分享:
分享到微信朋友圈
X
综述
动脉瘤蛛网膜下腔出血术后认知功能障碍患者的脑结构及功能的MRI研究进展
张钤军 刘倩 李瑞利 卢洁

Cite this article as: ZHANG Q J, LIU Q, LI R L, et al. MRI research progress of brain structure and function in patients with cognitive dysfunction after aneurysmal subarachnoid hemorrhage[J]. Chin J Magn Reson Imaging, 2024, 15(1): 194-198.本文引用格式:张钤军, 刘倩, 李瑞利, 等. 动脉瘤蛛网膜下腔出血术后认知功能障碍患者的脑结构及功能的MRI研究进展[J]. 磁共振成像, 2024, 15(1): 194-198. DOI:10.12015/issn.1674-8034.2024.01.033.


[摘要] 动脉瘤蛛网膜下腔出血(aneurysmal subarachnoid hemorrhage, aSAH)在年轻人中常见,致残致死率高,且超过50%的患者术后会出现认知功能障碍,表现在多个领域:语言、记忆、视觉感知能力、信息处理、注意力以及执行功能,严重影响患者的生存质量,给患者、家庭及社会带来沉重的精神和经济负担。早期诊断和治疗有助于患者的功能恢复和生活质量的提高,但其诊断需要一系列神经认知量表的评估,耗时且具有主观性。MRI具有无创、无辐射的优势,应用不同的颅脑影像序列(3D T1WI、扩散张量成像、功能MRI)能够从不同角度获取脑微观结构和功能的改变,为aSAH患者术后认知功能障碍的早期诊断、疾病监测、预后评估及病理机制提供影像学的独特见解。本研究对aSAH患者术后认知功能障碍的脑结构及功能MRI研究进展进行综述,旨在探索aSAH早期诊断、患者术后认知功能障碍评估的相关MRI参数,以期有益于早期治疗及改善预后。
[Abstract] Aneurysmal subarachnoid hemorrhage (aSAH) is common in young people with high disability and mortality, and over half of the patients have cognitive dysfunction after surgery. Cognitive dysfunction after aSAH is manifested in a variety of areas: language, memory, visual perception, information processing, attention, and executive function. It seriously affects the quality of life of patients, and brings heavy spiritual and economic burden to patients, families and society. Early diagnosis and treatment can help patients recover function and improve quality of life. But its diagnosis requires assessment on a series of neurocognitive scales, which is time-consuming and subjective. MRI is non-invasive and non-radiative. Different cranial imaging techniques including 3D T1WI, diffusion tensor imaging and function MRI applied to patients, we can obtain changes of brain microstructure and function from different perspectives, which offer unique insight into early diagnosis, disease monitoring, prognosis assessment and pathological mechanism of postoperative cognitive dysfunction in aSAH patients. This study aims to explore the MRI parameters related to the early diagnosis of aSAH and the assessment of postoperative cognitive dysfunction by reviewing the research progress of brain structural and functional MRI neuroimaging in patients with cognitive dysfunction afeter aSAH, so as to be beneficial to early treatment and improve prognosis.
[关键词] 动脉瘤蛛网膜下腔出血;认知功能障碍;磁共振成像;脑结构;脑功能
[Keywords] aneurysmal subarachnoid hemorrhage;cognitive dysfunction;magnetic resonance imaging;brain structure;brain function

张钤军 1, 2   刘倩 1, 2   李瑞利 1, 2   卢洁 1, 2*  

1 首都医科大学宣武医院放射与核医学科,北京 100053

2 磁共振成像脑信息学北京市重点实验室,北京 100053

通信作者:卢洁,E-mail:imaginglu@hotmail.com

作者贡献声明::卢洁对本研究的构思和设计有实质性贡献,对稿件重要内容进行了修改;张钤军起草和撰写稿件,获取、分析、解释本研究的文献;刘倩分析本研究的文献,对稿件重要内容进行了修改;李瑞利对本研究的构思和设计有实质性贡献,对稿件重要内容进行了修改,获得了首都医科大学本科生科研创新项目的基金资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 首都医科大学本科生科研创新项目 XSKY2023201
收稿日期:2023-09-07
接受日期:2024-01-02
中图分类号:R445.2  R743  R749 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.01.033
本文引用格式:张钤军, 刘倩, 李瑞利, 等. 动脉瘤蛛网膜下腔出血术后认知功能障碍患者的脑结构及功能的MRI研究进展[J]. 磁共振成像, 2024, 15(1): 194-198. DOI:10.12015/issn.1674-8034.2024.01.033.

