分享:
分享到微信朋友圈
X
临床研究
CMR特征追踪成像在鉴别心脏淀粉样变性亚型中的价值研究
庄白燕 李爽 王辉 张宏凯 徐磊

Cite this article as: ZHUANG B Y, LI S, WANG H, et al. Value of CMR feature-tracking imaging in discriminating subtypes of cardiac amyloidosis[J]. Chin J Magn Reson Imaging, 2024, 15(2): 23-29, 62.本文引用格式庄白燕, 李爽, 王辉, 等. CMR特征追踪成像在鉴别心脏淀粉样变性亚型中的价值研究[J]. 磁共振成像, 2024, 15(2): 23-29, 62. DOI:10.12015/issn.1674-8034.2024.02.004.


[摘要] 目的 利用心脏磁共振特征追踪(cardiovascular magnetic resonance-feature tracking, CMR-FT)成像获得心脏淀粉样变性(cardiac amyloidosis, CA)不同亚型患者的左心室整体及各区域层面的心肌应力值,探讨其在CA分型中的价值。材料与方法 回顾性连续纳入有心内膜活检的CA患者,并根据免疫组化、血清免疫固定电泳和Tcm-DPD/HMDP/PYP闪烁成像,将患者分为20例免疫球蛋白轻链心脏淀粉样变性(immunoglobulin light chain cardiac amyloidosis, AL-CA)组和22例转甲状腺素蛋白心脏淀粉样变性(transthyretin cardiac amyloidosi, ATTR-CA)组。通过评估ATTR-CA组和AL-CA组患者延迟强化的类型和范围,反映组织特征学差异。通过CMR-FT技术得到左心室整体(2D和3D)以及各心肌层面[心外膜下(epicardial, epi)和心内膜下(endocardial, endo)]径向、周向和纵向应力,分析各参数的组间差异。用受试者工作特征曲线分析应力参数在鉴别两种CA类型中的准确性。结果 与ATTR-CA组相比,AL-CA组的患者左心室射血分数略低,左心室舒张末期容积相对较小,但差异无统计学意义。校正体表面积后,ATTR-CA组的左室心肌质量略高于AL-CA组[左室心肌质量指数:(106.38±29.79)mL/m2 vs.(100.04±36.73)mL/m2]。ATTR-CA型患者的延迟强化较多弥漫分布(60%),AL-CA型患者的左室心肌延迟强化多分布于endo。ATTR-CA组的3D左室心肌整体径向应力(12.96%±5.21% vs.16.58%±4.39%)、2D左室心肌整体纵向应力(-6.70%±1.94% vs. -7.87%±1.70%)、epi左室整体周向应力(global circumferential strain-epicardial, GCSepi)(-8.41%±2.78% vs. -10.51%±3.10%)及epi左室整体纵向应力(global longitudinal strain-epicardial, GLSepi)(-6.49%±2.03% vs. -8.15%±1.86%)的绝对值均低于AL-CA组(P值均<0.05)。GCSepi和 GLSepi鉴别两种类型CA的准确性最高,AUC值均为0.705。logistic回归分析发现GLSepi是鉴别不同亚型的独立因素(OR=1.60,P=0.021)。结论 CMR-FT成像在CA患者中可以提供有关心肌功能和应力的有价值信息,并且能够区分ATTR-CA和AL-CA这两种常见亚型。ATTR-CA的左室心肌应力低于AL-CA。
[Abstract] Objective To obtain the myocardial strain values of the left ventricle at the global and regional level in patients with different subtypes of cardiac amyloidosis (CA) through cardiovascular magnetic resonance feature tracking (CMR-FT).Materials and Methods This study included patients with CA who had undergone endocardial biopsy, and 20 cases of immunoglobulin light chain cardiac amyloidosis (AL-CA) and 22 cases of transthyretin cardiac amyloidosi (ATTR-CA) were retrospectively included according to immunohistochemistry, serum immunofixation electrophoresis, and Tcm/HMDP/PYP scintillation imaging. The type and range of late gadolinium enhancement in the two groups were evaluated to reflect the differences in histological characteristics. The radial, circumferential and longitudinal strains (2D and 3D) of the whole left ventricle and myocardium layers (subepicardial and subendocardial) were obtained by CMR-FT technique, and the differences of each parameter between groups were analyzed. Receiver operator characteristic curve analysis was used to analyze the accuracy of strain parameters in distinguishing the two CA types.Results Compared with the ATTR-CA group, the left ventricular ejection fraction was slightly lower in the AL-CA group, and the left ventricular end-diastolic volume was relatively smaller, but didn't reach statistically significant. After body surface area correction, left ventricular mass in ATTR-CA group was slightly higher than that in AL-CA group [left ventricular mass index: (106.38±29.79) mL/m2 vs. (100.04±36.73) mL/m2]. The distribution of late gadolinium enhancement was more diffuse in patients with ATTR-CA type (60%) and more subendocardial in patients with AL-CA type. The absolute values of left ventricular global radial strain (3D) (12.96%±5.21% vs. 16.58%±4.39%),global longitudinal strain (2D) (-6.70%±1.94% vs. -7.87%±1.70%), global circumferential strain-epicardial (GCSepi) (-8.41%±2.78% vs. -10.51%±3.10%) and global longitudinal strain-epicardial (GLSepi) (-6.49%±2.03% vs. -8.15%±1.86%) in ATTR-CA group were lower than that in AL-CA group (all P<0.05). The accuracy of GPSepi and GLSepi were the highest, and the AUC values were both reached 0.705. Logistic regression analysis showed that GLSepi was an independent factor in distinguishing different subtypes (OR=1.60, P=0.021).Conclusions CMR-FT imaging can provide valuable information about myocardial function and strain in patients with CA. Moreover, it is capable of distinguishing between the two common subtypes, ATTR-CA and AL-CA. The left ventricular myocardial strains in ATTR-CA are lower than those in AL-CA.
[关键词] 心脏淀粉样变性;免疫球蛋白轻链心脏淀粉样变性;转甲状腺素蛋白心脏淀粉样变性;分型;心肌应力;心脏磁共振特征追踪;磁共振成像
[Keywords] cardiac amyloidosis;immunoglobulin light chain cardiac amyloidosis;transthyretin cardiac amyloidosi;typing;myocardial strain;cardiac magnetic resonance-feature tracking;magnetic resonance imaging

