分享:
分享到微信朋友圈
X
临床研究
基于ZOOM-mDixon的T2*/R2*成像术前预测胰腺导管腺癌淋巴结转移的价值
刘扶摇 张京刚 陈杰 杜亚楠 李明磊

Cite this article as: LIU F Y, ZHANG J G, CHEN J, et al. Value of ZOOM-mDixon-derived T2*/R2* imaging in preoperative predicting lymph node metastasis in pancreatic ductal adenocarcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(1): 119-124.本文引用格式:刘扶摇, 张京刚, 陈杰, 等. 基于ZOOM-mDixon的T2*/R2*成像术前预测胰腺导管腺癌淋巴结转移的价值[J]. 磁共振成像, 2024, 15(1): 119-124. DOI:10.12015/issn.1674-8034.2024.01.019.


[摘要] 目的 探讨ZOOM-mDixon序列衍生的定量T2*/R2*值在术前评价胰腺导管腺癌淋巴结转移的可行性。材料与方法 回顾性分析经病理证实的59例胰腺导管腺癌患者临床及影像资料,其中淋巴结转移(lymphatic metastasis, LNM)31例,非淋巴结转移(non-lymph node metastases, nLNM)28例。术前均行包括ZOOM-mDixon序列的MRI扫描,分析两组的临床基本资料(年龄、术前CA19-9水平等)、常规影像学特征(部位、形态等)和T2*/R2*值。使用组内相关系数(intra-class correlation coefficient, ICC)评价其可重复性,采用U检验、t检验或χ2检验比较两组间各参数的差异,绘制受试者工作特征(receiving operator characteristic, ROC)曲线,利用曲线下面积(area under the curve, AUC)评价相关指标的诊断性能。结果 T2*/R2*值的组间和组内ICC值均在0.83~0.97之间。两组间的年龄、肿块形态、肿块短径、肿块部位、术前糖类抗原(carbohydrate antigen, CA)19-9、CA125、癌胚抗原(carcinoma embryonic antigen, CEA)水平等差异无统计学意义,而性别、病灶长径和病灶边界差异有统计学意义(P值分别为0.023、0.048、0.040)。两组间的T2*值和R2*值差异有统计学意义(P值均<0.05)。与nLNM组相比,LNM组的R2*值较小[17.63(15.10, 22.50)/s vs. 24.00(20.00, 28.30)/s];T2*值更高[(63.77±13.95)ms vs.(49.71±12.67)ms]。T2*/R2*值预测胰腺癌淋巴结转移的AUC分别为0.775和0.766。结论 ZOOM-mDixon序列衍生的T2*/R2*成像量化值可术前预测胰腺导管腺癌的淋巴结转移,为临床治疗提供参考。
[Abstract] Objective To investigate the feasibility of using quantitative T2*/R2* values derived from the ZOOM-mDixon sequence for evaluating lymph node metastasis in pancreatic ductal adenocarcinoma.Materials and Methods A retrospective analysis was conducted on 59 patients with pathologically confirmed pancreatic ductal adenocarcinoma, including 31 patients with lymph node metastasis (LNM) and 28 patients without lymph node metastasis (nLNM). All patients underwent preoperative MRI scans, which included the ZOOM-mDixon sequence. The analysis involved examining clinical data, such as age and preoperative carbohydrate antigen (CA)19-9 levels, routine radiological features including location and morphology, and T2*/R2* values. Intra-class correlation coefficients (ICC) were used to evaluate repeatability, while U-tests, t-tests, or χ2 tests were used to compare differences between the two groups. The receiving operator characteristic (ROC) curve was plotted, and the area under curve (AUC) was calculated to assess the diagnostic performance of quantitative indicators.Results The inter-and intra-group ICC values for T2*/R2* were excellent, ranging from 0.83 to 0.97. No statistically significant differences were observed in age, tumor morphology, short diameter of the tumor, tumor location, preoperative CA19-9, CA125, carcinoma embryonic antigen (CEA) levels between the LNM and nLNM groups. However, gender, long diameter of the lesion, and lesion boundary exhibited statistically significant differences (P values were 0.023, 0.048, 0.040, respectively). There were significant statistical differences in the T2* and R2* values between the two groups (P values <0.05). Compared with the nLNM group, the LNM group exhibited a smaller R2* value [17.63 (15.10, 22.50) /s vs. 24.00 (20.00, 28.30) /s] and a higher T2* value [(63.77±13.95) ms vs. (49.71±12.67) ms]. The AUCs for T2*/R2* values in predicting lymph node metastasis of pancreatic cancer were 0.775 and 0.766, respectively.Conclusions Quantitative T2*/R2* imaging derived from the ZOOM-mDixon sequences can predict preoperative lymph node metastasis of pancreatic ductal adenocarcinoma, offering valuable insights for clinical treatment decisions.
[关键词] 胰腺导管腺癌;水脂分离技术;磁共振成像;淋巴结转移;术前预测
[Keywords] pancreatic ductal adenocarcinoma;water-fat separation technique;magnetic resonance imaging;lymph node metastasis;preoperativ prediction

