分享:
分享到微信朋友圈
X
综述
关节软骨损伤磁共振定量成像的研究进展
李薪茹 李伟

Cite this article as: LI X R, LI W. Research progress in quantitative magnetic resonance imaging of articular cartilage injury[J]. Chin J Magn Reson Imaging, 2023, 14(11): 198-202.本文引用格式:李薪茹, 李伟. 关节软骨损伤磁共振定量成像的研究进展[J]. 磁共振成像, 2023, 14(11): 198-202. DOI:10.12015/issn.1674-8034.2023.11.034.


[摘要] 关节的急性和慢性损伤都可引起不同程度的软骨损伤,早期的软骨损伤往往可以自行修复,中晚期损伤不可逆,随着病情进展,引发患者关节畸形或功能障碍,严重影响患者正常生活。目前常规的MRI技术很难准确评估软骨早期损伤,MRI定量技术能够分析软骨生化成分和超微结构变化,早期无创地精准评估软骨损伤。本文就关节骨软骨损伤的病理生理机制及无创性MRI定量评估技术的最新研究进展进行综述,以便临床早期诊断治疗,阻止软骨损伤的恶化或逆转其影响。
[Abstract] The acute and chronic injuries of joints can cause different degrees of cartilage damage, early cartilage damage can often repair itself, and the middle and late damage is irreversible, with the progress of the disease, resulting in joint deformity or dysfunction, seriously affecting the normal life of patients. At present, it is difficult for conventional magnetic resonance imaging technology to accurately assess the early damage of cartilage. But quantitative MRI technology can accurately evaluate the early damage of cartilage non-invasive by analyzing the biochemical components and ultrastructural changes of cartilage. In this paper, the pathophysiological mechanism of osteocartilage injury and the latest research progress of non-invasive MRI quantitative evaluation technology are reviewed, so as to prevent the deterioration of cartilage injury or reverse its effects in early clinical diagnosis.
[关键词] 关节软骨;磁共振成像;T1ρ成像;T1弛豫时间成像;T2弛豫时间成像;扩散加权成像;扩散张量成像;扩散峰度成像
[Keywords] articular cartilage;magnetic resonance imaging;T1ρ;T1-mapping;T2-mapping;diffusion weighted imaging;diffusion tensor imaging;diffusion kurtosis imaging

李薪茹    李伟 *  

内蒙古医科大学第二附属医院影像科,呼和浩特 010010

通信作者:李伟,E-mail:26476432@qq.com

作者贡献声明:李伟设计本综述的框架,对稿件重要内容进行了修改,获得了内蒙古自治区自然科学基金项目和内蒙古医科大学科技创新团队计划任务项目资助;李薪茹起草和撰写稿件,获取、分析或解释本研究的数据;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 内蒙古自治区自然科学基金项目 2022MS08012 内蒙古医科大学科技创新团队计划任务项目 YKD2022TD034
收稿日期:2023-05-30
接受日期:2023-10-27
中图分类号:R445.2  R684 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.11.034
本文引用格式:李薪茹, 李伟. 关节软骨损伤磁共振定量成像的研究进展[J]. 磁共振成像, 2023, 14(11): 198-202. DOI:10.12015/issn.1674-8034.2023.11.034.

0 前言

       关节软骨特指覆盖在关节表面富有弹性的透明软骨,软骨没有血管、神经、淋巴组织,只能通过滑膜进行物质交换[1, 2],一旦损伤难以自我修复[3, 4],因此早期及时的诊断治疗对改善软骨疾病预后至关重要。常规的MRI技术能够精准测量损伤晚期软骨形态学变化,但对早期软骨损伤作用有限,随着MRI定量评估技术的飞速发展及诊断水平的日益提高,能够在软骨尚未发生形态学变化前检测关节软骨生化成分、生物力学结构和组织学特点方面的细微变化[5, 6]。目前定量MRI技术主要用于科研领域,其扫描时间长,患者配合度差,成像参数的设定没有统一的标准,缺乏临床正常值及异常截止值参考数据库,且与软骨损伤发病机制的相关性尚在研究阶段[7],临床应用较少。本综述归纳总结了一些常用的无创性MRI定量评估技术,包括:T1-mapping、T2-mapping、T2*-mapping、T1ρ,扩散加权成像(diffusion weighted imaging, DWI)、扩散张量成像(diffusion tensor imaging, DTI)、扩散峰度成像(diffusion kurtosis imaging, DKI)、超短回波(ultrashort echo time, UTE)等,探讨其与软骨生化代谢的相关研究进展,旨在探索一种能够早期无创地评估软骨损伤退变、监测疾病的发生发展及术后疗效的定量MRI方法。以便临床早期诊断干预,延缓软骨损伤的发展,改善患者预后。