庄白燕    李爽    王辉    张宏凯    徐磊 *  

首都医科大学附属北京安贞医院影像科,北京市心肺血管疾病研究所,首都医科大学医学影像学系,北京 100029

通信作者:徐磊,E-mail:leixu2001@hotmail.com

作者贡献声明::徐磊设计本研究的方案,对稿件重要内容进行了修改;庄白燕查阅文献,起草和撰写稿件,获取、分析和解释本研究的数据;李爽、王辉、张宏凯检索文献,获取、分析和解释本研究的数据,对稿件重要内容进行了修改;徐磊获得了国家自然科学基金项目(编号:U1908211、82271986)、首都医科大学临床专科学院(系)培养基金开放课题资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 U1908211,82271986 首都医科大学临床专科学院(系)培养基金开放课题 CCMU2023ZKYXY014
收稿日期:2023-07-24
接受日期:2024-01-21
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.02.004
本文引用格式庄白燕, 李爽, 王辉, 等. CMR特征追踪成像在鉴别心脏淀粉样变性亚型中的价值研究[J]. 磁共振成像, 2024, 15(2): 23-29, 62. DOI:10.12015/issn.1674-8034.2024.02.004.

0 引言

       心脏淀粉样变性(cardiac amyloidosis, CA)是由错误折叠的淀粉样原纤维沉积在心肌细胞外空间引起的,导致特定的心肌病[1, 2, 3]。CA的两种主要形式是转甲状腺素蛋白心脏淀粉样变性(transthyretin cardiac amyloidosis,ATTR-CA)和免疫球蛋白轻链心脏淀粉样变性(immunoglobulin light chain cardiac amyloidosis, AL-CA),约占病例的近95%[4]。这两种类型的预后非常不同,AL-CA亚型在诊断后6个月内有超过50%的死亡率,而ATTR亚型的预后更好,2年生存率可达98%~100%[5]。此外,AL-CA和ATTR-CA的治疗方法并不相同,前者多采取化疗/自体干细胞移植或联合使用口服蛋白酶抑制剂[6, 7],后者通过药物抑制TTR四聚体解离并减少TTR淀粉样纤维的形成,或服药降解和破坏TTR淀粉样原纤维[8, 9]。因此,CA的早期识别和分型是非常有必要的[10]

       目前,临床对于CA的分型有如下方法:免疫组化、蛋白质组质谱、99Tcm-DPD/HMDP/PYP闪烁成像等[11, 12]。然而,这些检查手段有些需要配合心内膜活检这种有创的方法来完成,有些价格昂贵使得许多患者由于无法承担昂贵的费用而放弃诊疗。因此,亟需一种新的无创的方法来鉴别两者。

       近年来,心脏磁共振(cardiovascular magnetic resonance, CMR)已成为一种强大的非侵入性成像模式,可提供有关功能和结构数据的全面和详细的心脏信息[13, 14]。特别是钆延迟强化(late gadolinium enhancement, LGE)成像能够稳健地检测指示CA的心肌损伤的特征模式[15, 16, 17]。此外,新的CMR技术,如T1 mapping和心肌细胞外体积分数的测量,有望改善对心肌细微结构变化的评估。有研究证实磁共振T1 mapping在两种分型的鉴别中也展现出了优势[18, 19, 20, 21],但T1 mapping的成像序列目前还没有一个统一的标准。

