分享:
分享到微信朋友圈
X
综述
MRI在抑郁症躯体化症状患者中的研究进展
李汶玲 王琳 赵小菊

Cite this article as: LI W L, WANG L, ZHAO X J. Research progress of MRI in patients with somatization symptoms of depression[J]. Chin J Magn Reson Imaging, 2023, 14(11): 155-158, 187.本文引用格式:李汶玲, 王琳, 赵小菊. MRI在抑郁症躯体化症状患者中的研究进展[J]. 磁共振成像, 2023, 14(11): 155-158, 187. DOI:10.12015/issn.1674-8034.2023.11.026.


[摘要] 抑郁症是一种常见的神经精神障碍性疾病,其主要的临床表现除持续的心情低落及快感缺失外,大多数患者还会出现躯体化症状。躯体化症状是指身体出现各种不适症状,而这些不适症状不能用现有的疾病过程来合理解释;伴有躯体化症状的抑郁症患者往往易发生误诊且预后较差。近年来,神经影像学的研究进展迅速,为研究抑郁症躯体化症状的神经机制提供了重要的生物学证据。本文对近年来与抑郁症躯体化症状相关的脑结构和脑功能的影像学研究进行综述,以期为该疾病的预防、早期诊断和精准治疗提供重要依据。
[Abstract] Depression is a common neuropsychiatric disorder, and the main clinical manifestations are somatization in most patients in addition to persistent depressed mood and lack of pleasure. Somatization symptoms refer to the appearance of various uncomfortable symptoms in the body, and these discomfort symptoms cannot be reasonably explained by the existing disease process; Patients with depression with somatization are prone to misdiagnosis and have a poor prognosis.In recent years, the research of neuroimaging has made rapid progress, providing important biological evidence for exploring and studying the neurogenesis mechanism of somatization symptoms of depression. This article reviews the imaging studies of brain structure and brain function associated with somatic symptoms of depression in recent years, in order to provide an important basis for the prevention, early diagnosis and precision treatment of this disease.
[关键词] 抑郁症;躯体化症状;神经影像;磁共振成像
[Keywords] depression;somatization symptoms;neuroimaging;magnetic resonance imaging

李汶玲 1   王琳 2*   赵小菊 2  

1 甘肃中医药大学第一临床医学院,兰州 730000

2 甘肃中医药大学附属医院放射科,兰州 730000

通信作者:王琳,E-mail:wlcxy828@126.com

作者贡献声明:王琳设计本研究的方案,对稿件重要内容进行了修改,获得了甘肃省中西医结合肿瘤临床医学研究中心2021年开发基金的资助;李汶玲起草和撰写稿件,获取、分析或解释本研究的数据;赵小菊获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 甘肃省中西医结合肿瘤临床医学研究中心2021年开发基金 zlzx2021-10
收稿日期:2023-06-14
接受日期:2023-10-30
中图分类号:R445.2  R749.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.11.026
本文引用格式:李汶玲, 王琳, 赵小菊. MRI在抑郁症躯体化症状患者中的研究进展[J]. 磁共振成像, 2023, 14(11): 155-158, 187. DOI:10.12015/issn.1674-8034.2023.11.026.

0 前言

       抑郁症是一种常见的神经精神障碍性疾病[1],调查显示[2],世界上约3.8%的人口受到抑郁症的影响,全球大约有2.8亿的人患有抑郁症。抑郁症的终身患病率高达15%左右[3],致残率高,其中有15%~25%的抑郁症患者死于自杀[4],因此抑郁症被世界卫生组织列为全球致残的最主要单一因素;预计到2030年将成为全球经济负担的第一大疾病[5]。抑郁症的主要临床表现为持续的心情低落、快感缺失,但大约66%的患者还会出现躯体化症状[6]。躯体化症状是指身体出现各种不适症状,而这些不适症状不能用现有的疾病过程来合理解释[7]。研究发现躯体化症状可以作为精神疾病的表现而发生,它一般是无法解释的,可以发生在身体的任何部位或任何系统,其中最常见的症状是疼痛、乏力、虚弱、头晕、呼吸困难、心悸、胃肠道不适、感觉异常、耳鸣和性功能障碍[8]。一般患者就诊时会选择内科门诊,因此极易发生漏诊与误诊[9],且有研究表明[10]伴有躯体化症状的抑郁症患者预后往往较差。因此,了解抑郁症躯体化症状的发病机制对疾病的诊断以及治疗非常重要。随着神经影像技术的逐渐发展,静息态功能MRI(resting-state functional MRI, rs-fMRI)已经广泛应用于各个疾病中[11, 12],如抑郁症、脑卒中、阿尔茨海默病等。本文就抑郁症伴躯体化症状患者的脑结构与rs-fMRI研究进展进行综述,以期为疾病的预防、早期诊断和精准治疗提供重要依据。