0 引言

       动脉瘤性蛛网膜下腔出血(aneurysmal subarachnoid hemorrhage, aSAH)是一种具有高致死率和致残率的脑血管疾病,超过50%的aSAH患者术后会出现不同程度的认知功能障碍[1]。前交通动脉(anterior communicating artery, ACoA)动脉瘤破裂导致的认知功能障碍最常见[2, 3, 4],且认知功能障碍长期存在[5, 6]。认知功能障碍常发生于aSAH后3个月内,表现在多个领域:语言、记忆、视觉感知能力、信息处理、注意力及执行功能[7, 8, 9, 10],其中记忆是最常受影响的认知领域之一[11]。认知功能障碍的发生可能与入院时的临床表现严重程度、动脉瘤位置、年龄、手术因素和围手术期因素等有关[12, 13, 14]。尽管部分患者出院时没有任何神经系统症状,但出院后也会出现心理和精神方面的异常[15]。PREMAT等[16]发现75%的aSAH患者中至少有一个认知领域功能障碍,该比率比先前文献中报道的要高,表明认知功能障碍的实际患病率可能被低估了(因患者临床和常规影像学评估正常而未对其进行充分随访)。早期及时治疗有助于患者功能恢复和生活质量的提高[17],因此,早期识别这些患者具有重要意义。

       MRI无创、无辐射、客观准确、患者依从性高,3D T1WI、扩散张量成像(diffusion tensor imaging, DTI)和功能MRI(functional MRI, fMRI)可以从不同角度研究人脑的灰白质微观结构和功能特征,有望早期、准确检测潜在病变,并为认知功能障碍的发生机理提供影像学依据。本文将对aSAH患者术后认知功能障碍的脑结构及功能的MRI(3D T1WI、DTI和fMRI)研究进展进行文献复习并综述,旨在探索未来aSAH早期诊断、患者术后认知功能障碍评估的相关MRI参数,以期有益于早期治疗及改善预后。

1 3D T1WI结构像在aSAH患者术后认知功能障碍评估中的应用

       3D T1WI结构像作为一种常见结构成像方式,多用于观察脑灰质结构和皮层厚度分析。其常用分析方法有基于体素的形态学测量(voxel-based morphometry, VBM)[18]、基于K-近邻算法(k-nearest neighbor classification, KNN)的MR颅脑图像分割[19]等。研究表明,aSAH后会出现整体脑容量减小、脑室扩大和额颞叶皮质体积减小,这些结构变化被认为是导致认知功能障碍的原因[15, 20]。BENDEL等[21]对试验人群的3D T1WI影像学检查结果进行VBM分析发现,与健康对照组相比,aSAH患者的脑室和脑沟扩大,灰质体积显著减小。此外,灰质体积损失的程度与较差的认知表现有关。DE BRESSER等[22]研究表明,在T1和T2加权MRI图像中,aSAH 后6个月,患者相对于对照组有更高的侧脑室容积和更低的脑实质容积,且该体积异常与改良Rankin量表的较差结局相关。该研究应用KNN分割来量化aSAH后6个月的脑容量,验证了颅内、脑实质和侧脑室容积的KNN分割与手动分割的验证数据有良好的一致性,这一观察结果对未来将KNN应用于aSAH后认知功能障碍的病因学和临床干预具有重要意义。也有报道称脑脊液容量的增加和侧脑室的增大与认知功能障碍和生活质量恶化相关[23]。蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)和健康调查简表(Short Form-36, SF-36)常被用来检测认知功能和生活质量[24],ALI等[25, 26]使用3D T1WI结构像对aSAH患者术后1年的灰质白质比(gray-to-white matter ratio, GWR)与认知功能和生活质量的相关性进行分析,结果显示GWR与MoCA和SF-36得分有很好的相关性,而脑室总体积和脑总体积则与MoCA和SF-36得分不相关,这提示GWR是预测aSAH患者认知功能和生活质量恢复的良好指标(试验结果表明不同性别认知功能障碍的临界点为男性患者的GWR≤1.35,女性患者的GWR≤1.33)。LEE等[27]通过对照试验发现aSAH组左侧海马灰质体积显著小于健康对照组,视皮层灰质体积显著大于对照组,双侧海马、丘脑、左侧内侧眶回灰质体积与初始aSAH体积呈负相关,VBM多元回归分析显示蛛网膜下腔出血量和格拉斯哥昏迷评分与海马灰质体积相关。上述研究提示aSAH术后患者脑室容积增大、脑实质容积减小,不同脑区出现灰质绝对量与相对值的降低且与认知功能障碍相关。