       心脏磁共振特征追踪(cardiac magnetic resonance feature tracking, CMR-FT)技术是一种新的后处理技术,能够从径向、周向和纵向3个维度对心肌应力进行定量分析,客观评价心肌在径向、周向和纵向方向上的形变程度[22, 23],反映心肌细胞的收缩性,可测量双心房和双心室的变形、位移、扭转和不同步,且无须使用对比剂,仅使用常规电影序列图像即可进行分析,极大缩短了检查时间和成本[24],具有较好的应用前景。

       但目前国内外关于应力在两种CA类型之间差异的研究多集中在超声成像上[25, 26],关于CMR-FT在CA分型中作用的研究寥寥无几,且研究主要探讨了CA的T1 mapping参数,而对于CMR-FT的深入探究并不十分充分[27]。本研究的主要目的是利用CMR-FT获得不同亚型的CA患者的左心室整体及各区域层面的心肌应力值,并探讨其对CA分型的评估价值。本研究的结果将为深入理解不同CA亚型的心肌功能提供重要线索,通过CMR-FT获取的心肌应力值,尤其是在左心室整体和各区域层面的测定,有望为早期识别和区分ATTR-CA和AL-CA患者提供有力支持。

1 材料与方法

1.1 一般资料

       本研究遵守《赫尔辛基宣言》,经首都医科大学附属北京安贞医院伦理委员会批准,免除受试者知情同意,批准文号:2013007X。本研究为回顾性研究,收集2020年1月至2023年6月期间在我院诊断为CA的患者,纳入标准:(1)进行了CMR检查;(2)年龄在18岁及以上;(3)进一步筛选出有心内膜活检和刚果红染色结果的患者,然后根据免疫组织化学染色,血清免疫固定电泳和/或Tcm-DPD/HMDP/PYP闪烁成像进一步分型为AL-CA型(血清免疫固定电泳阳性并且免疫组织化学染色提示为AL-CA型)和ATTR-CA型(Tcm-DPD/HMDP/PYP闪烁成像阳性并且免疫组织化学染色提示为ATTR-CA型)[28]。排除标准:(1)未进行心内膜活检;(2)无完整的临床资料;(3)CMR图像不完整或质量差的患者。

1.2 CMR技术

       所有CMR检查均在Philips 3.0 T MR(Ingenia,Philips Healthcare,Best,Netherland)上进行。心脏短轴电影序列:采用稳态自由进动梯度回波(steady state free precession,SSFP)技术,从心底到心尖以无间距进行连续扫描,结合心电及呼吸屏气采集短轴电影序列(视野321 mm×321 mm,矩阵180×200,层厚8 mm,TR 3.10 ms,TE 1.56 ms,翻转角45°,时间分辨率43 ms,并行采集系数2)。LGE:对比剂注射后10 min,采用心电门控屏气相位敏感反转恢复序列,在与心脏电影图像相同的横截面位置扫描(视野350 mm×321 mm,矩阵192×132,层面厚度8 mm,TR 6.1 ms,TE 3.0 ms,翻转角25°,并行采集系数2)。

1.3 磁共振图像分析

1.3.1 心功能

       采用图像后处理软件CVI42(Circle Cardiovascular Imaging Inc, Calgary,Canada)进行左心室心功能检测,使用SPSS电影图像进行分析。心内膜和心外膜的轮廓通过半自动检测获得并进行手动校正。心室腔包括乳头肌和心肌小梁在内。舒张末期和收缩末期分别定义为心动周期中心室最大和最小的时期[29]。心功能参数包括左心室射血分数(left ventricular ejection fraction, LVEF)、左心室舒张末期容积(left ventricular end-diastolic volume, LVEDV)、左心室收缩末期容积(left ventricular end-systolic volume, LVESV)、左心室每搏量(left ventricular stroke volume, LVSV)、左心室心输出量(left ventricular cardiac output, LVCO)和左心室舒张末期质量(left ventricular mass at end-diastole, LV mass at ED)。并将上述心功能参数根据体表面积(body surface area, BSA)标准化,得到相应的指数参数。

1.3.2 应力

       采用CVI42软件在SSFP电影图像中分析应力和应力率,在指定模块中打开短轴及长轴电影序列,勾勒左心室内、外膜,手动调整心内膜与心外膜边界处的曲线,使其与室壁厚度保持一致,然后运行程序,自动计算左心室应力。参数包括3D和2D的总体径向应力(global radial strain, GRS),总体周向应力(global circumferential strain, GCS),总体纵向应力(global longitudinal strain, GLS),并收集径向、周向及纵向的心内膜下(endocardial, endo)和心外膜下(epicardial, epi)应力参数(GRSepi, GRSendo; GCSepi, GCSendo; GLSepi, GLSendo)[30]

       LGE图像通过视觉及半定量方法进行评估,如果大于正常心肌信号的五倍标准差,认为LGE阳性[31]