1 抑郁症伴躯体化症状的脑结构研究

       基于体素的形态学测量(voxel-based morphometry, VBM)是基于体素水平对全脑或局部脑结构的改变进行定量测量的一种常见方法[13]。它克服了常规核磁在测量脑形态学改变的局限性,目前该方法已经被广泛应用于多种疾病脑结构的分析中[14, 15]。在之前的研究中[16, 17]普遍认为灰质变化往往与神经损伤相对应。VALET等[18]采用VBM的研究方法,发现在患有疼痛障碍的女性患者中前额叶、扣带皮层和岛叶皮层的灰质密度明显减少。DELVECCHIO等[19]采用VBM的研究方法,发现在躯体障碍的患者中下丘脑、左梭状回、左额下回、左后扣带回和右侧杏仁核的灰质体积减小。之前的研究表明[20, 21],额叶皮质、岛叶皮层、扣带皮层在处理疼痛中起关键作用,并在情绪和情绪状态对疼痛体验的放大和加剧中发挥重要作用。这说明躯体化症状可能与疼痛处理过程和情绪调节系统相关的脑结构损伤有关。躯体化症状可以发生在各个系统、部位,其中大约30%~70%的患者都伴有胃肠道症状[22],较严重的胃肠道症状往往抑郁较严重且预后较差[23]。LIU等[24]采用VBM的研究方法,发现在抑郁症伴有胃肠道症状的患者中双侧额中回、中央前回、右侧额上回的灰质体积降低,同时发现伴有胃肠道症状患者的抑郁严重程度更高。现有关于抑郁症躯体化症状患者脑结构的研究中大多数研究都集中在灰质改变上,而对白质改变的研究较少。有研究表明[25, 26],脑白质连接灰质区域并携带神经元的冲动,脑白质的改变可能反映了与行为、认知和情绪异常相关的神经回路受损。ZHAO等[27]用计算解剖工具箱(CAT12)分析全脑白质体积变化,发现抑郁症躯体化症状患者右侧额下回的白质体积显著升高,左侧下纵束的白质体积显著降低。上述研究表明,采用不同的研究方法均发现抑郁症躯体化症状患者的脑结构出现了异常。在之后的研究中可以结合更多的研究方法对抑郁症躯体化症状患者脑结构变化进一步研究。

2 抑郁症伴躯体化症状的脑功能研究

       近年来,rs-fMRI的研究方法已经从局部延伸至全脑的研究,可以分为功能分离与功能整合。功能分离主要反映局部脑区的脑功能活动,包括低频振幅(amplitude of low-frequency fluctuation, ALFF)、分数低频振幅(fractional amplitude of low-frequency fluctuation, fALFF)、局部一致性(regional homogeneity, ReHo);功能整合主要反映局部脑区与其他脑区之间的相互作用,主要包括功能连接(functional connectivity, FC)、度中心性(degree centrality, DC)、独立成分分析(independent com-ponent analysis, ICA)及基于图论的复杂脑网络分析。

2.1 抑郁症伴躯体化症状的局部脑功能研究

       ALFF是通过体素的活动强度来反映脑区之间信号活动强度,升高则表明脑区自发功能活动增强[28],降低则表明脑区自发活动减弱。fALFF是在ALFF基础上对其标准化的分析方法,该方法能有效抑制非特定的噪声分量,可以提高检测的敏感度与特异度[29]。ReHo是通过肯德尔一致性系数来衡量局部脑区某一体素与其邻近体素时间序列的同步性,进而反映局部脑区的功能活动,ReHo升高提示神经元活动时间上趋向于同步,降低提示神经元活动时间上趋向于无序[30]