1 关节骨软骨损伤病理生理机制

       关节软骨组织学结构分为四层,即切线层(浅层)、中间层(过渡层)、辐射层及钙化层,钙化层是连接透明软骨及软骨下骨的“桥梁”,在软骨损伤和骨性关节炎的病情演变中起到关键作用[8]。软骨主要由软骨细胞和软骨基质两大部分构成[9],软骨基质主要包括水(约占75%-80%)、Ⅱ型胶原纤维(约占10%-30%)、蛋白多糖(proteoglycan, PG)聚合物(约占1%-10%)和透明质酸。有文献报道[10, 11, 12],软骨损伤导致软骨基质的合成和降解失衡,PG聚合物降解或消失,胶原纤维暴露并逐渐老化,关节抗压能力下降,发生软骨变性,该病的发病机制尚未有明确定论,大多数研究[13, 14]揭示外伤是导致软骨损伤的主要因素,越来越多的研究[15, 16]证据发现多种细胞因子与信号转导通路相互调控,致使细胞合成与分解代谢失衡,引发软骨损伤。MIXON等[17]研究表明大量的基质金属蛋白酶(matrix metallo proteinase, MMP),尤其是MMP-1和MMP-9是软骨退化和机械完整性降低的主要原因。CHIEN等[18]研究发现白细胞介素-1β(interleukins-1β, IL-1β)可使骨形态发生蛋白-2(bone morphogenetic protein 2, BMP-2)含量增加,进而增加关节软骨退化及结构重塑。有研究指出通过抑制核因子-κB(national formulary, NF-κB)信号通路,预防和减缓软骨细胞凋亡过程,早期及时治疗软骨的损伤、调控软骨的退变[19, 20, 21]

2 无创性MRI定量评估技术在骨软骨损伤早期诊断的应用

2.1 T1-mapping成像

       T1-mapping是基于组织纵向弛豫时间和信号强度计算的参数化重建图像[22],多采用快速自旋回波(turbo spin echo, TSE)、反转恢复(inversion recovery, IR)序列、多翻转角的扰相梯度回波(gradient echo, GRE)序列,推荐采用5个以上不同的重复时间(repetition time, TR),确保回波时间(echo time, TE)为最小值,应用专门的后处理软件生成伪彩图,定量勾画感兴趣区(region of interest, ROI)测量软骨的T1值,与正常人群对比分析,评估软骨损伤、退变。有研究[23]显示软骨T1值与其水含量和蛋白多糖含量密切相关,T1-mapping可以在软骨尚未发生形态学改变之前发现Noyes 1级和Noyes 2A级软骨损伤,提高早期诊断软骨损伤的敏感性。但是T1-mapping扫描时间长,图像分辨率较低,需要结合常规MRI图像进行分析,且与关节镜结果对照存在一些差异。WU等[24]研究提出使用深度学习策略结合B1补偿技术来加快定量MR的扫描,并在软骨T1-mapping中进行验证,该方法预期也可用于量化其他组织特性,尚需实验数据去验证。

2.2 T2-mapping成像

       T2-mapping是近年来应用较为成熟的成像技术[25],临床多采用以快速自旋回波(fast spin echo, FSE)为基础的多回波自旋回波(spin echo, FSE)序列、T2准备快速GRE序列、梯度自旋回波(gradient and spin echo, GRASE)序列等,在同一个TR时间内采集两个以上TE,计算生成伪彩图。研究[26, 27]发现软骨各层含水量、胶原纤维含量及排列规律的差异导致T2值不同,T2-mapping可以明确显示软骨T2值的空间分布。正常软骨色阶均匀,软骨损伤后色阶变混杂,T2值增高。T2-mapping能够早期检测软骨生化成分变化,量化分析软骨损伤退变[28, 29],定量测量软骨损伤手术治疗或药物治疗后T2值变化,为临床提供客观有效的评估依据[30],但在检测修复软骨组成细节方面能力有限[31]。T2-mapping扫描速度快,图像采集及后处理技术成熟,已经成为被广泛应用的生理成像技术之一[32],但其临床应用中也存在一些局限性,如易受魔角效应和磁敏感伪影的影响,ROI的选择存在一定的主观性[33]。未来可以尝试使用自动分割等方法提高测量准确率。