刘扶摇    张京刚 *   陈杰    杜亚楠    李明磊   

苏州大学附属第三医院放射科,常州 213000

通信作者:张京刚,E-mail:yanqing@126.com

作者贡献声明::张京刚负责实验设计和对稿件重要内容进行修改;刘扶摇起草和撰写稿件,获取、分析和解释本研究的数据;陈杰、杜亚楠、李明磊获取、分析或解释本研究的数据,对稿件重要内容进行了修改,陈杰获得了江苏省卫生健康委科研项目基金资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性的诚信。


基金项目: 江苏省卫生健康委科研项目 ZD2022003
收稿日期:2023-07-20
接受日期:2023-12-26
中图分类号:R445.2  R735.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.01.019
本文引用格式:刘扶摇, 张京刚, 陈杰, 等. 基于ZOOM-mDixon的T2*/R2*成像术前预测胰腺导管腺癌淋巴结转移的价值[J]. 磁共振成像, 2024, 15(1): 119-124. DOI:10.12015/issn.1674-8034.2024.01.019.

0 引言

       胰腺导管腺癌(pancreatic ductal adenocarcinoma, PDAC)是世界范围内死亡率最高的癌症之一,严重危害人类的生命健康[1, 2, 3]。其常在晚期被诊断,易于复发,并且对化疗表现出较强的耐药性[4, 5],目前手术是治愈胰腺癌的唯一机会,然而由于该癌症通常在晚期才被发现,手术切除的成功率相对较低[6]。淋巴结是否转移影响PDAC患者预后[7, 8],存在淋巴结转移的PDAC患者预后相对不良[9];因此,通过在术前预测淋巴结转移的存在,可以优化患者后续治疗方案。目前,超声内镜引导下细针穿刺活检术由于其高诊断准确性[10, 11]被认为是术前评估淋巴结转移的金标准。然而,该技术是一种有创检查,容易造成出血、感染、急性胰腺炎等并发症[12],且操作复杂,易受到病变位置不适当、病变的移动性等因素的影响。因此,寻求一种非侵入性方法来评估淋巴结是否转移具有重要意义。近年的研究表明,肿瘤淋巴结是否转移与肿瘤的影像学特征有关[13, 14]。通过分析MRI中胰腺肿瘤的特征,可以预测胰腺癌的淋巴结转移。mDixon是一种基于化学位移编码水脂分离的技术,已经应用于判断宫颈鳞癌的分化程度[15]、诊断多发性骨髓瘤[16]、评估成年男性骨密度[17]、分析慢性肾脏疾病患者肾脏损害程度[18]。ZOOM(zonally oblique multi-slice)技术可以提高图像质量和准确性。关于ZOOM扩散加权成像(diffusion weighted imaging, DWI)在鉴别良恶性甲状腺结节上的相关研究报道该技术可以获得更短的重复时间、更好的图像质量、更高的血液对比度和更少的磁敏感性伪影[19]。本研究使用的ZOOM-mDixon序列,是mDixon-Quant与ZOOM技术相结合的成像手段,不仅可以缩短扫描时间,还能提高图像稳定性[20],但有关该技术在胰腺导管腺癌淋巴结转移评估中的研究尚不多见。因此本文探讨利用ZOOM-mDixon成像术前预测胰腺导管腺癌的淋巴结转移状态,为胰腺癌患者的诊疗提供参考。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经苏州大学附属第三人民医院的伦理审查委员会批准,免除受试者知情同意,批准文号:(2023)科第012号。本研究回顾性分析2019年1月至2022年6月常州市第一人民医院经临床诊断为胰腺占位性病变患者的资料。纳入标准:(1)根据患者TNM分期情况选择手术治疗,包括“Ⅰ期、ⅡA期及部分ⅡB期”并经病理检查证实为PDAC的患者;(2)在术前30 d内完成磁共振ZOOM-mDixon扫描;(3)患者年龄大于18岁。排除标准:(1)ZOOM-mDixon检查前已进行新辅助治疗;(2)合并有其他部位原发恶性肿瘤;(3)图像质量不佳,影响测量及观察;(4)病灶过小,影响测量;(5)临床数据不全。本研究最终纳入59例PDAC患者。