       YAN等[31]采用ALFF的研究方法,发现抑郁症伴躯体化症状的患者右侧颞下回的ALFF值增加,右侧眶部额下回与左侧丘脑的ALFF值减小。这说明右侧眶部额下回和颞下回的异常活动可能是抑郁症伴躯体化症状患者的神经机制。但是在该研究中没有完全排除药物对大脑活动的影响。LIU等[32]纳入的抑郁症伴躯体化症状的患者均为首发且未经药物治疗,并采用ALFF与ReHo相结合的研究方法,研究发现抑郁症躯体化症状患者中央前回、中央后回和中央旁回的ALFF与ReHo显著降低,且上述脑区的ALFF与ReHo值与抑郁症状和躯体化症状的严重程度呈负相关,即抑郁症状和躯体化症状越严重,中央前回、中央后回和中央旁回的ALFF和ReHo值越低。OU等[33]采用ReHo的研究方法纳入首发未经治疗的抑郁伴躯体化症状患者,发现患者的左侧内侧前额叶皮层及前扣带皮层的ReHo增加,采用支持向量机模型对上述脑区进行分析时,敏感度与特异度均大于70%,这说明左侧内侧前额叶皮层及前扣带皮层中升高的ReHo值可以作为区分抑郁症躯体化症状患者与健康对照组的潜在标志物。XU等[34]纳入首发未经治疗的抑郁症躯体化症状患者,并依据中医中的“阴阳理论”将患者分为阴型与阳型,研究发现无论抑郁症躯体化症状患者的中医分型为阳性或阴性,患者的脑区ALFF均发现了差异,具体表现为左侧顶下小叶的ALFF增加,左侧舌回的ALFF降低。YAN等[35]纳入伴有胃肠道症状的首发抑郁症患者,采用ReHo的研究方法,发现伴有胃肠道症状的抑郁症患者与健康对照组相比右侧顶下小叶、双侧补充运动区的ReHo增加,右侧后扣带皮层、双侧楔叶、左侧枕中回的ReHo降低。FU等[36]对纳入的首发未经治疗的抑郁症躯体化症状患者采用fALFF的研究方法,发现患者右侧额上回及额中回的fALFF增高,内侧前额叶皮层的fALFF降低。在之前的一项研究中[37],也在抑郁症躯体化症状患者中发现了内侧前额叶皮层的异常活动。在上述存在异常活动的脑区中内侧前额叶皮层、后扣带皮层、顶下小叶是默认模式网络(default-mode network, DMN)的核心区域。DMN是互连的并且在解剖学上定义的大脑区域集,主要负责代表自我参照、情绪处理、记忆、自发认知和意识方面的大脑基线状态[38]。因此,DMN的异常活动可能是抑郁症伴躯体化症状的重要发病机制。研究表明,抑郁症的女性患者多于男性患者[39],造成这种差异的原因可能是女性有特殊的生理及心理特征。YAO等[40]利用ALFF研究男性与女性抑郁症患者之间脑区的活动差异,发现男性抑郁症患者左侧中央后回和右侧颞上回的ALFF值增高,左侧颞上回和左侧额上回的ALFF值降低。GENG等[41]采用ReHo研究男性与女性抑郁症伴躯体化症状患者之间的差异脑区,发现女性患者的右侧颞上回的ReHo增加,右侧额中回的ReHo降低;男性患者左侧额下回三角部ReHo增加。张小柳等[42]采用ALFF与ReHo相结合的方法研究女性抑郁症伴躯体化症状患者脑区的异常活动,发现患者左侧前扣带回及右侧梭状回的ReHo增高,右侧楔前叶、左侧额中回及左侧枕中回ReHo降低;在左侧内侧前额叶皮层, 和左侧额中回的ALFF值增大,而在右侧壳核及右侧颞下回的ALFF值降低。上述研究表明性别差异效应导致的脑区异常活动对抑郁症躯体化症状的发病机制复杂化起着不可忽视的作用,而这种差异性也可以用于解释男女在发病率上的差异。