2 DTI在aSAH患者术后认知功能障碍评估中的应用

       DTI可以有效探索MRI基本形态学序列无法解释的疾病[28]。各向异性分数(fractional anisotropy, FA)描述了水分子扩散的方向性程度,取值范围为1(完全各向异性扩散)~0(完全各向同性扩散),它反映了白质微结构如微管、髓鞘和轴突的完整性和方向性程度,FA值的降低表明神经束的方向性降低、微观结构变化,提示神经元损伤,因此可以作为白质健康的指标[29, 30]。此外,有研究发现认知功能障碍与FA值降低有关[31],这也适用于aSAH后认知障碍的情况[32]。平均扩散系数(mean diffusivity, MD)只表示扩散的大小,与扩散的方向无关,描述了在轴突损伤后因细胞毒性、血管源性水肿或细胞碎片堆积的情况下,水分子扩散增加的程度[29]。FA值降低、MD值升高提示白质损伤[33]

       SENER等[34]对创伤性脑损伤(traumatic brain injury, TBI)和aSAH患者队列进行了一项前瞻性的DTI研究,全脑扫描并量化以下参数:FA、MD、纤维束长度和重建纤维总数,并将其与患者死亡率和6个月时扩展版格拉斯哥结局量表评估的功能结局进行相关性分析,发现两组在FA、纤维束总数及平均纤维束长度上均有显著差异,入院后约12天评估的DTI参数与重度TBI或aSAH患者6个月时的死亡率显著相关,TBI和aSAH患者的各项DTI测量结果具有一致性,在TBI和aSAH患者中发现了相似的模式。HONG等[35]连续招募11例ACoA动脉瘤破裂患者和11例年龄、性别匹配的健康对照,在ACoA动脉瘤破裂后平均2个月采集DTI数据,结果显示,与对照组相比,扣带和右穹窿的FA值和纤维束体积降低,MD升高,表明ACoA动脉瘤破裂患者存在穹窿损伤,而穹窿存在与情绪和记忆相关的通路,提示ACoA动脉瘤破裂患者的持续记忆障碍可能与扣带和穹窿损伤有关。PREMAT等[16]对ACoA动脉瘤破裂6个月的患者与健康对照组的研究发现,患者组上额枕束、前放射冠以及穹窿的FA值降低、MD值升高。DARWAZEH等[36]对21例术后3个月恢复良好的aSAH患者(3个月时格拉斯哥结局分级为5级)在aSAH 发作后第四周(慢性期)的DTI扫描结果和21例性别和年龄匹配的健康对照组进行研究发现,与对照组相比,患者组皮质脊髓束的MD值、FA值差异均无统计学意义,而患者组乳头丘脑束的MD值显著升高、FA值显著降低。患者组中,乳头丘脑束的FA值与简易精神状态量表得分呈正相关,简易精神状态量表在筛查认知功能障碍方面被广泛使用,其有效性和可靠性已经得到充分证实[37, 38]。这表明与对照组相比,aSAH后预后良好的患者发病后第四周出现了乳头丘脑束损伤而不伴有皮质脊髓束损伤,且该损伤与认知功能障碍相关[36]。上述研究表明aSAH患者的部分脑区(穹隆、前放射冠、上额枕束)及全脑扫描DTI参数中FA降低、MD升高,提示对应部位白质损伤,且该改变与其术后认知功能障碍相关。

3 fMRI在aSAH患者术后认知功能障碍评估中的应用

       静息态fMRI(resting-state fMRI, rs-fMRI)在缺乏明确感觉刺激或行为任务的情况下进行扫描,近年来被用于研究记忆缺陷的病理生理学。rs-fMRI反映了大脑的自发神经活动,对评估脑功能及功能网络特征具有重要价值[39],认知功能障碍与异常的脑功能网络相关[39]。功能连接(functional connectivity, FC)是rs-fMRI数据常用的分析方法之一,它基于血氧水平依赖信号自发低频波动来量化静息时大脑区域之间的共享信息[40]。在受试者测试过程中观察静息态功能网络连接,将功能网络中的通信与在认知、知觉和运动任务中活跃的大脑区域相对应,不同脑区之间的FC可能在认知处理中发挥重要作用,这使其成为认知功能的预测指标,广泛应用于多种神经和精神疾病的研究[41]