       收集患者的年龄、性别、术前糖类抗原(carbohydrate antigen, CA)19-9、CA125、癌胚抗原(carcinoma embryonic antigen, CEA)水平等临床资料,以及肿块部位、形态、边界、肿块长径及短径等一般影像学特征。同时获取病理淋巴结是否转移等特征。

1.2 组织病理学分析

       所有患者根据病灶位置接受胰体胰尾病损切除术或胰十二指肠根治术,标本经甲醛水溶液处理后由病理科医师进行取材。病理科技师对取材组织进行脱水、切片、染色、制片等操作,而所有切片均由两名病理科副主任医师(分别具有14、15年的病理诊断经验)在事先不知道MRI结果的情况下独立阅片。评价肿块大小、周边侵犯以及胰周淋巴结是否转移等方面。

1.3 MRI检查方法

       所有患者检查前需禁食6~8 h,并根据影像科技师指导进行屏气和均匀呼吸练习。扫描机器为3.0 T MRI仪(Philips Ingenia, Netherland),所用线圈为32通道相控阵柔性腹部线圈,仰卧位、头先进,定位中心对准线圈中心及剑突下2~3 cm,扫描范围包括胰腺及十二指肠壶腹部。MRI序列包括轴位T1WI(TR 3.7 ms, TE 0 ms), T2WI(TR 2 300 ms,TE 80 ms)等。增强扫描对比剂为Gd-DTPA,注射速率为2 mL/s,注射剂量为0.2 mL/kg,并分别在注射开始后的17、45、100 s进行扫描,从而获得胰腺的动脉期、实质期和静脉期图像。ZOOM-mDixon序列参数:TR 8.70 ms,TE 1.18 ms,deltaTE 1.46 ms,梯度回波6,矩阵140×111,视野180 mm×180 mm,层厚5.0 mm,层间距2.5 mm,翻转角3°,扫描时间14 s。

1.4 图像分析

       由一名具有7年影像诊断经验的放射科主治医师及另一名具有14年影像诊断经验的放射科副主任医师在不知道病灶淋巴结是否转移的情况下独立进行影像学图像分析。在MRI平扫和增强扫描的图像中记录病灶部位(胰头、胰体、胰尾等)、病灶形态(类圆形/不规则)、病灶长径、病灶短径、病灶边界(清楚/不清楚)。病灶强化程度以正常胰腺实质为参照。

       将所有PDAC患者的扫描数据传输到Philips后处理工作站。参照MRI常规平扫和增强图像,在ZOOM-mDixon的水相图上,绘制感兴趣区(region of interest, ROI),尽量避开胰腺导管、血管、囊变出血坏死区等。将ROI复制到脂肪相、T2*及R2*参数图,得到水相值、脂肪相值、T2*及R2*值(图1)。同时在同一患者的正常胰腺组织勾画ROI,记录正常胰腺组织的定量参数值。上述两名放射科医师独立勾画ROI以测试观察者间的可重复性,其中一名医师间隔2个月进行第2次ROI勾画以测试观察者内可重复性。