2.2 抑郁症伴躯体化症状的全脑功能研究

       功能连接(functional connectivity, FC)是先将一个或多个脑区作为感兴趣区(region of interest, ROI),探索其与其他ROI或全脑体素时间序列之间的相关性[43]。体素镜像同伦连接(voxel-mirrored homotopic connectivity, VMHC)通过计算大脑一侧半球某一体素与对侧半球对应体素之间的功能连接强度来衡量两半球之间的同步性[44]

       DING等[45]以小脑为ROI,发现抑郁症躯体化症状患者小脑与DMN之间的FC增加,采用支持向量机模型进行验证时均发现较好的敏感度与特异度。之前的一项研究[46]也发现了类似的结果。LIU等[47]采用VMHC的研究方法,发现抑郁症躯体化症状患者包括额中回、楔前叶、顶下小叶和后扣带皮层在内的DMN有显著的不同。在上面关于抑郁症躯体化症状患者全脑功能的研究中ROI的选择是基于文献进行的。YAN等[48]进行ALFF分析,然后以ALFF显著变化的脑区为ROI,发现患者右侧眶部额下回与左侧顶下小叶之间的FC降低。XU等[34]也以ALFF显著差异脑区为ROI,发现阴型抑郁症伴躯体化症状患者左侧顶上回与左侧顶下小叶之间的FC降低;阳性抑郁症伴躯体化症状患者左侧顶下小叶与角回之间的FC增加,右侧颞中回与右侧舌回与梭状回之间的FC降低。DU等[49]研究发现抑郁躯体化症状患者右侧楔前叶的DC显著降低并以此区域为ROI,发现右侧楔前叶与DMN之间的FC增加,与执行控制网络和显著网络之间的FC降低。在上面的研究中抑郁症躯体化症状患者均发现了DMN与其他脑区之间的连接性变化。进一步说明了DMN的异常活动是抑郁症躯体化症状患者的重要神经机制。

       YU等[50]以扣带回为ROI,发现抑郁症躯体化症状患者扣带回与右侧中央后回与右侧颞上回之间的FC降低且与躯体化症状量表之间呈负相关,即差异脑区之间的连接性越低,患者的躯体症状越严重。在之前的一项研究中[51]也得出了相似的结论。之前的研究[52, 53]表明扣带回接收来自颞叶的信息与情绪的加工和躯体化症状的产生有关,故抑郁症躯体化症状患者的神经机制可能与扣带回与颞上回之间的连接性异常有关。ZU等[54]以杏仁核为ROI,研究发现抑郁症躯体化症状患者杏仁核与脑岛和颞上回之间的FC降低,且杏仁核与脑岛之间的FC与体化症状量表之间呈负相关。ZHANG等[55]以脑岛为种子点,发现脑岛与右侧眶额叶皮层之间的FC降低,且与躯体化症状量表之间呈负相关。之前的研究[56]表明脑岛参与了情绪和躯体症状的处理。上述研究中发现了脑岛与其他脑区之间FC的异常,故抑郁症躯体化症状患者的神经机制可能与脑岛的异常活动有关。上述研究表明较弱的连接性往往与较重的躯体化症状相关,这为日后减轻患者躯体化症状从而改善预后提供了新的治疗思路。

3 小结与展望

       抑郁症躯体化症状的发病机制是复杂多样的。本文综述了抑郁症躯体化症状现有的MRI研究,研究表明该疾病的脑结构及脑功能的变化涉及包括DMN在内的多个脑区,这些改变可以作为诊断与评估治疗效果的影像学标志物。然而,无论是脑结构还是脑功能的研究结果均不完全一致,其可能的原因首先是研究方法、药物及疾病的严重程度存在差异,其次样本量过小也会对研究结果产生影响。在今后的研究中应扩大样本量并排除其他因素,以更好地了解疾病的神经机制从而为临床精准治疗提供更多的信息。