3.1 默认网络FC在aSAH患者术后认知功能障碍评估中的应用

       SU等[42]发现与健康对照组相比,aSAH患者组内侧颞叶和丘脑的FC显著异常,且左侧丘脑-左侧下顶叶和左侧颞下回-双侧额下回等多个脑区之间的FC降低与患者的不良记忆表现显著相关。默认网络(default mode network, DMN)是一个成熟的内在大规模脑网络,负责各种认知过程,如回忆、想象、语义和情景记忆以及概念处理[43]。大量证据表明,大脑调节失调,尤其是DMN失活与包括卒中在内的多种神经精神疾病相关[44],内侧额上回(medial superior frontal gyrus, SFGmed)作为DMN的节点,已被广泛发现参与多种认知过程。CHEN等对27例aSAH患者和20例健康对照进行fMRI扫描和认知功能评估,分别计算单侧SFGmed与其他脑区的基于种子点的FC值,比较两组间FC值的差异,进一步分析ACoA动脉瘤破裂患者FC异常与认知功能的相关性,结果显示与对照组相比,ACoA动脉瘤破裂患者双侧SFGmed与DMN内优势节点的FC值均下降。相关性分析显示,较强的主观记忆障碍与SFGmed和多个皮质区的连接(如SFGmed -右侧中扣带回皮质、SFGmed -角回和右侧SFGmed-左侧中扣带回皮质)降低有关,这些脑区已被广泛证实参与了多种认知过程[45, 46, 47]。以上结果可作为ACoA动脉瘤破裂患者 SFGmed和广泛脑区之间FC下降的有力证据,大多数皮质连接功能减退区域位于DMN,并与aSAH后认知障碍相关,这表明DMN内在连接性降低可能是ACoA动脉瘤破裂SAH术后患者认知障碍的原因[48]

3.2 海马和额顶叶控制网络FC在aSAH患者术后认知功能障碍评估中的应用

       海马是受aSAH影响最大的脑区之一,与后续的认知功能下降,尤其是记忆丧失密切相关,许多有关aSAH的动物模型和神经影像学研究表明,aSAH患者会出现海马结构和功能的改变[27],包括结构萎缩、白质变性和活动减少[49]。CHEN等[50]另一项研究通过对aSAH患者和健康对照者双侧海马的FC分析发现,与健康对照组相比,ACoA动脉瘤破裂后患者海马与Papez环路内的其他脑结构之间的FC显著降低,而海马和双侧岛叶之间的FC增加,相关性分析显示,更多的主观记忆障碍和较低的认知总分与海马和多个脑区(如左侧前扣带回和额颞叶皮质)的FC下降有关。该结果提示ACoA动脉瘤破裂患者存在海马与Papez环路内多个脑区之间的连接减低,Papez环路失活可能是aSAH患者认知功能障碍的重要神经机制。MAHER等[47]通过对照试验发现有执行功能障碍的aSAH患者表现出从背外侧前额叶皮质到楔前叶和额上回的FC异常增加。此外,这些脑区的连接改变分别与患者的生活质量评分和执行功能评分显著相关,提示这可能是识别aSAH患者执行功能障碍的神经影像学标志物。aSAH患者海马与Papez环路内多个脑区的FC降低、额顶叶控制网络中部分FC升高,上述改变与认知功能障碍相关。

3.3 低频振幅与aSAH患者术后认知功能障碍评估

       低频振幅(amplitude of low-frequency fluctuation, ALFF)是基线状态下不经过滤波而直接反映特定频率范围内的自发神经活动强度的指标[51]。SU等[42]使用ALFF和FC来探索aSAH患者的全脑活动模式,对aSAH患者和健康对照者进行fMRI扫描和认知测试,评估aSAH患者ALFF和FC的异常及其与认知测试的相关性。结果显示aSAH患者ALFF增高的脑区主要位于左侧海马旁回(left parahippocampal gyrus, PHG)、左侧颞下回(left inferior temporal gyrus, ITG)和左侧丘脑(left thalamus, THAL)。FC及回归分析显示,aSAH患者多个脑FC强度与记忆表现呈正相关。PHG是内侧颞叶(medial temporal lobe, MTL)记忆系统和DMN皮质节点之间的接口[52],PHG的ALFF增高表明该区域在言语信息的成功检索中发挥重要作用,因此aSAH引起的记忆缺陷可能与MTL记忆系统和DMN之间的关键连接中断有关。ITG从腹侧接收信息,在识别模式、面容和物体方面发挥关键作用,研究[53]表明在语义记忆中,颞中回和颞下回皮质可能起关键作用。THAL被认为参与了再认记忆中的关系记忆[54, 55],上述脑区ALFF异常与之前遗忘性疾病的研究一致[56]。aSAH患者MTL(包括PHG和ITG)和DMN(包括顶下回和额下回眶部)之间的FC强度降低,DMN参与情景记忆加工,与内部聚焦任务(包括自传式记忆提取)之间存在关联[57],其活性可能是区分记忆障碍(如阿尔茨海默病)和健康衰老的生物标志物[58],MTL-DMN的拟合平均FC强度显著降低,表明FC可能作为这些患者记忆功能障碍的临床指标。而THAL和额下回之间的连接增加可能反映了FC的代偿性重新分配。在此研究中,左侧ITG、PHG和THAL 的ALFF增高,脑自发活动减少,FC紊乱。部分FC降低表明功能网络的功能完整性降低,而部分FC的增加可能表明aSAH患者可以使用额外的大脑资源来补偿认知功能的丧失。