1.4 统计学分析

       采用SPSS 26.0软件进行分析。使用Kolmogorov- Smirnov's检验连续变量是否是正态分布。符合正态分布的计量资料采用均数±标准差表示,采用独立样本t检验比较组与组之间的差别。不符合正态分布的计量资料采用中位数(四分位间距)表示,采用Mann-Whitney U符号秩检验比较组与组之间的差别。计数资料采用例数(%)表示,采用χ2检验及Fisher精确检验比较组与组之间的差别。以P<0.05为差异有统计学意义。使用受试者工作特征(receiver operating characteristic, ROC)曲线分析应力参数鉴别ATTR-CA和AL-CA的准确性。

2 结果

2.1 一般临床资料及CMR基本参数差异分析

       本研究共纳入82名患者。42例患者经心内膜活检阳性证实患有CA,38例患者因未进行病理检查被排除,2例患者因CMR图像质量差被排除。在活检确认为CA的患者中,20例为ATTR-CA[年龄33~90(62±15)岁,55%为男性],22例为AL-CA[年龄40~78(59±10)岁,50%为男性]。ATTR-CA组和AL-CA组的年龄、性别和BSA等基线临床特征差异无统计学意义(P>0.05)。实验室检查、纽约心脏病学会心功能分级(New York Heart Association,NYHA)在两组间差异也无统计学意义(P>0.05)。受试者基线特征如表1所示。

       与ATTR-CA组相比,AL-CA组患者LVEF略低,LVEDV相对较小,但差异无统计学意义(P>0.05)。ATTR-CA组的LV mass at ED略低于AL-CA组,但校正BSA后,ATTR-CA组的LV mass at ED略高于AL-CA组(表2)。

表1  ATTR-CA和AL-CA患者的基线特征
Tab. 1  Baseline characteristics of ATTR-CA and AL-CA patients
表2  ATTR-CA和AL-CA患者的心功能参数分析
Tab. 2  Analysis of cardiac function parameters in ATTR-CA and AL-CA patients

2.2 不同类型CA的应力分析

       AL-CA组与ATTR-CA组的整体、epi及endo的各应力参数分析结果见表3,ATTR-CA组的左室GRS(3D)、GLS(2D)、GCSepi 及GLSepi的绝对值低于AL-CA 组,差异有统计学意义(P<0.05)。AL-CA和ATTR-CA两组的GRS(2D)、GRSepi、GRSendo差异无统计学意义(P>0.05)。另外,AL-CA和ATTR-CA的左室心肌整体GCS(3D)及GCS(2D)的差异无统计学意义(P<0.05)。

       经过将GRS(3D)、GLS(2D)、GCSepi和GLSepi纳入logistic回归分析(向前LR法)后发现,GLSepi是鉴别不同亚型的独立因素(OR=1.60,P=0.021)。

表3  ATTR-CA和AL-CA患者的应力参数分析
Tab. 3  Strain parameter analysis of ATTR-CA and AL-CA patients

2.3 应力参数鉴别不同类型CA的准确性

       ROC曲线分析显示,GRS(3D)、GLS(2D)、GCSepi、GLSepi对CA分型均具有一定的诊断价值。通过ROC曲线确定GRS(3D)鉴别两种CA的临界值是10.73%,敏感度和特异度分别为42.11%、95.00%,AUC值为0.700;GLS(2D)鉴别两种CA的临界值是-8.35%,敏感度和特异度分别为85.00%、50.00%,AUC值为0.658;GCSepi鉴别两种CA的临界值是-8.07%,敏感度和特异度分别为57.89%、85.00%,AUC值为0.705;GLSepi鉴别两种CA的临界值是-8.03%,敏感度和特异度分别为84.21%、55.00%,AUC值为0.705(表4图1)。

图1  心肌应力参数鉴别免疫球蛋白轻链心脏淀粉样变性和转甲状腺素蛋白心脏淀粉样变性受试者工作特征(ROC)曲线。1A为三维整体径向应力[GRS(3D)]的ROC曲线;1B为二维整体纵向应力[GLS(2D)]的ROC曲线;1C为心外膜下纵向应力(GLSepi)的ROC曲线;1D为心外膜下周向应力(GCSepi)的ROC曲线。
Fig. 1  The receiver operating characteristic (ROC) curves of myocardial strain parameters in distinguishing immunoglobulin light chain cardiac amyloidosis from transthyretin cardiac amyloidosis. 1A is the ROC curve of three-dimensional global radial stress [GRS (3D)]; 1B is the ROC curve of two-dimensional global longitudinal stress [GLS (2D)]; 1C is the ROC curve of subepicardial longitudinal stress (GLSepi); 1D is the ROC curve of subepicardial circumferential stress (GCSepi).
表4  应力参数对ATTR-CA、AL-CA鉴别诊断价值的ROC曲线分析
Tab. 4  ROC curve analysis of strain parameters on the differential diagnosis value of ATTR-CA and AL-CA