图1  病理证实为胰腺导管腺癌的脂相图(1A、1B)、R2*图(1C、1D)和相应的T2*图(1E、1F)。1A、1C、1E:男,74岁,病理证实胰腺导管腺癌,无淋巴结转移,感兴趣区(ROI)脂相值、R2*和T2*值分别为96.68 /s、27.86 /s和47.33 ms;1B、1D、1F:男,70岁,病理证实有淋巴结转移的胰腺导管腺癌,ROI脂相值、R2*和T2*值分别为86.15 /s、17.59 /s和62.13 ms。
Fig. 1  Fat maps (1A, 1B), R2* maps (1C, 1D), and corresponding T2* maps (1E, 1F) of patients with pancreatic ductal adenocarcinoma. 1A, 1C, 1E: A 74-year-old male patient with pathologically confirmed pancreatic ductal adenocarcinoma and no lymph node metastasis, the region of interest (ROI) demonstrates a fat fraction value of 96.68 /s, an R2* value of 27.86 /s, and a T2* value of 47.33 ms; 1B, 1D, 1F: A 74-year-old male patient with pancreatic ductal adenocarcinoma accompanied by lymph node metastasis, the ROI region exhibits a fat fraction value of 86.15 /s, an R2* value of 17.59 /s, and a T2* value of 62.13 ms.

1.5 统计学方法

       采用SPSS 26.0(IBM,美国)软件进行统计学分析,对计量资料进行正态性检验,如果数据符合正态分布,采用t检验,以均数±标准差表示,否则采用Mann-Whitney U检验,以中位数MP25,P75)表示。分类变量用各部分比例表示,使用χ2检验;组内相关系数(intra-class correlation coefficient, ICC)用于检测两个观察者内和观察者间的一致性;绘制受试者工作特征(receiving operator characteristic, ROC)曲线,计算曲线下面积(area under the curve, AUC),获得最佳截止点以及敏感度和特异度。通过AUC衡量T2*值和R2*值的识别能力。采用DeLong检验比较AUC的差异。P值<0.05为差异有统计学意义。

2 结果

2.1 受试者入组情况

       本研究入组59例胰腺导管腺癌患者,年龄46~82(68±9)岁,59例患者共计59个病灶,根据病理结果分为淋巴结转移(lymphatic metastasis, LNM)组(31例)和非淋巴结转移(non-lymph node metastases, nLNM)组(28例)。

2.2 一般资料统计结果

       nLNM病灶长径小于LNM组,病灶长径在两组间的差异有统计学意义(P=0.048)。性别、肿块边界是否清晰在两组间的差异有统计学意义(P值分别为0.023和0.040)。观察者间和观察者内部均有较好的一致性,ICC值均在0.83~0.97之间。两组病例在肿块位置、肿块形态、肿块短径、分化程度、CA19-9、CA125、CEA等一般及临床基本资料间的差异均无统计学意义,详见表1

表1  nLMN组和LNM组患者的临床特征和常规影像特征的比较
Tab.1  Comparison of clinical characteristics and conventional imaging characteristics of patients between the nLMN and LNM groups

2.3 影像学参数统计结果

       nLNM组病灶的R2*值[24.00(20.00, 28.30)/s]显著高于LNM组[17.63(15.10, 22.50)/s],两组间R2*值差异有统计学意义(P<0.001);nLNM组病灶的T2*值[(49.71±12.67)ms]显著低于LNM组[(63.77±13.95)ms],两组间T2*值差异有统计学意义(P<0.001);两组病例在病灶及正常胰腺组织水相、脂相的差异均无统计学意义,详见表2

表2  nLMN组和LNM组患者的病灶及正常胰腺的影像学参数比较
Tab. 2  Comparison of imaging parameters of lesions and normal pancreas of patients between the nLMN and LNM groups

2.4 ROC曲线分析结果

       R2*值预测PDAC淋巴结是否转移的AUC为0.766,敏感度为82.1%,特异度为67.7%,最佳截断值为19.72/s;T2*值预测PDAC淋巴结是否转移的AUC为0.775,敏感度71.0%,特异度达75.0%,最佳截断值为57.94 ms(图2)。经DeLong检验R2*值、T2*值预测胰腺导管腺癌淋巴结转移的效能差异均无统计学意义(P=0.618)。

图2  各影像参数值预测胰腺导管腺癌(PDAC)淋巴结转移的ROC曲线。
Fig. 2  The receiving operator characteristic (ROC) curve of each image parameter value predicting lymph node metastasis in pancreatic ductal adenocarcinoma (PDAC).