[1]
LIU M, HE E, FU X, et al. Cerebral blood flow self-regulation in depression[J]. J Affect Disord, 2022, 302: 324-331. DOI: 10.1016/j.jad.2022.01.057.
[2]
LI Y, JIA S, CAO B, et al. Network analysis of somatic symptoms in Chinese patients with depressive disorder[J/OL]. Front Public Health, 2023, 11: 1079873 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/36992877/. DOI: 10.3389/fpubh.2023.1079873.
[3]
GOODWIN G M. Revisiting treatment options for depressed patients with generalised anxiety disorder[J]. Adv Ther, 2021, 38(Suppl 2): 61-68. DOI: 10.1007/s12325-021-01861-0.
[4]
GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Psychiatry, 2022, 9(2): 137-150. DOI: 10.1016/S2215-0366(21)00395-3.
[5]
MEKONEN T, CHAN G C K, CONNOR J P, et al. Estimating the global treatment rates for depression: A systematic review and meta-analysis[J]. J Affect Disord, 2021, 295: 1234-1242. DOI: 10.1016/j.jad.2021.09.038.
[6]
WU X, ZHU Y, WU Z, et al. Identifying the subtypes of major depressive disorder based on somatic symptoms: A longitudinal study using latent profile analysis[J/OL]. Front Psychiatry, 2022, 13: 759334 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35903631/. DOI: 10.3389/fpsyt.2022.759334.
[7]
YANG X, LUO J, WANG P, et al. Characteristics and economic burden of patients with somatoform disorders in Chinese general hospitals: a multicenter cross-sectional study[J/OL]. Ann Gen Psychiatry, 2023, 22(1): 30 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/37573334/. DOI: 10.1186/s12991-023-00457-y.
[8]
JIAN Y, JIA S, SHI Z, et al. Characteristics of somatic symptoms among Chinese patients diagnosed with major depressive episode[J]. Arch Psychiatr Nurs, 2021, 35(1): 27-33. DOI: 10.1016/j.apnu.2020.11.001.
[9]
NOVICK D, MONTGOMERY W, AGUADO J, et al. Which somatic symptoms are associated with an unfavorable course in Asian patients with major depressive disorder?[J]. J Affect Disord, 2013, 149(1-3): 182-188. DOI: 10.1016/j.jad.2013.01.020.
[10]
SCHAAKXS R, COMIJS H C, LAMERS F, et al. Associations between age and the course of major depressive disorder: a 2-year longitudinal cohort study[J]. Lancet Psychiatry, 2018, 5(7): 581-590. DOI: 10.1016/S2215-0366(18)30166-4.
[11]
TESSITORE A, CIRILLO M, DE MICCO R. Functional connectivity signatures of Parkinson's disease[J]. J Parkinsons Dis, 2019, 9(4): 637-652. DOI: 10.3233/JPD-191592.
[12]
GONG J, WANG J, QIU S, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis[J/OL]. Transl Psychiatry, 2020, 10(1): 353 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/33077728/. DOI: 10.1038/s41398-020-01036-5.
[13]
YANG Y, ZHU D M, ZHANG C, et al. Brain structural and functional alterations specific to low sleep efficiency in major depressive disorder[J/OL]. Front Neurosci, 2020, 14: 50 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/32082117/. DOI: 10.3389/fnins.2020.00050.
[14]
RECHBERGER S, LI Y, KOPETZKY S J, et al. Automated high-definition MRI processing routine robustly detects longitudinal morphometry changes in Alzheimer's disease patients[J/OL]. Front Aging Neurosci, 2022, 14: 832828 [2023-06-14]. DOI: 10.3389/fnagi.2022.832828.
[15]
HENSSEN D, KLUIN S J P, KLEEREBEZEM J, et al. White matter changes in the trigeminal spinal tract in chronic migraineurs: an ex vivo study combining ultra-high-field diffusion tensor imaging and polarized light imaging microscopy[J]. Pain, 2022, 163(4): 779-785. DOI: 10.1097/j.pain.0000000000002424.
[16]
NEMOTO K. Understanding voxel-based morphometry[J]. Brain Nerve, 2017, 69(5): 505-511. DOI: 10.11477/mf.1416200776.