2.4 不同类型CA的LGE特点

       AL-CA组与ATTR-CA组的LGE特点结果见表5,ATTR-CA组的左心室透壁LGE(图2)(χ2=14.2,P<0.001)高于AL-CA组(图3),而左心室心内膜下LGE低于AL-CA 组,差异均有统计学意义(P=0.006)。ATTR-CA组的右心室LGE高于AL-CA组,但差异无统计学意义(P=0.352)。左心房LGE、右心房LGE在两组之间差异无统计学意义(P<0.05)。

图2  男,44岁,转甲状腺素蛋白心脏淀粉样变性(ATTR-CA)患者的典型图像。2A~2C分别为左室2ch,左室4ch和左室短轴的应力图像;2D~2F分别显示ATTR-CA的GLS(2D)、GCS(2D)、GRS(2D)的应力曲线图;2G~2I为分别显示GRS(2D)、GCS(2D)、GLS(2D)的16节段牛眼图;2J~2L分别为左室2ch,左室4ch和左室短轴的钆延迟强化图像,表现为左室心肌弥漫全层透壁强化。2ch:两腔心;4ch:四腔心;GLS(2D):二维左心室整体纵向应力;GCS(2D):二维左心室整体周向应力;GRS(2D):二维左心室整体径向应力;LV:左心室;AHA:美国心脏协会。
Fig. 2  A typical set of images for transthyretin cardiac amyloidosis (ATTR-CA) of a 44 years old male. 2A-2C represent strain images of the left ventricle in 2-chamber (2ch), 4-chamber (4ch), and short-axis view, respectively. 2D-2F display strain curve graphs for the two-dimensional left ventricular global longitudinal strain [GLS (2D)], global circumferential strain [GCS (2D)], and global radial strain [GRS (2D)] in ATTR-CA. 2G-2I show bull's eye maps of 16 segments, each depicting the distribution of GLS (2D), GCS (2D), and GRS (2D). 2J-2L are late gadolinium enhancement images for 2ch, 4ch, and short-axis view of the left ventricle, demonstrating left ventricular myocardium diffuse whole-layer transmural enhancement. LV:left ventricle;AHA: American Heart Association.
图3  男,71岁,免疫球蛋白轻链心脏淀粉样变性(AL-CA)患者的典型图像,3A~3C分别为左室2ch、左室4ch和左室短轴的应力图像;3D~3F分别显示GLS(2D)、GCS(2D)、GRS(2D)的应力曲线图;3G~3I为分别显示GLS(2D)、GCS(2D)、GRS(2D)的16节段牛眼图;3J~3L分别为左室2ch,左室4ch和左室短轴的LGE图像,表现为广泛的心内膜下线样强化。2ch:两腔心;4ch:四腔心;GLS(2D):二维左心室整体纵向应力;GCS(2D):二维左心室整体周向应力;GRS(2D):二维左心室整体径向应力;LV:左心室;AHA:美国心脏协会。
Fig. 3  A typical set of images for immunoglobulin light chain cardiac amyloidosis (AL-CA) of a 71 years old male. 3A-3C represent strain images of the left ventricle in 2-chamber (2ch), 4-chamber (4ch), and short-axis view, respectively. 3D-3F display strain curve graphs for the two-dimensional left ventricular global longitudinal strain [GLS (2D)], global circumferential strain [GCS (2D)], and global radial strain [GRS (2D)] in AL-CA. 3G-3I show bull's eye maps of 16 segments, each depicting the distribution of GLS (2D), GCS (2D), and GRS (2D). 3J-3L are late gadolinium enhancement images for 2ch, 4ch, and short-axis view of the left ventricle, demonstrating extensive subendocardial linear enhancement. LV: left ventricle; AHA: American Heart Association.
表5  ATTR-CA、AL-CA患者的延迟强化特点
Tab. 5  Late gadolinium enhancement characteristics of ATTR-CA and AL-CA patients

3 讨论

       本研究通过CMR-FT技术比较了ATTR-CA和AL-CA两组的左室应力,首次发现了系统性AL-CA患者的心肌整体应力及endo和epi应力均高于ATTR-CA,其中两组的GRS(3D)、GLS(2D)、GCSepi和GLSepi数值差异具有统计学意义。GLSepi和GCSepi鉴别两种CA的准确性最高。

3.1 应力参数更敏感地探测ATTR-CA和AL-CA患者的心肌功能

       本研究发现本组ATTR-CA患者的LVEF略高于AL-CA,但是无论是3D还是2D的应力参数绝对值均低于AL-CA,说明应力能够在一定程度上比LVEF更加敏感地发现心肌收缩功能的异常。LVEF虽然作为CA或其他心脏疾病左心室收缩功能的重要监测指标,但作为一种容积排出的测量方法容易受到心肌代偿作用以及左心室后负荷的影响[32]。应力是指心肌在心动周期的某一个方向上的长度变化值/原长度,能够直接测量心肌组织的功能,更准确地反映心肌本身的收缩特性和心肌活动[33]而不受到心率、心脏负荷等因素的影响。