2.3 T2*-mapping成像

       T2*-mapping采用多回波扰相GRE序列,一般不使用90°的射频脉冲激发,设置合理的TE值通过数个小角度使纵向磁化矢量达到稳态后,继续使用小角度进行激励以缩短TR,提高扫描速度,经曲线拟合计算组织T2*值,测量色阶图T2*值评估软骨的损伤退变[34]。和T2-mapping评价关节软骨的结果相似,T2*-mapping可以早期发现胶原纤维成分、排列规律及水分子含量的变化,并能监测不同时期软骨损伤的病情变化,已经被公认为反映软骨组织成分变化较为敏感的技术[35, 36],与其他功能序列相比,T2*-mapping空间分辨率高,成像时间短,能够完整的包覆关节软骨面,更为敏感的反映组织对磁敏感的变化,将来可能会成为监测软骨损伤病情变化最有效的MRI技术[37, 38]。但T2*-mapping成像信噪比较低,对磁场均匀性要求较高,且影响T2*值测量的因素尚未明确,需要进一步探索研究。

2.4 T1ρ成像

       T1ρ成像可以使用任何类型的脉冲进行成像,早期多使用2D快速SE序列,近年来3D-GRE、SE、螺旋成像、基于稳态自由进动(steady state free precession, SSFP)的序列等被广泛应用[39, 40]。主要的技术类型包括:T1ρ加权成像、T1ρ-mapping成像以及T1ρ频率离散度测量,其中T1ρ-mapping成像临床应用较多。与T1和T2不同,其弛豫不仅取决于组织自身固有属性,还会受到自旋锁定脉冲频率的影响。T1ρ对低频运动敏感,晶格中低频运动与大分子的存在密切相关,因此T1ρ可以分析细胞外大分子组织(特别是蛋白质)及组织中的质子交换。国内外学者[41, 42, 43]研究发现T1ρ与PG含量及Ⅱ型胶原含量密切相关,能够反映软骨损伤退变基因表达水平。与T2-mapping相比,T1ρ成像能够更敏感的检出早期、超早期的软骨损伤,精准鉴别出易发生软骨退变及骨性关节炎的高危人群,定量评估膝关节术后软骨基质成分的早期改变[44, 45]。相关文献[46]报道T1ρ受魔角效应的影响较小,可以与定量磁共振T2值相互补充,显示不同的空间分布。但是T1ρ成像对MRI系统硬件要求较高,扫描时间较长,缺少标准化成像参数,射频脉冲能量高,且回波时间较长,无法采集T2值较短的软骨组织信号,临床应用中有一些局限性,目前主要应用于科研领域[47]

2.5 DWI

       DWI是目前唯一一种能够无创地评估活体组织间水分子扩散情况的MRI序列,通常采用单次激发的平面回波(echo planar imaging, EPI)序列,设置TR时间大于2000 ms,TE选择系统默认的最短值(一般为40-110 ms),选择合理的b值在三个方向施加扩散敏感梯度磁场进行图像采集,计算测量出表观扩散系数(apparent diffusion coefficient, ADC),ADC值可以描述不同方向的分子扩展速度和范围[48]。文献[49, 50]报道ADC值的增加与软骨的损伤、退变程度呈正相关。DWI可以量化评估软骨内水含量变化,检测软骨损伤早期微观结构改变,与T2/T2*-mapping联合应用,提高早期诊断软骨损伤的敏感性及特异性[51, 52]。但其数据采集时间较长,容易受运动及生理性活动干扰,伪影较多,分辨率低,图像易失真变形。

2.6 DTI

       DTI能从量和方向上描述组织内水分子扩散运动,进而评估组织微观结构及功能变化,计算获取DTI的评价参数,包括各向异性分数(fractional anisotropy, FA)、平均扩散系数(mean diffusivity, MD)、轴向扩散系数(axial diffusivity, AD)、径向扩散系数(radial diffusivity, RD)。研究[53, 54]发现早期软骨损伤的患者的FA值明显低于正常人,其准确性与关节镜检出的结果接近。相较于传统的MRI技术,DTI能够在一次扫描中同时评估胶原生化成分、组织细微结构及PG的含量的变化,还可用于评估软骨移植术后移植软骨与正常软骨的结构变化[55],其敏感性高于T2*-mapping。虽然DTI不受魔角效应的干扰,但也存在一定的局限性,其扫描时间较长,需要专用线圈及高场强提升信噪比,无法准确描述水分子扩散的几何形态[56],较小的纤维束和存在交叉的纤维束显示较差或难以显示,且易受水肿、关节腔积液等因素影响,软骨胶原纤维排列的各向异性及扩散率需要更多的临床数据去验证。