4 局限性

       受制于病例的稀缺性、研究的可操作性以及对混杂因素(如住院期间的癫痫发作和随访时的脑积水)以保证研究结果的可靠性的考量,上述研究大多样本量不大,这也导致无法按年龄分组分析数据。对患者组的数据收集也多在单一或较少的时间节点。对认知功能障碍的评估也局限于单一或较少的某几个领域,而认知功能由多个领域组成:语言、记忆、视觉感知能力、信息处理、注意力及执行功能。未来应设计具有更大样本量的前瞻性研究、更有连续性的随访、更全面的量表以全面评估认知功能障碍,从而得出更有力的结论。

5 结论

       总体而言,aSAH患者会继发大脑灰白质结构及功能的损伤,且部分脑区的MRI参数变化与认知障碍的相关性已得到证实。不同的颅脑影像序列增加了对aSAH脑损伤导致的结构和功能改变的理解,提供了潜在的更客观快速、信息更丰富的诊断工具,在评估aSAH患者术后认知状态和生活质量、估计患者的康复潜力方面有独特作用,有助于指导医务人员的治疗策略,从而使aSAH患者拥有更好的预后、生活质量。

[1]
ZHENG Z V, LAM P K, POON W S, et al. The time course of cognitive deficits in experimental subarachnoid hemorrhage[J]. Acta Neurochir Suppl, 2020, 127: 121-125. DOI: 10.1007/978-3-030-04615-6_18.
[2]
BEECKMANS K, CRUNELLE C L, VAN DEN BOSSCHE J, et al. Cognitive outcome after surgical clipping versus endovascular coiling in patients with subarachnoid hemorrhage due to ruptured anterior communicating artery aneurysm[J]. Acta Neurol Belg, 2020, 120(1): 123-132. DOI: 10.1007/s13760-019-01245-w.
[3]
CHEN C, GUO X, CHEN Y, et al. Predictors of poor-grade aneurysmal subarachnoid hemorrhage caused by anterior communicating artery aneurysm[J/OL]. World Neurosurg, 2021, 148: e340-e345 [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703109. DOI: 10.1016/j.wneu.2020.12.140.
[4]
ROETHLISBERGER M, AGHLMANDI S, RYCHEN J, et al. Impact of very small aneurysm size and anterior communicating segment location on outcome after aneurysmal subarachnoid hemorrhage[J]. Neurosurgery, 2023, 92(2): 370-381. DOI: 10.1227/neu.0000000000002212.
[5]
GAO P, JIN Z, WANG P, et al. Effects of intracranial interventional embolization and intracranial clipping on the cognitive and neurologic function of patients with intracranial aneurysms[J]. Arch Clin Neuropsychol, 2022, 37(8): 1688-1698. DOI: 10.1093/arclin/acac030.
[6]
EAGLES M E, TSO M K, MACDONALD R L. Cognitive impairment, functional outcome, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage[J/OL]. World Neurosurg, 2019, 124: e558-e562 [2023-09-07]. https://www.sciencedirect.com/science/article/pii/S1878875019300208?via%3Dihub. DOI: 10.1016/j.wneu.2018.12.152.
[7]
GAASTRA B, EWBANK F, TAPPER W, et al. Long-term cognitive outcome following aneurysmal subarachnoid haemorrhage[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(1): 106184 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34773754/. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106184.
[8]
ROLLNIK J D, ADNER A. Long-term neuropsychological and participation impairment after aneurysmal subarachnoid hemorrhage (asah)[J]. Fortschr Neurol Psychiatr, 2020, 88(1): 33-39. DOI: 10.1055/a-1003-6756.
[9]
NUSSBAUM E S, MIKOFF N, PARANJAPE G S. Cognitive deficits among patients surviving aneurysmal subarachnoid hemorrhage. A contemporary systematic review[J]. Br J Neurosurg, 2021, 35(4): 384-401. DOI: 10.1080/02688697.2020.1859462.
[10]
HAUG NORDENMARK T, KARIC T, SORTEBERG W, et al. Predictors of cognitive function in the acute phase after aneurysmal subarachnoid hemorrhage[J]. Acta Neurochir (Wien), 2019, 161(1): 177-184. DOI: 10.1007/s00701-018-3760-0.
[11]
KHOSDELAZAD S, JORNA L S, RAKERS S E, et al. Long-term course of cognitive functioning after aneurysmal and angiographically negative subarachnoid hemorrhage[J]. Neurosurgery, 2023, 93(6):1235-1243. DOI: 10.1227/neu.0000000000002559.
[12]
AL-KHINDI T, MACDONALD R L, SCHWEIZER T A. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage[J/OL]. Stroke, 2010, 41(8): e519-e536 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/20595669/. DOI: 10.1161/strokeaha.110.581975.
[13]
NASSIRI F, WORKEWYCH A M, BADHIWALA J H, et al. Cognitive outcomes after anterior communicating artery aneurysm repair[J]. Can J Neurol Sci, 2018, 45(4): 415-423. DOI: 10.1017/cjn.2018.16.