       目前有研究证实了CA患者的应力较正常对照组低,并且发现虽然在临床表现为CA的受试者中,GLS普遍受损,但在某些情况下,左心室的心尖节段通常受影响较小,甚至可以幸免,这一发现在AL-CA和ATTR-CA淀粉样变性中都得到了一致观察[34]。但目前国内外关于不同亚型的应力差异的研究较少。BRAVO等[35]发现左房应力低于肥厚型心肌病患者和正常对照组但左房储备期、导管期或收缩期应力在ATTR-CA和AL-CA这两种亚型中没有观察到显著差异,说明无论任何亚型的CA都导致了严重的左房功能障碍但尚无法通过左房应力区分CA的不同亚型。廖旋等[27]对ATTR-CA和AL-CA这两种亚型的整体应力参数进行了比较,并且比较了基底,中间和心尖段的应力参数。他们发现ATTR-CA的左室心肌整体(t=2.97,P=0.00)及基底段(t=3.43,P=0.001)、中间段(U=200.50,P=0.00)、心尖段(t=2.38,P=0.02)LS均高于AL-CA组,这与本研究所发现的结论有所差异,可能的原因是该研究纳入的患者并未进行心内膜活检,使得患者的选择不够准确,虽然目前可以通过非心肌组织活检结合心脏影像学检查来诊断CA,但由于PYP显像存在一定的假阴性[8]和假阳性[36],具体分型仍然是心肌活检更为准确[28]

       本研究注意到GRS(3D)、GLS(2D)、GCSepi、GLSepi等指标的AUC值在0.7左右,敏感度或特异度在某些情况下仅为50%左右,可能的是本研究的样本量较小的缘故,后续多中心大样本的研究将有助于获取更有力的结果。

3.2 ATTR-CA和AL-CA患者的epi应力差异

       本研究进一步分析了endo和epi的应力值,发现epi应力在ATTR-CA患者中明显减低。这种现象可以通过两种类型心肌内淀粉样物质沉积的特点来解释,文献[37, 38]指出ATTR-CA患者的淀粉样物质沉积多累及心肌全层,而AL多数只涉及endo这一区域。一项比较ATTR-CA和AL-CA淀粉样变性之间LGE模式的研究[37]指出,尽管两种形式的CA表现出相似的LGE模式,但据报道,在AL-CA中,与透壁和RV LGE相比,endo LGE的发生率更高。DUNGU等[38]的另一项研究表明,90%的ATTR-CA患者表现出跨壁LGE,而AL患者的这一比例为37%。从本研究的患者中观察LGE也发现,ATTR多为弥漫性,而AL则多为endo分布。正因为ATTR的淀粉样物质在epi也有较多聚集,导致心肌僵硬度增加,从而解释了该类型的epi的心肌应力减低。这种发现对于临床诊断和治疗具有重要意义。针对epi应力减低的特点,可以探讨针对ATTR-CA患者的治疗策略,例如针对心肌僵硬度的干预措施,以及改善心脏功能的治疗方案,为临床实践提供了新的视角,有望为CA的诊断和治疗带来更多启示。

3.3 局限性

       本研究的主要局限性包括:(1)未进行基因检测,无法细分出家族性ATTR-CA和野生型ATTR-CA,区分家族性ATTR-CA和野生型ATTR-CA也有助于为治疗策略提供信息;(2)本研究的样本量较小,未来扩充样本量将得到更有信服力的结论;(3)本研究并未能通过随访获得两组病例的预后数据,无法分析应力参数与预后结局之间的关系。

4 结论

       综上所述,CMR-FT成像能够区分ATTR-CA和AL-CA这两种常见的亚型。ATTR-CA组的LGE范围显著高于AL-CA组,ATTR-CA的左室心肌GRS(3D)、GLS(2D)、GCSepi及GLSepi均低于AL-CA组。