[17]
TAKEUCHI H, KAWASHIMA R. Voxel-based morphometry and cognitive function[J]. Brain Nerve, 2017, 69(5): 547-556. DOI: 10.11477/mf.1416200781.
[18]
VALET M, GUENDEL H, SPRENGER T, et al. Patients with pain disorder show gray-matter loss in pain-processing structures: A voxel-based morphometric study[J]. Psychosom Med, 2009, 71(1): 49-56. DOI: 10.1097/PSY.0b013e31818d1e02.
[19]
DELVECCHIO G, ROSSETTI M G, CALETTI E, et al. The neuroanatomy of somatoform disorders: A magnetic resonance imaging study[J]. Psychosom, 2019, 60(3): 278-288. DOI: 10.1016/j.psym.2018.07.005.
[20]
DE RIDDER D, ADHIA D, VANNESTE S. The anatomy of pain and suffering in the brain and its clinical implications[J]. Neurosci Biobehav Rev, 2021, 130: 125-146. DOI: 10.1016/j.neubiorev.2021.08.013.
[21]
MOSTOFI A, MORGANTE F, EDWARDS M J, et al. Pain in Parkinson's disease and the role of the subthalamic nucleus[J]. Brain, 2021, 144(5): 1342-1350. DOI: 10.1093/brain/awab001.
[22]
HUANG J, CAI Y, SU Y, et al. Gastrointestinal symptoms during depressive episodes in 3256 patients with major depressive disorders: Findings from the NSSD[J]. J Affect Disord, 2021, 286: 27-32. DOI: 10.1016/j.jad.2021.02.039.
[23]
COLIJN M A. The Co-occurrence of Gastrointestinal Symptoms and Psychosis: Diagnostic Considerations[J/OL]. Prim Care Companion CNS Disord, 2022, 24(3): 22nr03236 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35768019/. DOI: 10.4088/PCC.22nr03236.
[24]
LIU P, LI G, ZHANG A, et al. Brain structural and functional alterations in MDD patient with gastrointestinal symptoms: A resting -state MRI study[J]. J Affect Disord, 2020, 273: 95-105. DOI: 10.1016/j.jad.2020.03.107.
[25]
BISWAS A, KRISHNAN P, VIDARSSON L, et al. Cerebral white matter tract anatomy[J]. Neuroimaging Clin N Am, 2022, 32(3): 507-528. DOI: 10.1016/j.nic.2022.05.001.
[26]
SEILER S, FLETCHER E, HASSAN-ALI K, et al. Cerebral tract integrity relates to white matter hyperintensities, cortex volume, and cognition[J]. Neurobiol Aging, 2018, 72: 14-22. DOI: 10.1016/j.neurobiolaging.2018.08.005.
[27]
ZHAO J, SU Q, LIU F, et al. Regional white matter volume abnormalities in first-episode somatization disorder[J]. Int J Psychophysiol, 2018, 133: 12-16. DOI: 10.1016/j.ijpsycho.2018.09.003.
[28]
SUN J, MA Y, CHEN L, et al. Altered brain function in treatment-resistant and non-treatment-resistant depression patients: A resting-state functional magnetic resonance imaging study[J/OL]. Front Psychiatry, 2022, 13: 904139 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35935411/. DOI: 10.3389/fpsyt.2022.904139.
[29]
LI G Z, LIU P H, ZHANG A X, et al. A resting state fMRI study of major depressive disorder with and without anxiety[J/OL]. Psychiatry Res, 2022, 315: 114697 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35839636/. DOI: 10.1016/j.psychres.2022.114697.
[30]
ZHANG B, LIU S, CHEN S, et al. Common and unique neural activities in subclinical depression and major depressive disorder indicate the development of brain impairments in different depressive stages[J]. J Affect Disord, 2022, 317: 278-286. DOI: 10.1016/j.jad.2022.08.128.
[31]
YAN R, TAO S, LIU H, et al. Abnormal alterations of regional spontaneous neuronal activity in inferior frontal orbital gyrus and corresponding brain circuit alterations: A resting-state fMRI study in somatic depression[J/OL]. Front Psychiatry, 2019, 10: 267 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/31114515/. DOI: 10.3389/fpsyt.2019.00267.
[32]