2.7 DKI

       DKI是基于体内水分子扩散运动原理成像的新型MRI技术[57],可以定量评价b值超过1000 s/mm²非高斯分布的细胞内外水分子扩散运动。能够在一次扫描中同时获得DKI和DTI两套参数,提供更多反映局部组织微观结构信息,其特征性参数包括:平均扩散峰度(mean kurtosis, MK)、轴向峰度(axial kurtosis, AK)和径向峰度(radial kurtosis, RK),其方向对应DTI中的MD、AD、RD,其中MK值特异性和敏感性较高。MK值越高,水分子扩散程度受限越明显,组织结构的不均质性越强[58]。该技术最初应用于中枢神经及腹部系统,近年来逐渐应用于多个系统疾病的研究,展现出良好的临床价值及巨大的应用潜能[59, 60],其多b值、多参数的优势,预期可以获取更多的信息用于定量分析软骨的损伤程度。DKI在临床应用上也存在一些局限性,如扫描时间过长,所需b值较大导致信噪比降低,影响峰度值的测量,高阶峰度成像易出现伪影等。实际应用中不同部位关节软骨b值的选择、扩散方向数目需要同时兼顾信噪比和病变检出能力,b值大于1000 s/mm²,图像发生几何变形,信噪比明显降低,目前仅靠优化参数改善图像尚无法满足临床诊断需求,未来随着MRI软硬件的提升,期望能够根本上改善DKI图像质量[61]

2.8 UTE

       UTE序列TE时间小于0.1 ms,可以显示常规MRI不能显示的短T2组织,研究[62, 63]发现UTE序列能够清晰显示非钙化关节软骨的深层部分和软骨钙化区,定量分析其生化成分,评估软骨钙化区的胶原含量及排列方式,在软骨形态结构未发生改变前诊断早期、超早期软骨损伤。YANG等[64]研究发现,在检测早期软骨退变方面,UTE-MRI值与软骨退变的组织分级密切相关,其准确性明显优于T2/T2*-mapping测量结果。传统的T2/T2*-mapping和T1-mapping稳定性差,对魔角效应非常敏感,UTE扫描速度快,图像分辨率及信噪比高,对魔角效应不敏感,能够显示关节所有组织结构,尤其是T2-mapping无法显示的深层软骨,实现骨骼、肌肉一站式成像,发现钙化软骨损伤并监测治疗前后的临床效果[65]。UTE-MRI有望成为一种影像学生物标志物,运用定量的方式揭示软骨损伤退变的相关病理生理机制。

3 小结

       本文回顾分析了可以量化评估软骨损伤的多种无创性定量MRI技术,通过定量测量感兴趣区相关数值,量化评估软骨损伤早期的生化代谢变化,进一步揭示软骨损伤的病理生理机制,在软骨组织尚未发生形态学改变前早期及时诊断和干预,延缓或逆转病情发展,改善患者预后。提高临床诊断早期、超早期软骨损伤的敏感性和准确性。