3 讨论

       本研究探讨了基于ZOOM-mDixon的T2*/R2*成像预测胰腺导管腺癌淋巴结转移的可行性。研究发现,病灶区域的T2*值和R2*值均是预测PDAC淋巴结转移情况的独立预测因素。本研究首次联合mDixon技术和ZOOM技术应用于PDAC的T2*值和R2*值测量中并获得了稳定的测量值,通过探讨PDAC淋巴结转移情况与ZOOM-mDixon技术参数值、临床及常规MRI特征分布的关系,有望为PDAC术前诊断和治疗提供新的见解。

3.1 ZOOM-mDixon技术参数值与PDAC淋巴结转移的关系

       mDixon是基于化学位移编码水脂分离的新兴、精准定量的影像学技术[14],作为可同时生成水相图、脂相图、T2*图和R2*图等多个参数图,具有测量简便、定量精确以及可重复性好等特点[21]。目前,基于mDixon技术的定量参数成像已应用于肝脏[22]、肾脏[23, 24]、骨[25, 26]、骨髓[27]、肌肉[28]等部位的临床研究。ZOOM是MRI的一种图像放大技术,可以在保持图像质量的同时放大ROI。ZOOM技术在先前的研究中被用于脊髓[29]等小结构成像。另外,ZOOM技术可以通过减少扫描时间来提高MRI的效率[30]。本研究将ZOOM与mDixon联合,在放大ROI的同时减少扫描时间,减少患者的不适感及运动伪影,同时,本研究发现,ZOOM-mDixon技术所获得的T2*和R2*值可用于术前预测胰腺癌淋巴结的转移状态。

       T2*值用于描述水分子在磁场中的弛豫过程。T2*值受顺磁性物质的含量、质子密度、含水量和水分子运动状态的影响[31],组织中水含量较多或水分子运动自由度高时T2*值可升高[32]。PDAC在处于高增殖状态时,血管增加,水含量增加,水分子运动自由度更高,最终引起T2*值的显著增加。SEO等[33]在组织学级别较高的浸润性乳腺癌中观察到更高的T2*值。另外,HISANAGA等[34]研究表明,肿瘤的侵袭性更强,恶性进展中消耗更多脂肪,这与本研究中nLNM组病灶的脂相高于LNM组的结果相符合。PDAC脂质含量减少,水含量增加,进而导致T2*值升高。既往研究中,mDixon衍生的R2*值尚未用于肿瘤预后的研究,R2*值和T2*值互为倒数关系,本研究发现LNM组的R2*值明显大于nLNM组,与T2*值的变化趋势相反。

3.2 临床及常规MRI特征分布与PDAC淋巴结转移的关系

       本研究中LNM组的男性比例明显高于nLNM组,国家癌症中心最新数据显示,胰腺癌男性发病率、死亡率均高于女性,呈现一定的性别差异[35]。DAVID等[36]的研究也显示男性胰腺癌患者预后相对女性较差。这可能与男性吸烟、高脂饮食等不良生活方式及工作环境(接触致癌物等)有关。

       在本研究中,我们还发现LNM组的病灶长径明显高于nLNM组,这与KUNISAKI等[37]等研究一致,KUNISAKI等研究发现早期肿瘤的大小对于淋巴结转移具有一定的影响,当直径达到2.1 cm以上时,其淋巴结转移率大大增加。证实了肿瘤越大,其生长和扩散能力就越强[38],更容易侵犯周围的淋巴结和组织。

       LNM组的肿瘤边界较nLNM组显示不清,提示LNM组肿瘤有更强的侵袭性。肿瘤的侵袭性与淋巴结转移之间存在一定的联系。既往研究表明,肿瘤的侵袭性越强,其发生淋巴结转移的可能性就越大[39]

       对胰腺癌诊断及预后可能有临床价值的肿瘤标志物包括CA19-9、CA125、CEA等[40]。SINGH等[41]的研究则表明CA19-9在胰腺癌的诊断、放化疗疗效评价上有重要的临床价值,MENG等[42]研究发现高水平的CEA可以作为晚期PDAC更可靠的独立预测因子,在本研究中,CA19-9、CA125、CEA于两组间差异无统计学意义,表明该指标在胰腺癌淋巴结转移的评价中存在争议,需要进一步验证。

