterial spin labeling and multi-phase enhancement technique in evaluation of renal blood flow in different age healthy subjects[J]. Chin J Med Imag Technol, 2017, 33(2): 265-270. DOI: 10.13929/j.1003-3289.201606164.
[30]
BROWN R S, SUN M R M, STILLMAN I E, et al. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy[J]. Nephrol Dial Transplant, 2020, 35(6): 970-978. DOI: 10.1093/ndt/gfz066.
[31]
FALKEVALL A, MEHLEM A, PALOMBO I, et al. Reducing VEGF-B signaling ameliorates renal lipotoxicity and protects against diabetic kidney disease[J]. Cell Metab, 2017, 25(3): 713-726. DOI: 10.1016/j.cmet.2017.01.004.
[32]
MORA-GUTIÉRREZ J M, GARCIA-FERNANDEZ N, SLON ROBLERO M F, et al. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy[J]. J Magn Reson Imaging, 2017, 46(6): 1810-1817. DOI: 10.1002/jmri.25717.
[33]
LI L P, TAN H, THACKER J M, et al. Evaluation of renal blood flow in chronic kidney disease using arterial spin labeling perfusion magnetic resonance imaging[J]. Kidney Int Rep, 2017, 2(1): 36-43. DOI: 10.1016/j.ekir.2016.09.003.
[34]
WANG J, ZHANG Y D, YANG X D, et al. Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI[J]. Acad Radiol, 2012, 19(10): 1194-1200. DOI: 10.1016/j.acra.2012.04.021.

上一篇 基于深度学习的影像组学预测直肠癌T2与T3分期
下一篇 磁共振酰胺质子转移成像与表观扩散系数在膀胱癌术前病理分级评估中的应用
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2