[1]
DU X M, CAI L Y, XIE J, et al. The role of TGF-beta3 in cartilage development and osteoarthritis[J/OL]. Bone Res, 2023, 11(1): 2 [2023-05-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806111. DOI: 10.1038/s41413-022-00239-4.
[2]
ZHANG T S, YAO Y C. Effects of inflammatory cytokines on bone/cartilage repair[J]. J Cell Biochem, 2019, 120(5): 6841-6850. DOI: 10.1002/jcb.27953.
[3]
STRICKLAND C D, HO C K, MERKLE A N, et al. MR imaging of knee cartilage injury and repair surgeries[J]. Magn Reson Imaging Clin N Am, 2022, 30(2): 227-239. DOI: 10.1016/j.mric.2021.11.004.
[4]
THOMAS B L, ELDRIDGE S E, NOSRATI B, et al. WNT3A-loaded exosomes enable cartilage repair[J/OL]. J Extracell Vesicles, 2021, 10(7): e12088 [2023-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134720. DOI: 10.1002/jev2.12088.
[5]
SHARAFI A, ZIBETTI M V W, CHANG G, et al. 3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1ρ volumetric mapping of human articular cartilage at 3 T[J/OL]. NMR Biomed, 2022, 35(12): e4800 [2023-05-13]. https://pubmed.ncbi.nlm.nih.gov/35815660. DOI: 10.1002/nbm.4800.
[6]
OEI E H G, VAN ZADELHOFF T A, EIJGENRAAM S M, et al. 3D MRI in osteoarthritis[J]. Semin Musculoskelet Radiol, 2021, 25(3): 468-479. DOI: 10.1055/s-0041-1730911.
[7]
WANG G L, CHEN S, XIE Z A, et al. TGFβ attenuates cartilage extracellular matrix degradation via enhancing FBXO6-mediated MMP14 ubiquitination[J]. Ann Rheum Dis, 2020, 79(8): 1111-1120. DOI: 10.1136/annrheumdis-2019-216911.
[8]
FAN X W, WU X X, DE LIMA L T F, et al. The deterioration of calcified cartilage integrity reflects the severity of osteoarthritis-a structural, molecular, and biochemical analysis[J/OL]. FASEB J, 2022, 36(2): e22142 [2023-05-13]. https://pubmed.ncbi.nlm.nih.gov/35032407. DOI: 10.1096/fj.202101449R.
[9]
LEE S Y, LEE J W. 3D spheroid cultures of stem cells and exosome applications for cartilage repair[J/OL]. Life, 2022, 12(7): 939 [2023-05-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769977. DOI: 10.3390/life12070939.
[10]
EMANUEL K S, KELLNER L J, PETERS M J M, et al. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis[J]. Osteoarthritis Cartilage, 2022, 30(5): 650-662. DOI: 10.1016/j.joca.2021.10.016.
[11]
PENG Z, SUN H, BUNPETCH V, et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration[J/OL]. Biomaterials, 2021, 268: 120555 [2023-09-14]. https://pubmed.ncbi.nlm.nih.gov/33285440. DOI: 10.1016/j.biomaterials.2020.120555.
[12]
ZHANG M C, THELEMAN J L, LYGRISSE K A, et al. Epigenetic mechanisms underlying the aging of articular cartilage and osteoarthritis[J]. Gerontology, 2019, 65(4): 387-396. DOI: 10.1159/000496688.
[13]
KRISHNAN Y, GRODZINSKY A J. Cartilage diseases[J]. Matrix Biol, 2018, 71/72: 51-69. DOI: 10.1016/j.matbio.2018.05.005.
[14]
LIU L L, LIU H N, ZHEN Z M, et al. Analysis of knee joint injury caused by physical training of freshmen students based on 3T MRI and automatic cartilage segmentation technology: a prospective study[J/OL]. Front Endocrinol, 2022, 13: 839112 [2023-05-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124811. DOI: 10.3389/fendo.2022.839112.
[15]
CHEN Z M, ZHONG H, WEI J S, et al. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis[J/OL]. Arthritis Res Ther, 2019, 21(1): 300 [2023-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929452. DOI: 10.1186/s13075-019-2085-6.
[16]
KOVÁCS B, VAJDA E, NAGY E E. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis[J/OL]. Int J Mol Sci, 2019, 20(18): 4653 [2023-05-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769977. DOI: 10.3390/ijms20184653.
[17]
MIXON A, SAVAGE A, BAHAR-MONI A S, et al. An in vitro investigation to understand the synergistic role of MMPs-1 and 9 on articular cartilage biomechanical properties[J/OL]. Sci Rep, 2021, 11(1): 14409 [2023-05-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277889. DOI: 10.1038/s41598-021-93744-1.
[18]