3.3 本研究的局限性

       本研究仍然有一些局限性:第一,本研究为单中心回顾性分析,可能发生不可控的选择偏倚,并且没有进行外部验证;第二,纳入研究的患者必须经过手术切除获得病理结果,最终纳入研究的病例数较少,未来的研究需要更大的样本量;第三,通过手动描绘ROI测量T2*和R2*值可能存在一定的主观误差。

4 结论

       综上所述,ZOOM-mDixon技术所获得的T2*和R2*值可以作为鉴别胰腺导管腺癌LNM组和nLNM组的定量评价手段,在术前鉴别胰腺导管腺癌淋巴结转移中提供参考,为胰腺癌患者的诊疗提供一定的帮助。进一步的研究将有助于验证和优化该技术,并促进其在临床实践中的应用。

[1]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
HALBROOK C J, LYSSIOTIS C A, DI MAGLIANO M P, et al. Pancreatic cancer: advances and challenges[J]. Cell, 2023, 186(8): 1729-1754. DOI: 10.1016/j.cell.2023.02.014.
[4]
DBOUK M, KATONA B W, BRAND R E, et al. The multicenter cancer of pancreas screening study: impact on stage and survival[J]. J Clin Oncol, 2022, 40(28): 3257-3266. DOI: 10.1200/JCO.22.00298.
[5]
SPRINGFELD C, FERRONE C R, KATZ M H G, et al. Neoadjuvant therapy for pancreatic cancer[J]. Nat Rev Clin Oncol, 2023, 20(5): 318-337. DOI: 10.1038/s41571-023-00746-1.
[6]
STROBEL O, NEOPTOLEMOS J, JÄGER D, et al. Optimizing the outcomes of pancreatic cancer surgery[J]. Nat Rev Clin Oncol, 2019, 16(1): 11-26. DOI: 10.1038/s41571-018-0112-1.
[7]
KOMO T, MURAKAMI Y, KONDO N, et al. Prognostic impact of para-aortic lymph node micrometastasis in pancreatic ductal adenocarcinoma[J]. Ann Surg Oncol, 2016, 23(6): 2019-2027. DOI: 10.1245/s10434-016-5120-8.
[8]
WENNERBLOM J, SAKSENA P, JÖNSSON C, et al. Lymph node 8a as a prognostic marker for poorer prognosis in pancreatic and periampullary carcinoma[J]. Scand J Gastroenterol, 2018, 53(2): 225-230. DOI: 10.1080/00365521.2017.1417474.
[9]
DELL'AQUILA E, FULGENZI C A M, MINELLI A, et al. Prognostic and predictive factors in pancreatic cancer[J]. Oncotarget, 2020, 11(10): 924-941. DOI: 10.18632/oncotarget.27518.
[10]
OZONO Y, KAWAKAMI H, UCHIYAMA N, et al. Current status and issues in genomic analysis using EUS-FNA/FNB specimens in hepatobiliary-pancreatic cancers[J]. J Gastroenterol, 2023, 58(11): 1081-1093. DOI: 10.1007/s00535-023-02037-z.
[11]
QIN X Z, RAN T J, CHEN Y F, et al. Artificial intelligence in endoscopic ultrasonography-guided fine-needle aspiration/biopsy (EUS-FNA/B) for solid pancreatic lesions: opportunities and challenges[J/OL]. Diagnostics, 2023, 13(19): 3054 [2023-12-12]. https://pubmed.ncbi.nlm.nih.gov/37835797/. DOI: 10.3390/diagnostics13193054.
[12]
TERASAWA H, MATSUMOTO K, TANAKA T, et al. Cysts or necrotic components in pancreatic ductal adenocarcinoma is associated with the risk of EUS-FNA/B complications including needle tract seeding[J]. Pancreatology, 2023, 23(8): 988-995. DOI: 10.1016/j.pan.2023.10.018.
[13]
CHE F, XU Q, LI Q, et al. Radiomics signature: a potential biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(14): 1479-1493. DOI: 10.3748/wjg.v28.i14.1479.
[14]
MIRZA-AGHAZADEH-ATTARI M, MADANI S P, SHAHBAZIAN H, et al. Predictive role of radiomics features extracted from preoperative cross-sectional imaging of pancreatic ductal adenocarcinoma in detecting lymph node metastasis: a systemic review and meta-analysis[J]. Abdom Radiol, 2023, 48(8): 2570-2584. DOI: 10.1007/s00261-023-03940-y.
[15]
MENG X, TIAN S F, MA C J, et al. APTw combined with mDixon-Quant imaging to distinguish the differentiation degree of cervical squamous carcinoma[J/OL]. Front Oncol, 2023, 13: 1105867 [2023-12-09]. https://pubmed.ncbi.nlm.nih.gov/36761975/. DOI: 10.3389/fonc.2023.1105867.