LIU P, TU H, ZHANG A, et al. Brain functional alterations in MDD patients with somatic symptoms: A resting-state fMRI study[J]. J Affect Disord, 2021, 295: 788-796. DOI: 10.1016/j.jad.2021.08.143.
[33]
OU Y, LIU F, CHEN J, et al. Increased coherence-based regional homogeneity in resting-state patients with first-episode, drug-naive somatization disorder[J]. J Affect Disord, 2018, 235: 150-154. DOI: 10.1016/j.jad.2018.04.036.
[34]
XU Z, ZHANG S, HUANG L, et al. Altered resting-state brain activities in drug-naïve major depressive disorder assessed by fMRI: Associations with somatic symptoms defined by Yin-Yang theory of the traditional Chinese medicine[J/OL]. Front Psychiatry, 2018, 9: 195 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/29867614/. DOI: 10.3389/fpsyt.2018.00195.
[35]
YAN M, CHEN J, LIU F, et al. Disrupted regional homogeneity in major depressive disorder with gastrointestinal symptoms at rest[J/OL]. Front Psychiatry, 2021, 12: [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/34122171/. DOI: 10.3389/fpsyt.2021.636820.
[36]
FU X, LI H, YAN M, et al. Shared and distinct fractional amplitude of low-frequency fluctuation patterns in major depressive disorders with and without gastrointestinal symptoms[J/OL]. Front Psychiatry, 2021, 12: 744898 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/34925089/. DOI: 10.3389/fpsyt.2021.744898.
[37]
SU Q, YAO D, JIANG M, et al. Dissociation of regional activity in default mode network in medication-naive, first-episode somatization disorder[J/OL]. Plos One, 2014, 9(7): e99273 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/24983962/. DOI: 10.1371/journal.pone.0099273.
[38]
CHOU T, DECKERSBACH T, DOUGHERTY D D, et al. The default mode network and rumination in individuals at risk for depression[J/OL]. Soc Cogn Affect Neurosci, 2023, 18(1): nsad032 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/37261927/. DOI: 10.1093/scan/nsad032.
[39]
BANGASSER D A, CUARENTA A. Sex differences in anxiety and depression: circuits and mechanisms[J]. Nat Rev Neurosci, 2021, 22(11): 674-684. DOI: 10.1038/s41583-021-00513-0.
[40]
YAO Z, YAN R, WEI M, et al. Gender differences in brain activity and the relationship between brain activity and differences in prevalence rates between male and female major depressive disorder patients: a resting-state fMRI study[J]. Clin Neurophysiol, 2014, 125(11): 2232-2239. DOI: 10.1016/j.clinph.2014.03.006.
[41]
GENG J, YAN R, SHI J, et al. Altered regional homogeneity in patients with somatic depression: A resting-state fMRI study[J]. J Affect Disord, 2019, 246: 498-505. DOI: 10.1016/j.jad.2018.12.066
[42]
张小柳. 基于多模态磁共振成像的女性抑郁症患者脑功能活动研究[D]. 上海: 上海交通大学, 2016. DOI: 10.27307/d.cnki.gsjtu.2016.002761.
ZHANG X L. Study of female MDD patients' brain functional activities using multimodal magnetic resonance imaging[D]. Shanghai: Shanghai Jiao Tong University, 2016. DOI: 10.27307/d.cnki.gsjtu.2016.002761.
[43]
YANG N, YUAN S, LI C, et al. Diagnostic identification of chronic insomnia using ALFF and FC features of resting-state functional MRI and logistic regression approach[J/OL]. Sci Rep, 2023, 13(1): 406 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/36624131/. DOI: 10.1038/s41598-022-24837-8.
[44]
LU S, SHAO J, FENG Q, et al. Aberrant interhemispheric functional connectivity in major depressive disorder with and without anhedonia[J/OL]. BMC Psychiatry, 2022, 22(1): 688 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/36348342/. DOI: 10.1186/s12888-022-04343-x.
[45]