CHIEN S Y, TSAI C H, LIU S C, et al. Noggin inhibits IL-1β and BMP-2 expression, and attenuates cartilage degeneration and subchondral bone destruction in experimental osteoarthritis[J/OL]. Cells, 2020, 9(4): 927 [2023-05-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226847. DOI: 10.3390/cells9040927.
[19]
SHAO J H, DING Z R, PENG J H, et al. miR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway[J]. Inflamm Res, 2020, 69(6): 619-630. DOI: 10.1007/s00011-020-01346-w.
[20]
LIU X, ZHAO J, JIANG H, et al. ALPK1 aggravates TMJOA cartilage degradation via NF-κB and ERK1/2 signaling[J]. J Dent Res, 2022, 101(12): 1499-1509. DOI: 10.1177/00220345221100179.
[21]
GE G R, BAI J X, WANG Q, et al. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway[J]. Sci China Life Sci, 2022, 65(3): 588-603. DOI: 10.1007/s11427-020-1939-1.
[22]
YANG Z J, XIE C, OU S W, et al. Cutoff points of T1 rho/T2 mapping relaxation times distinguishing early-stage and advanced osteoarthritis[J]. Arch Med Sci, 2022, 18(4): 1004-1015. DOI: 10.5114/aoms/140714.
[23]
SIFRE V, TEN-ESTEVE A, SERRA C I, et al. Knee cartilage and subchondral bone evaluations by magnetic resonance imaging correlate with histological biomarkers in an osteoarthritis rabbit model[J/OL]. Cartilage, 2022, 13(3): 19476035221118166 [2023-09-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421031. DOI: 10.1177/19476035221118166.
[24]
WU Y, MA Y J, DU J, et al. Accelerating quantitative MR imaging with the incorporation of B1 compensation using deep learning[J]. Magn Reson Imaging, 2020, 72: 78-86. DOI: 10.1016/j.mri.2020.06.011.
[25]
SUROWIEC R K, LUCAS E P, HO C P. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1385-1395. DOI: 10.1007/s00167-013-2714-6.
[26]
石磊, 于静红, 张晰尧. 膝关节骨性关节炎模型软骨T2-mapping表现与蛋白多糖含量的相关分析[J]. 放射学实践, 2019, 34(12): 1375-1379. DOI: 10.13609/j.cnki.1000-0313.2019.12.019.
SHI L, YU J H, ZHANG X Y. Correlation analysis of T2-mapping performance and proteoglycan content of cartilage in model of knee osteoarthritis[J]. Radiol Pract, 2019, 34(12): 1375-1379. DOI: 10.13609/j.cnki.1000-0313.2019.12.019.
[27]
李伟, 于泽晨, 贾岩波, 等. 距骨骨软骨损伤MRT2-mapping与软骨基质金属蛋白酶-1表达的相关性研究[J]. 磁共振成像, 2021, 12(5): 44-49. DOI: 10.12015/issn.1674-8034.2021.05.010.
LI W, YU Z C, JIA Y B, et al. The correlation between the expression of matrix metalloproteinase-1 and magnetic resonance T2-mapping in talus osteochondral injury[J]. Chin J Magn Reson Imag, 2021, 12(5): 44-49. DOI: 10.12015/issn.1674-8034.2021.05.010.
[28]
KAZCI O, YIGIT H, KOSAR P. T2 MRI mapping of knee cartilage in professional ballet dancers[J]. Med Probl Perform Art, 2020, 35(4): 221-226. DOI: 10.21091/mppa.2020.4031.
[29]
BAKER M E, KERSHAW L E, CARSTENS A, et al. T2 mapping of cartilage in the equine distal interphalangeal joint with corresponding histology using 0.27 T and 3.0 T magnetic resonance imaging[J]. Equine Vet J, 2023, 55(5): 843-852. DOI: 10.1111/evj.13900.
[30]
MAMISCH T C, TRATTNIG S, QUIRBACH S, et al. Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading: initial results[J]. Radiology, 2010, 254(3): 818-826. DOI: 10.1148/radiol.09090335.
[31]
SHIMOMURA K, HAMADA H, HART D A, et al. Histological analysis of cartilage defects repaired with an autologous human stem cell construct 48 weeks postimplantation reveals structural details not detected by T2-mapping MRI[J]. Cartilage, 2021, 13(1_suppl): 694S-706S. DOI: 10.1177/1947603521989423.
[32]
李军飞, 王一婧, 张雪松, 等. 磁共振T2 mapping在膝骨性关节炎周围肌肉改变评估中的价值研究[J]. 磁共振成像, 2023, 14(3): 117-121, 133. DOI: 10.12015/issn.1674-8034.2023.03.020.
LI J F, WANG Y J, ZHANG X S, et al. Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis[J]. Chin J Magn Reson Imag, 2023, 14(3): 117-121, 133. DOI: 10.12015/issn.1674-8034.2023.03.020.
[33]
RENNER N, KLEYER A, KRÖNKE G, et al. T2 mapping as a new method for quantitative assessment of cartilage damage in rheumatoid arthritis[J]. J Rheumatol, 2020, 47(6): 820-825. DOI: 10.3899/jrheum.180728.
[34]