[1]
CONNORS L H, SAM F, SKINNER M, et al. Heart failure resulting from age-related cardiac amyloid disease associated with wild-type transthyretin: a prospective, observational cohort study[J]. Circulation, 2016, 133(3): 282-290. DOI: 10.1161/CIRCULATIONAHA.115.018852.
[2]
SAITO Y, NAKAMURA K, ITO H. Molecular mechanisms of cardiac amyloidosis[J/OL]. Int J Mol Sci, 2021, 23(1): 25 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/26660282/. DOI: 10.3390/ijms23010025.
[3]
GARCIA-PAVIA P, RAPEZZI C, ADLER Y, et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases[J]. Eur Heart J, 2021, 42(16): 1554-1568. DOI: 10.1093/eurheartj/ehab072.
[4]
WECHALEKAR A D, GILLMORE J D, HAWKINS P N. Systemic amyloidosis[J]. Lancet, 2016, 387(10038): 2641-2654. DOI: 10.1016/S0140-6736(15)01274-X.
[5]
RUBERG F L, MAURER M S, JUDGE D P, et al. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS)[J/OL]. Am Heart J, 2012, 164(2): 222-228.e1 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/22877808/. DOI: 10.1016/j.ahj.2012.04.015.
[6]
KASTRITIS E, LELEU X, ARNULF B, et al. Bortezomib, melphalan, and dexamethasone for light-chain amyloidosis[J]. J Clin Oncol, 2020, 38(28): 3252-3260. DOI: 10.1200/JCO.20.01285.
[7]
SIDDIQI O K, RUBERG F L. Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment[J]. Trends Cardiovasc Med, 2018, 28(1): 10-21. DOI: 10.1016/j.tcm.2017.07.004.
[8]
MAURER M S, SCHWARTZ J H, GUNDAPANENI B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy[J]. N Engl J Med, 2018, 379(11): 1007-1016. DOI: 10.1056/NEJMoa1805689.
[9]
DESPORT E, BRIDOUX F, SIRAC C, et al. Al amyloidosis[J]. Orphanet J Rare Dis, 2012, 7: 54. DOI: 10.1186/1750-1172-7-54.
[10]
BLOOM M W, GOREVIC P D. Cardiac Amyloidosis[J/OL]. Ann Intern Med, 2023, 176(3): ITC33-ITC48 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/36913688/. DOI: 10.7326/AITC202303210
[11]
MARTINEZ-NAHARRO A, HAWKINS P N, FONTANA M. Cardiac amyloidosis[J/OL]. Clin Med, 2018, 18(Suppl 2): s30-s35 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/29700090/. DOI: 10.7861/clinmedicine.18-2-s30.
[12]
MARNEFFE N D, DULGHERU R, ANCION A, et al. Cardiac amyloidosis: a review of the literature[J]. Acta Cardiol, 2022, 77(8): 683-692. DOI: 10.1080/00015385.2021.1992990.
[13]
MESSROGHLI D R, MOON J C, FERREIRA V M, et al. Correction to: clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 9 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/29415744/ DOI: 10.1186/s12968-017-0408-9.
[14]
VOGELSBERG H, MAHRHOLDT H, DELUIGI C C, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy[J]. J Am Coll Cardiol, 2008, 51(10): 1022-1030. DOI: 10.1016/j.jacc.2007.10.049.
[15]
REMPAKOS A, PAPAMICHAIL A, LORITIS K, et al. Non-LGE cardiac magnetic resonance imaging in patients with cardiac amyloidosis[J/OL]. Curr Pharm Des, 2022 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/36515044/. DOI: 10.2174/1381612829666221212100114.
[16]
BRIASOULIS A, LAMA N, REMPAKOS A, et al. Diagnostic and prognostic value of non-late gadolinium enhancement cardiac magnetic resonance parameters in cardiac amyloidosis[J/OL]. Curr Probl Cardiol, 2023, 48(4): 101573 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/36586704/. DOI: 10.1016/j.cpcardiol.2022.101573.
[17]
AQUARO G D, GORI C D, FAGGIONI L, et al. Diagnostic and prognostic role of late gadolinium enhancement in cardiomyopathies[J/OL]. Eur Heart J Suppl, 2023, 25(Suppl C): C130-C136 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/37125322/. DOI: 10.1093/eurheartjsupp/suad015.
[18]
FONTANA M, BANYPERSAD S M, TREIBEL T A, et al. Native T1 mapping in transthyretin amyloidosis[J]. JACC Cardiovasc Imaging, 2014, 7(2): 157-165. DOI: 10.1016/j.jcmg.2013.10.008.
[19]
LAVALL D, VOSSHAGE N H, GEßNER R, et al. Native T1 mapping for the diagnosis of cardiac amyloidosis in patients with left ventricular hypertrophy[J]. Clin Res Cardiol, 2023, 112(3): 334-342. DOI: 10.1007/s00392-022-02005-2.
[20]
GAO Q, YI W F, GAO C, et al. Cardiac magnetic resonance feature tracking myocardial strain analysis in suspected acute myocarditis: diagnostic value and association with severity of myocardial injury[J/OL]. BMC Cardiovasc Disord, 2023, 23(1): 162 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/36977995/. DOI: 10.1186/s12872-023-03201-2.
[21]
SENO A, ANTIOCHOS P, LICHTENFELD H, et al. Prognostic value of T1 mapping and feature tracking by cardiac magnetic resonance in patients with signs and symptoms suspecting heart failure and No clinical evidence of coronary artery disease[J/OL]. J Am Heart Assoc, 2022, 11(2): e020981 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/35023344/. DOI: 10.1161/JAHA.121.020981.