[16]
SUN M T, WANG L L, WANG C, et al. Quantitative analysis of whole-body MRI for accessing the degree of diffuse infiltration patterns and identifying high risk cases of newly diagnosed multiple myeloma[J/OL]. J Magn Reson Imaging, 2023 [2023-12-08]. https://pubmed.ncbi.nlm.nih.gov/37675995/. DOI: 10.1002/jmri.28962.
[17]
TANG R, TANG G Y, HUA T, et al. mDIXON-Quant technique diagnostic accuracy for assessing bone mineral density in male adult population[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 125 [2023-12-08]. https://pubmed.ncbi.nlm.nih.gov/36788513/. DOI: 10.1186/s12891-023-06225-z.
[18]
WANG Y, JU Y, AN Q, et al. mDIXON-Quant for differentiation of renal damage degree in patients with chronic kidney disease[J/OL]. Front Endocrinol, 2023, 14: 1187042 [2023-12-07]. https://pubmed.ncbi.nlm.nih.gov/37547308/.10.3389/fendo.2023.1187042. DOI: 10.3389/fendo.2023.1187042.
[19]
LIU R J, JIANG G H, GAO P, et al. Non-invasive amide proton transfer imaging and ZOOM diffusion-weighted imaging in differentiating benign and malignant thyroid micronodules[J/OL]. Front Endocrinol, 2018, 9: 747 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/30631303/. DOI: 10.3389/fendo.2018.00747.
[20]
YANG L, LIU Y, KONG X C, et al. Diffusion tensor magnetic resonance imaging of the postoperative spine with metallic implants[J/OL]. NMR Biomed, 2020, 33(8): e4321 [2023-11-11]. https://pubmed.ncbi.nlm.nih.gov/32348023/. DOI: 10.1002/nbm.4321.
[21]
WEISS S, NEJAD-DAVARANI S, EGGERS H, et al. A novel and rapid approach to estimate patient-specific distortions based on mDIXON MRI[J/OL]. Phys Med Biol, 2019, 64(15): 155002 [2023-10-01]. https://pubmed.ncbi.nlm.nih.gov/31216529/. DOI: 10.1088/1361-6560/ab2b0a.
[22]
ZOU L Q, ZHANG H, WANG Q, et al. Simultaneous liver steatosis, fibrosis and iron deposition quantification with mDixon quant based on radiomics analysis in a rabbit model[J]. Magn Reson Imaging, 2022, 94: 36-42. DOI: 10.1016/j.mri.2022.08.013.
[23]
JU Y, WANG Y, LUO R N, et al. Evaluation of renal function in chronic kidney disease (CKD) by mDIXON-Quant and Amide Proton Transfer weighted (APTw) imaging[J]. Magn Reson Imaging, 2023, 103: 102-108. DOI: 10.1016/j.mri.2023.07.005.
[24]
CHENG J M, LUO W X, PAN J, et al. Renal ectopic lipid deposition in rats with early-stage diabetic nephropathy evaluated by the MR mDixon-Quant technique: association with the expression of SREBP-1 and PPARα in renal tissue[J]. Quant Imaging Med Surg, 2023, 13(7): 4504-4513. DOI: 10.21037/qims-22-1167.
[25]
MAGGI L, MOSCATELLI M, FRANGIAMORE R, et al. Quantitative muscle MRI protocol as possible biomarker in Becker muscular dystrophy[J]. Clin Neuroradiol, 2021, 31(1): 257-266. DOI: 10.1007/s00062-019-00875-0.
[26]
D'ASSIGNIES G, PAISANT A, BARDOU-JACQUET E, et al. Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging: validation against biopsy[J]. Eur Radiol, 2018, 28(5): 2022-2030. DOI: 10.1007/s00330-017-5106-3.
[27]
ZHANG Y, ZHOU Z, WANG C, et al. Reliability of measuring the fat content of the lumbar vertebral marrow and paraspinal muscles using MRI mDIXON-Quant sequence[J]. Diagn Interv Radiol, 2018, 24(5): 302-307. DOI: 10.5152/dir.2018.17323.