BRINKHOF S, MOLLER N TE, FROELING M, et al. T2* mapping in an equine articular groove model: Visualizing changes in collagen orientation[J]. J Orthop Res, 2020, 38(11): 2383-2389. DOI: 10.1002/jor.24764.
[35]
YANG L, SUN C, GONG T, et al. T1ρ, T2 and T2* mapping of lumbar intervertebral disc degeneration: a comparison study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 1135 [2023-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793566. DOI: 10.1186/s12891-022-06040-y.
[36]
SCHÜTZ U, MARTENSEN T, KLEINER S, et al. T2*-mapping of knee cartilage in response to mechanical loading in alpine skiing: A feasibility study[J]. Diagnostics, 2022, 12(6): 1391 [2023-09-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222057. DOI: 10.3390/diagnostics12061391.
[37]
TSAI P H, WONG C C, CHAN W P. Radial T2* mapping reveals early meniscal abnormalities in patients with knee osteoarthritis[J]. Eur Radiol, 2022, 32(8): 5642-5649. DOI: 10.1007/s00330-022-08641-6.
[38]
ANDREISEK G, WEIGER M. T2* mapping of articular cartilage: current status of research and first clinical applications[J]. Invest Radiol, 2014, 49(1): 57-62. DOI: 10.1097/RLI.0b013e3182a574e1.
[39]
WANG L G, REGATTE R R. T₁ρ MRI of human musculoskeletal system[J]. J Magn Reson Imaging, 2015, 41(3): 586-600. DOI: 10.1002/jmri.24677.
[40]
MA Y J, CARL M, SEARLEMAN A, et al. 3D adiabatic T1ρ prepared ultrashort echo time cones sequence for whole knee imaging[J]. Magn Reson Med, 2018, 80(4): 1429-1439. DOI: 10.1002/mrm.27131.
[41]
WU M, MA Y J, LIU M Y, et al. Quantitative assessment of articular cartilage degeneration using 3D ultrashort echo time cones adiabatic T1ρ (3D UTE-Cones-AdiabT1ρ) imaging[J]. Eur Radiol, 2022, 32(9): 6178-6186. DOI: 10.1007/s00330-022-08722-6.
[42]
高丽香, 袁慧书. T1ρ技术定量评估踝关节距骨骨软骨损伤[J]. 中国医学影像技术, 2020, 36(3): 444-447. DOI: 10.13929/j.issn.1003-3289.2020.03.034.
GAO L X, YUAN H S. T1ρ technique in quantitatively evaluation on ankle osteochondral lesions of talus[J]. Chin J Med Imag Technol, 2020, 36(3): 444-447. DOI: 10.13929/j.issn.1003-3289.2020.03.034.
[43]
罗慕晴, 李宏伟, 向辉春, 等. 3.0T MR T1ρ及T2mapping评估兔股骨内侧髁关节软骨退变[J]. 中国医学影像技术, 2022, 38(10): 1446-1451. DOI: 10.13929/j.issn.1003-3289.2022.10.002.
LUO M Q, LI H W, XIANG H C, et al. 3.0T MR T1 ρand T2 mapping for evaluating articular cartilage degeneration of medial femoral condyle in rabbits[J]. Chin J Med Imag Technol, 2022, 38(10): 1446-1451. DOI: 10.13929/j.issn.1003-3289.2022.10.002.
[44]
BUTLER J J, WINGO T, KENNEDY J G. Presurgical and postsurgical MRI evaluation of osteochondral lesions of the foot and ankle: a primer[J]. Foot Ankle Clin, 2023, 28(3): 603-617. DOI: 10.1016/j.fcl.2023.04.010.
[45]
SHINOHARA M, AKAGI R, WATANABE A, et al. Time-dependent change in cartilage repair tissue evaluated by magnetic resonance imaging up to 2 years after atelocollagen-assisted autologous cartilage transplantation: data from the CaTCh study[J/OL]. Cartilage, 2022, 13(3): 19476035221109227 [2023-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277438. DOI: 10.1177/19476035221109227.
[46]
WU M, MA Y J, WAN L D, et al. Magic angle effect on adiabatic T1ρ imaging of the Achilles tendon using 3D ultrashort echo time cones trajectory[J/OL]. NMR Biomed, 2020, 33(8): e4322 [2023-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393640. DOI: 10.1002/nbm.4322.
[47]
LINK T M, JOSEPH G B, LI X J. MRI-based T1rho and T2 cartilage compositional imaging in osteoarthritis: what have we learned and what is needed to apply it clinically and in a trial setting?[J]. Skeletal Radiol, 2023, 52(11): 2137-2147. DOI: 10.1007/s00256-023-04310-x.
[48]
WANG D D, YIN H J, LIU W L, et al. Comparative analysis of the diagnostic values of T2 mapping and diffusion-weighted imaging for sacroiliitis in ankylosing spondylitis[J]. Skeletal Radiol, 2020, 49(10): 1597-1606. DOI: 10.1007/s00256-020-03442-8.
[49]
RAYA J G, DUARTE A, WANG N, et al. Applications of diffusion-weighted MRI to the musculoskeletal system[J/OL]. J Magn Reson Imaging, 2023 [2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/37477576. DOI: 10.1002/jmri.28870.