[14]
MA N, FENG X, WU Z, et al. Cognitive impairments and risk factors after ruptured anterior communicating artery aneurysm treatment in low-grade patients without severe complications: A multicenter retrospective study[J/OL]. Front Neurol, 2021, 12: 613785 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/33643199/. DOI: 10.3389/fneur.2021.613785.
[15]
MONTEJO C, LAREDO C, LLULL L, et al. Synthetic mri in subarachnoid haemorrhage[J/OL]. Clin Radiol, 2021, 76(10): 785.e717-785.e723 [2023-09-07]. https://www.clinicalradiologyonline.net/article/S0009-9260(21)00306-8/fulltext. DOI: 10.1016/j.crad.2021.05.021.
[16]
PREMAT K, AZUAR C, GALANAUD D, et al. Pathomechanisms behind cognitive disorders following ruptured anterior communicating aneurysms: A diffusion tensor imaging study[J]. J Neuroradiol, 2022, 49(2): 187-192. DOI: 10.1016/j.neurad.2021.09.005.
[17]
RAUTALIN I M, SEBÖK M, GERMANS M R, et al. Screening tools for early neuropsychological impairment after aneurysmal subarachnoid hemorrhage[J]. Neurol Sci, 2020, 41(4): 817-824. DOI: 10.1007/s10072-019-04159-w.
[18]
WRIGHT I C, MCGUIRE P K, POLINE J B, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia[J]. Neuroimage, 1995, 2(4): 244-252. DOI: 10.1006/nimg.1995.1032.
[19]
ANBEEK P, VINCKEN K L, VAN BOCHOVE G S, et al. Probabilistic segmentation of brain tissue in mr imaging[J]. Neuroimage, 2005, 27(4): 795-804. DOI: 10.1016/j.neuroimage.2005.05.046.
[20]
REIJMER Y D, VAN DEN HEERIK M S, HEINEN R, et al. Microstructural white matter abnormalities and cognitive impairment after aneurysmal subarachnoid hemorrhage[J]. Stroke, 2018, 49(9): 2040-2045. DOI: 10.1161/strokeaha.118.021622.
[21]
BENDEL P, KOIVISTO T, AIKIÄ M, et al. Atrophic enlargement of csf volume after subarachnoid hemorrhage: Correlation with neuropsychological outcome[J]. AJNR Am J Neuroradiol, 2010, 31(2): 370-376. DOI: 10.3174/ajnr.A1804.
[22]
DE BRESSER J, VINCKEN K L, KASPERS A J, et al. Quantification of cerebral volumes on mri 6 months after aneurysmal subarachnoid hemorrhage[J]. Stroke, 2012, 43(10): 2782-2784. DOI: 10.1161/strokeaha.112.669184.
[23]
STEHOUWER B L, VAN DER KLEIJ L A, HENDRIKSE J, et al. Magnetic resonance imaging and brain injury in the chronic phase after aneurysmal subarachnoid hemorrhage: A systematic review[J]. Int J Stroke, 2018, 13(1): 24-34. DOI: 10.1177/1747493017730781.
[24]
BOERBOOM W, HEIJENBROK-KAL M H, KHAJEH L, et al. Long-term functioning of patients with aneurysmal subarachnoid hemorrhage: A 4-yr follow-up study[J]. Am J Phys Med Rehabil, 2016, 95(2): 112-120. DOI: 10.1097/phm.0000000000000353.
[25]
ALI A, BITIR B, ABDULLAH T, et al. Gray-to-white matter ratio predicts long-term recovery potential of patients with aneurysmal subarachnoid hemorrhage[J]. Neurosurg Rev, 2020, 43(1): 195-202. DOI: 10.1007/s10143-018-1029-y.
[26]
ALI A, TANIRGAN G, SABANCI P A, et al. Relation of gray-white matter ratio with long-term cognitive functions and quality of life in patients with mild to moderate aneurysmal subarachnoid hemorrhage: A prospective observational study[J]. Acta Neurochir (Wien), 2018, 160(1): 181-189. DOI: 10.1007/s00701-017-3374-y.
[27]
LEE G Y, RYU C W, KO H C, et al. Correlation between gray matter volume loss followed by aneurysmal subarachnoid hemorrhage and subarachnoid hemorrhage volume[J]. Neuroradiology, 2020, 62(11): 1401-1409. DOI: 10.1007/s00234-020-02445-5.
[28]
DIBELLA E V R, SHARMA A, RICHARDS L, et al. Beyond diffusion tensor mri methods for improved characterization of the brain after ischemic stroke: A review[J]. AJNR Am J Neuroradiol, 2022, 43(5): 661-669. DOI: 10.3174/ajnr.A7414.
[29]