DING Y, OU Y, YAN H, et al. Disrupted cerebellar-default mode network functional connectivity in major depressive disorder with gastrointestinal symptoms[J/OL]. Front Cell Neurosci, 2022, 16: 833592 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35308120/. DOI: 10.3389/fncel.2022.833592.
[46]
WANG H, GUO W, LIU F, et al. Clinical significance of increased cerebellar default-mode network connectivity in resting-state patients with drug-naive somatization disorder[J/OL]. Medicine, 2016, 95(28): e4043 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/27428190/. DOI: 10.1097/MD.0000000000004043.
[47]
LIU Y, OU Y, ZHAO J, et al. Abnormal interhemispheric homotopic functional connectivity is correlated with gastrointestinal symptoms in patients with major depressive disorder[J]. J Psychiatr Res, 2021, 144: 234-240. DOI: 10.1016/j.jpsychires.2021.10.016.
[48]
YAN M, FU X, OU Y, et al. Multiple-network alterations in major depressive disorder with gastrointestinal symptoms at rest revealed by global functional connectivity analysis[J/OL]. Front Neurosci, 2022, 16 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/35812223/. DOI: 10.3389/fnins.2022.897707.
[49]
DU Y, ZHAO J, WANG Y, et al. Brain functional differences in drug-naive major depression with anxiety patients of different traditional chinese medicine syndrome patterns: A resting-state fMRI study[J/OL]. Evid Based Complement Alternat Med, 2020, 2020: 7504917 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/32148551/. DOI: 10.1155/2020/7504917.
[50]
YU Y, CHEN Y, WU Y, et al. The common neural mechanism of somatic symptoms of depression and anxiety disorders: A resting-state functional magnetic resonance imaging study[J]. Neuropsychobiology, 2023, 82(1): 51-60. DOI: 10.1016/j.jpsychires.2021.10.016.
[51]
陈越. 基于功能磁共振的情绪障碍患者躯体化症状的神经机制研究[D]. 合肥: 安徽医科大学, 2020. DOI: 10.26921/d.cnki.ganyu.2020.000298.
CHEN Y. Study on the neural mechanism of somatization in patients with emotional disorders based on functional magnetic resonance imaging[D]. Hefei: Anhui Medical University, 2020. DOI: 10.26921/d.cnki.ganyu.2020.000298.
[52]
HAKAMATA Y, MIZUKAMI S, IZAWA S, et al. Basolateral amygdala connectivity with subgenual anterior cingulate cortex represents enhanced fear-related memory encoding in anxious humans[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2020, 5(3): 301-310. DOI: 10.1016/j.bpsc.2019.11.008.
[53]
SAKATA H, KIM Y, NEJIME M, et al. Laminar pattern of projections indicates the hierarchical organization of the anterior cingulate-temporal lobe emotion system[J/OL]. Front Neuroanat, 2019, 13: 74 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/31417370/. DOI: 10.3389/fnana.2019.00074.
[54]
ZU M, WANG A, BAI T, et al. Resting-state functional connectivity between centromedial amygdala and insula as related to somatic symptoms in depressed patients: A preliminary study[J]. Psychosom Med, 2019, 81(5): 434-440. DOI: 10.1097/PSY.0000000000000697.
[55]
ZHANG T, BAI T, XIE W, et al. Abnormal connectivity of anterior-insular subdivisions and relationship with somatic symptom in depressive patients[J]. Brain Imaging Behav, 2021, 15(4): 1760-1768. DOI: 10.1007/s11682-020-00371-x.
[56]
WANG Q, ZHU J J, WANG L, et al. Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways[J/OL]. Nat Commun, 2022, 13(1): 5540 [2023-06-14]. https://pubmed.ncbi.nlm.nih.gov/36130959/. DOI: 10.1038/s41467-022-33241-9.

上一篇 磁共振成像技术在抑郁症经颅磁刺激治疗靶点选择中的应用进展
下一篇 多模态MRI在探究益生菌制剂改善2型糖尿病患者认知障碍机制中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2