[50]
LI L, ZHOU Z G, LI J, et al. Diffusion kurtosis imaging provides quantitative assessment of the microstructure changes of disc degeneration: an in vivo experimental study[J]. Eur Spine J, 2019, 28(5): 1005-1013. DOI: 10.1007/s00586-019-05924-3.
[51]
孙伟伟, 黄部发, 李蕾. 多b值DWI及T2* mapping成像软骨定量分析技术在诊断KOA中的应用[J]. 影像科学与光化学, 2022, 40(5): 1241-1246. DOI: 10.7517/issn.1674-0475.220520.
SUN W W, HUANG B F, LI L. Application of multi-b value DWI and T2* mapping imaging cartilage quantitative analysis technology in diagnosis of KOA[J]. Imag Sci Photochem, 2022, 40(5): 1241-1246. DOI: 10.7517/issn.1674-0475.220520.
[52]
李春意, 李春艳. T2 mapping与DWI成像技术在诊断髌软骨损伤中的应用[J]. 影像科学与光化学, 2022, 40(4): 752-756. DOI: 10.7517/issn.1674-0475.220105.
LI C Y, LI C Y. Application of T2 mapping and DWI imaging technology in the diagnosis of patellar cartilage injury[J]. Imag Sci Photochem, 2022, 40(4): 752-756. DOI: 10.7517/issn.1674-0475.220105.
[53]
WANG N, MIRANDO A J, COFER G, et al. Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging[J]. Magn Reson Med, 2020, 84(2): 908-919. DOI: 10.1002/mrm.28181.
[54]
DUARTE A, RUIZ A, FERIZI U, et al. Diffusion tensor imaging of articular cartilage using a navigated radial imaging spin-echo diffusion (RAISED) sequence[J]. Eur Radiol, 2019, 29(5): 2598-2607. DOI: 10.1007/s00330-018-5780-9.
[55]
FRIEDRICH K M, MAMISCH T C, PLANK C, et al. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation[J]. Eur J Radiol, 2010, 73(3): 622-628. DOI: 10.1016/j.ejrad.2008.12.017.
[56]
ZHAO Q, RIDOUT R P, SHEN J K, et al. Effects of angular resolution and b value on diffusion tensor imaging in knee joint[J]. Cartilage, 2021, 13(2_suppl): 295S-303S. DOI: 10.1177/19476035211007909.
[57]
MASUTANI Y. Recent advances in parameter inference for diffusion MRI signal models[J]. Magn Reson Med Sci, 2022, 21(1): 132-147. DOI: 10.2463/mrms.rev.2021-0005.
[58]
TAHA H T, CHAD J A, CHEN J J. DKI enhances the sensitivity and interpretability of age-related DTI patterns in the white matter of UK biobank participants[J]. Neurobiol Aging, 2022, 115: 39-49. DOI: 10.1016/j.neurobiolaging.2022.03.008.
[59]
HUANG J J, XU J H, KANG L, et al. Identifying epilepsy based on deep learning using DKI images[J/OL]. Front Hum Neurosci, 2020, 14: 590815 [2023-09-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680804. DOI: 10.3389/fnhum.2020.590815.
[60]
HU S, PENG Y, WANG Q S, et al. T2*-weighted imaging and diffusion kurtosis imaging (DKI) of rectal cancer: correlation with clinical histopathologic prognostic factors[J]. Abdom Radiol, 2022, 47(2): 517-529. DOI: 10.1007/s00261-021-03369-1.
[61]
ANANIA V, COLLIER Q, VERAART J, et al. Improved diffusion parameter estimation by incorporating T2 relaxation properties into the DKI-FWE model[J]. Neuroimage, 2022, 256: 119219 [2023-05-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677810. DOI: 10.1016/j.neuroimage.2022.119219.
[62]
ATHERTYA J S, MA Y J, MASOUD AFSAHI A, et al. Accelerated quantitative 3D UTE-cones imaging using compressed sensing[J/OL]. Sensors, 2022, 22(19): 7459 [2023-05-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573555. DOI: 10.3390/s22197459.
[63]
CHENG K Y, MOAZAMIAN D, MA Y J, et al. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis[J]. Skeletal Radiol, 2023, 52(11): 2149-2157. DOI: 10.1007/s00256-022-04269-1.
[64]
YANG J W, SHAO H D, MA Y J, et al. Quantitative ultrashort echo time magnetization transfer (UTE-MT) for diagnosis of early cartilage degeneration: comparison with UTE-T2* and T2 mapping[J]. Quant Imaging Med Surg, 2020, 10(1): 171-183. DOI: 10.21037/qims.2019.12.04.
[65]
JANG H, MA Y J, CARL M, et al. Ultrashort echo time Cones double echo steady state (UTE-Cones-DESS) for rapid morphological imaging of short T2 tissues[J]. Magn Reson Med, 2021, 86(2): 881-892. DOI: 10.1002/mrm.28769.

上一篇 原发性痛经的磁共振神经影像学研究进展
下一篇 2型糖尿病小脑亚区灰质体积改变及其与胰岛素抵抗的相关性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2