LOPE-PIEDRAFITA S. Diffusion tensor imaging (dti)[J]. Methods Mol Biol, 2018, 1718: 103-116. DOI: 10.1007/978-1-4939-7531-0_7.
[30]
KOCHUNOV P, THOMPSON P M, LANCASTER J L, et al. Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: Tract-based spatial statistics study of aging[J]. Neuroimage, 2007, 35(2): 478-487. DOI: 10.1016/j.neuroimage.2006.12.021.
[31]
TSAPANOU A, HABECK C, GAZES Y, et al. Brain biomarkers and cognition across adulthood[J]. Hum Brain Mapp, 2019, 40(13): 3832-3842. DOI: 10.1002/hbm.24634.
[32]
VELLY L, PERLBARG V, BOULIER T, et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: A multicentre, international, prospective, observational, cohort study[J]. Lancet Neurol, 2018, 17(4): 317-326. DOI: 10.1016/s1474-4422(18)30027-9.
[33]
NAKAMOTO B K, JAHANSHAD N, MCMURTRAY A, et al. Cerebrovascular risk factors and brain microstructural abnormalities on diffusion tensor images in hiv-infected individuals[J]. J Neurovirol, 2012, 18(4): 303-312. DOI: 10.1007/s13365-012-0106-1.
[34]
SENER S, VAN HECKE W, FEYEN B F, et al. Diffusion tensor imaging: A possible biomarker in severe traumatic brain injury and aneurysmal subarachnoid hemorrhage?[J]. Neurosurgery, 2016, 79(6): 786-793. DOI: 10.1227/neu.0000000000001325.
[35]
HONG J H, CHOI B Y, CHANG C H, et al. Injuries of the cingulum and fornix after rupture of an anterior communicating artery aneurysm: A diffusion tensor tractography study[J]. Neurosurgery, 2012, 70(4): 819-823. DOI: 10.1227/NEU.0b013e3182367124.
[36]
DARWAZEH R, WEI M, ZHONG J, et al. Significant injury of the mammillothalamic tract without injury of the corticospinal tract after aneurysmal subarachnoid hemorrhage: A retrospective diffusion tensor imaging study[J/OL]. World Neurosurg, 2018, 114: e624-e630 [2023-09-07]. https://www.sciencedirect.com/science/article/pii/S1878875018305205?via%3Dihub. DOI: 10.1016/j.wneu.2018.03.042.
[37]
DICK J P, GUILOFF R J, STEWART A, et al. Mini-mental state examination in neurological patients[J]. J Neurol Neurosurg Psychiatry, 1984, 47(5): 496-499. DOI: 10.1136/jnnp.47.5.496.
[38]
JANG S H, CHOI B Y, KIM S H, et al. Injury of the mammillothalamic tract in patients with subarachnoid haemorrhage: A retrospective diffusion tensor imaging study[J/OL]. BMJ Open, 2014, 4(7): e005613 [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120333. DOI: 10.1136/bmjopen-2014-005613.
[39]
RAIMONDO L, OLIVEIRA Ĺ A F, HEIJ J, et al. Advances in resting state fmri acquisitions for functional connectomics[J/OL]. NeuroImage, 2021, 243: 118503 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34479041/. DOI: 10.1016/j.neuroimage.2021.118503.
[40]
NUNES D, IANUS A, SHEMESH N. Layer-specific connectivity revealed by diffusion-weighted functional mri in the rat thalamocortical pathway[J]. NeuroImage, 2019, 184: 646-657. DOI: 10.1016/j.neuroimage.2018.09.050.
[41]
SNIDER S B, EDLOW B L. MRI in disorders of consciousness[J]. Curr Opin Neurol, 2020, 33(6): 676-683. DOI: 10.1097/wco.0000000000000873.
[42]
SU J, E T, GUO Q, et al. Memory deficits after aneurysmal subarachnoid hemorrhage: A functional magnetic resonance imaging study[J/OL]. World Neurosurg, 2018, 111: e500-e506 [2023-09-07]. https://www.sciencedirect.com/science/article/pii/S1878875017322180?via%3Dihub. DOI: 10.1016/j.wneu.2017.12.102.
[43]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: A topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[44]
KOLSKåR K K, RICHARD G, ALNAES D, et al. Reliability, sensitivity, and predictive value of fmri during multiple object tracking as a marker of cognitive training gain in combination with tdcs in stroke survivors[J]. Hum Brain Mapp, 2021, 42(4): 1167-1181. DOI: 10.1002/hbm.25284.
[45]