[22]
KARAMITSOS T D, PAPANASTASIOU C A. Cardiac magnetic resonance T1 mapping for cardiac amyloidosis: the best way forward[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 81-82. DOI: 10.1016/j.jcmg.2019.04.011.
[23]
WANG T K M, BRIZNEDA M V, KWON D H, et al. Reference ranges, diagnostic and prognostic utility of native T1 mapping and extracellular volume for cardiac amyloidosis: a meta-analysis[J]. J Magn Reson Imaging, 2021, 53(5): 1458-1468. DOI: 10.1002/jmri.27459.
[24]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication ofMyocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017.
[25]
PALMIERO G, RUBINO M, MONDA E, et al. Global left ventricular myocardial work efficiency in heart failure patients with cardiac amyloidosis: pathophysiological implications and role in differential diagnosis[J]. J Cardiovasc Echogr, 2021, 31(3): 157-164. DOI: 10.4103/jcecho.jcecho_16_21.
[26]
VERSTEYLEN M O, BRONS M, TESKE A J, et al. Restrictive atrial dysfunction in cardiac amyloidosis: differences between immunoglobulin light chain and transthyretin cardiac amyloidosis patients[J/OL]. Biomedicines, 2022, 10(8): 1768 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/35892668/. DOI: 10.3390/biomedicines10081768.
[27]
廖旋, 曾牧, 张嘉敏, 等. 心脏磁共振鉴别两种常见类型心肌淀粉样变性的初步探索[J]. 磁共振成像, 2021, 12(9): 30-35. DOI: 10.12015/issn.1674-8034.2021.09.007.
LIAO X, ZENG M, ZHANG J M, et al. Tentative discussion on cardiac magnetic resonance in differentiating common types of cardiac amyloidosis[J]. Chin J Magn Reson Imag, 2021, 12(9): 30-35. DOI: 10.12015/issn.1674-8034.2021.09.007.
[28]
WRITING COMMITTEE, KITTLESON M M, RUBERG F L, et al. 2023 ACC expert consensus decision pathway on comprehensive multidisciplinary care for the PatientWith cardiac amyloidosis: a report of the American college of cardiology solution set oversight committee[J]. J Am Coll Cardiol, 2023, 81(11): 1076-1126. DOI: 10.1016/j.jacc.2022.11.022.
[29]
SHAH S, SEGAR M W, KONDAMUDI N, et al. Supranormal left ventricular ejection fraction, stroke volume, and cardiovascular risk: findings from population-based cohort studies[J]. JACC Heart Fail, 2022, 10(8): 583-594. DOI: 10.1016/j.jchf.2022.05.007.
[30]
LIM C, BLASZCZYK E, RIAZY L, et al. Quantification of myocardial strain assessed by cardiovascular magnetic resonance feature tracking in healthy subjects-influence of segmentation and analysis software[J]. Eur Radiol, 2021, 31(6): 3962-3972. DOI: 10.1007/s00330-020-07539-5.
[31]
KAOLAWANICH Y, AZEVEDO C F, KIM H W, et al. Native T1 mapping for the diagnosis of myocardial fibrosis in patients with chronic myocardial infarction[J]. JACC Cardiovasc Imaging, 2022, 15(12): 2069-2079. DOI: 10.1016/j.jcmg.2022.09.011.
[32]
YANCY C W, FONAROW G C. Is the left ventricular ejection fraction measurement still preeminent? -new measures to quantify subclinical systolic dysfunction[J/OL]. JAMA Cardiol, 2021, 6(5): 521 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/33729426/. DOI: 10.1001/jamacardio.2021.0143.
[33]
PEZESHKI P S, GHORASHI S M, HOUSHMAND G, et al. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases[J]. Heart Fail Rev, 2023, 28(5): 1189-1199. DOI: 10.1007/s10741-023-10321-6.
[34]
SCIACCA V, ECKSTEIN J, KÖRPERICH H, et al. Magnetic-resonance-imaging-based left atrial strain and left atrial strain rate as diagnostic parameters in cardiac amyloidosis[J/OL]. J Clin Med, 2022, 11(11): 3150 [2023-07-23]. https://pubmed.ncbi.nlm.nih.gov/35683537/. DOI: 10.3390/jcm11113150.
[35]
BRAVO P E, FUJIKURA K, KIJEWSKI M F, et al. Relative apical sparing of myocardial longitudinal strain is explained by regional differences in total amyloid mass rather than the proportion of amyloid deposits[J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1): 1165-1173. DOI: 10.1016/j.jcmg.2018.06.016.
[36]
POTERUCHA T J, ELIAS P, RUBERG F L, et al. False positive 99mTc-pyrophosphate scanning leading to inappropriate tafamidis prescriptions[J]. JACC Cardiovasc Imaging, 2021, 14(10): 2042-2044. DOI: 10.1016/j.jcmg.2021.04.006.
[37]
FONTANA M, PICA S, REANT P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis[J]. Circulation, 2015, 132(16): 1570-1579. DOI: 10.1161/CIRCULATIONAHA.115.016567.
[38]
DUNGU J N, VALENCIA O, PINNEY J H, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2014, 7(2): 133-142. DOI: 10.1016/j.jcmg.2013.08.015.

上一篇 基于4D Flow MRI评估颈动脉狭窄及卒中相关血流动力学危险因素的研究
下一篇 心脏磁共振影像组学对肥厚型心肌病的价值研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2