[28]
LI J F, WANG Y J, ZHANG X S, et al. Associations of muscle size and fatty infiltration with bone mineral density of the proximal femur bone[J/OL]. Front Endocrinol, 2022, 13: 990487 [2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/36237187/. DOI: 10.3389/fendo.2022.990487.
[29]
ALIZADEH M, POPLAWSKI M M, FISHER J, et al. Zonally magnified oblique multislice and non-zonally magnified oblique multislice DWI of the cervical spinal cord[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1555-1561. DOI: 10.3174/ajnr.A5703.
[30]
KIM L H, LEE E H, GALVEZ M, et al. Reduced field of view echo-planar imaging diffusion tensor MRI for pediatric spinal tumors[J]. J Neurosurg Spine, 2019: 1-9. DOI: 10.3171/2019.4.SPINE19178.
[31]
XIN J Y, GAO S S, LIU J G, et al. The value of ESWAN in diagnosis and differential diagnosis of prostate cancer: preliminary study[J]. Magn Reson Imaging, 2017, 44: 26-31. DOI: 10.1016/j.mri.2017.08.002.
[32]
DETIGER S E, HOLEWIJN R M, HOOGENDOORN R J, et al. MRI T2* mapping correlates with biochemistry and histology in intervertebral disc degeneration in a large animal model[J]. Eur Spine J, 2015, 24(9): 1935-1943. DOI: 10.1007/s00586-014-3498-1.
[33]
SEO M, RYU J K, JAHNG G H, et al. Estimation of T2* relaxation time of breast cancer: correlation with clinical, imaging and pathological features[J]. Korean J Radiol, 2017, 18(1): 238-248. DOI: 10.3348/kjr.2017.18.1.238.
[34]
HISANAGA S, AOKI T, SHIMAJIRI S, et al. Peritumoral fat content correlates with histological prognostic factors in breast carcinoma: a study using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL)[J]. Magn Reson Med Sci, 2021, 20(1): 28-33. DOI: 10.2463/mrms.mp.2019-0201.
[35]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[36]
DAVID M, LEPAGE C, JOUVE J L, et al. Management and prognosis of pancreatic cancer over a 30-year period[J]. Br J Cancer, 2009, 101(2): 215-218. DOI: 10.1038/sj.bjc.6605150.
[37]
KUNISAKI C, MAKINO H, AKIYAMA H, et al. Clinical significance of the metastatic lymph-node ratio in early gastric cancer[J]. J Gastrointest Surg, 2008, 12(3): 542-549. DOI: 10.1007/s11605-007-0239-3.
[38]
HAENO H, GONEN M, DAVIS M B, et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies[J]. Cell, 2012, 148(1/2): 362-375. DOI: 10.1016/j.cell.2011.11.060.
[39]
YAMADA M, SUGIURA T, OKAMURA Y, et al. Clinical implication of node-negative resectable pancreatic cancer[J]. Ann Surg Oncol, 2021, 28(4): 2257-2264. DOI: 10.1245/s10434-020-09543-x.
[40]
CAI J, CHEN H D, LU M, et al. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis[J]. Cancer Lett, 2021, 520: 1-11. DOI: 10.1016/j.canlet.2021.06.027.
[41]
SINGH S, TANG S J, SREENARASIMHAIAH J, et al. The clinical utility and limitations of serum carbohydrate antigen (CA19-9) as a diagnostic tool for pancreatic cancer and cholangiocarcinoma[J]. Dig Dis Sci, 2011, 56(8): 2491-2496. DOI: 10.1007/s10620-011-1709-8.
[42]
MENG Q C, SHI S, LIANG C, et al. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: a systematic review and meta-analysis[J]. Onco Targets Ther, 2017, 10: 4591-4598. DOI: 10.2147/OTT.S145708.

上一篇 基于磁共振动态增强图像直方图分析对肝癌TACE术后早期疗效评估及预测研究
下一篇 基于T2WI的ResNet深度学习模型术前预测膀胱癌病理分级的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2