PLATA-BELLO J, MODROñO C, ACOSTA-LÓPEZ S, et al. Subarachnoid hemorrhage and visuospatial and visuoperceptive impairment: Disruption of the mirror neuron system[J]. Brain Imaging Behav, 2017, 11(5): 1538-1547. DOI: 10.1007/s11682-016-9609-3.
[46]
MIKELL C B, BANKS G P, FREY H P, et al. Frontal networks associated with command following after hemorrhagic stroke[J]. Stroke, 2015, 46(1): 49-57. DOI: 10.1161/strokeaha.114.007645.
[47]
MAHER M, CHURCHILL N W, DE OLIVEIRA MANOEL A L, et al. Altered resting-state connectivity within executive networks after aneurysmal subarachnoid hemorrhage[J/OL]. PloS one, 2015, 10(7): e0130483. [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501762. DOI: 10.1371/journal.pone.0130483.
[48]
CHEN F, KANG Y, YU T, et al. Altered functional connectivity within default mode network after rupture of anterior communicating artery aneurysm[J/OL]. Front Aging Neurosci, 2022, 14: 905453 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/35959287/. DOI: 10.3389/fnagi.2022.905453.
[49]
CHO M K, JANG S H. Diffusion tensor imaging studies on spontaneous subarachnoid hemorrhage-related brain injury: A mini-review[J/OL]. Front Neurol, 2020, 11: 283 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32411076/. DOI: 10.3389/fneur.2020.00283.
[50]
CHEN F, CAI J, DAI L, et al. Altered hippocampal functional connectivity after the rupture of anterior communicating artery aneurysm[J/OL]. Front Aging Neurosci, 2022, 14: 997231 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/36420312/. DOI: 10.3389/fnagi.2022.997231.
[51]
SONG Y, XU W, CHEN S, et al. Functional mri-specific alterations in salience network in mild cognitive impairment: An ale meta-analysis[J/OL]. Front Aging Neurosci, 2021, 13: 695210 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/34381352/. DOI: 10.3389/fnagi.2021.695210.
[52]
CHEN H, SHENG X, LUO C, et al. The compensatory phenomenon of the functional connectome related to pathological biomarkers in individuals with subjective cognitive decline[J/OL]. Transl Neurodegener, 2020, 9(1): 21 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32460888/. DOI: 10.1186/s40035-020-00201-6.
[53]
YOUNES K, BORGHESANI V, MONTEMBEAULT M, et al. Right temporal degeneration and socioemotional semantics: Semantic behavioural variant frontotemporal dementia[J]. Brain, 2022, 145(11): 4080-4096. DOI: 10.1093/brain/awac217.
[54]
GEIER K T, BUCHSBAUM B R, PARIMOO S, et al. The role of anterior and medial dorsal thalamus in associative memory encoding and retrieval[J/OL]. Neuropsychologia, 2020, 148: 107623 [2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/32918952/. DOI: 10.1016/j.neuropsychologia.2020.107623.
[55]
ROY D S, ZHANG Y, AIDA T, et al. Anterior thalamic circuits crucial for working memory[J/OL]. Proc Natl Acad Sci U S A, 2022, 119(20): e2118712119 [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171768. DOI: 10.1073/pnas.2118712119.
[56]
CHAHAL N, BARKER-COLLO S, FEIGIN V. Cognitive and functional outcomes of 5-year subarachnoid haemorrhage survivors: Comparison to matched healthy controls[J]. Neuroepidemiology, 2011, 37(1): 31-38. DOI: 10.1159/000328647.
[57]
YESHURUN Y, NGUYEN M, HASSON U. The default mode network: Where the idiosyncratic self meets the shared social world[J]. Nat Rev Neurosci, 2021, 22(3): 181-192. DOI: 10.1038/s41583-020-00420-w.
[58]
IBRAHIM B, SUPPIAH S, IBRAHIM N, et al. Diagnostic power of resting-state fmri for detection of network connectivity in alzheimer's disease and mild cognitive impairment: A systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.

上一篇 功能磁共振成像在烟雾病认知障碍中的研究进展
下一篇 阻塞性睡眠呼吸暂停患者脑白质及认知功能损害的扩散磁共振成像研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2