分享:
分享到微信朋友圈
X
临床研究
表观扩散系数鉴别肺癌脑转移瘤组织学分型及其与Ki-67增殖指数的相关性
周凤瑜 张斌 董文洁 张鹏 薛彩强 刘显旺 韩涛 周俊林

Cite this article as: ZHOU F Y, ZHANG B, DONG W J, et al. Apparent diffusion coefficient distinguishes histologic typing of lung cancer brain metastases and its correlation with the Ki-67 proliferation index[J]. Chin J Magn Reson Imaging, 2024, 15(2): 42-47.本文引用格式周凤瑜, 张斌, 董文洁, 等. 表观扩散系数鉴别肺癌脑转移瘤组织学分型及其与Ki-67增殖指数的相关性[J]. 磁共振成像, 2024, 15(2): 42-47. DOI:10.12015/issn.1674-8034.2024.02.006.


[摘要] 目的 探讨表观扩散系数(apparent diffusion coefficient, ADC)鉴别诊断肺癌脑转移瘤组织学分型的价值及其与Ki-67增殖指数之间的关系。材料与方法 回顾性分析经手术病理证实的20例小细胞肺癌脑转移瘤和41例非小细胞肺癌脑转移瘤患者的资料,并测定其Ki-67增殖指数。在ADC图上测量肿瘤实性部分的最小ADC值(the minimum ADC, ADCmin)、平均ADC值(the mean ADC, ADCmean)及对侧正常脑白质ADC值,并计算相对ADCmin(relative ADCmin, rADCmin)及相对ADCmean(relative ADCmean, rADCmean)。对比分析二者ADC值的差异,绘制受试者工作特征(receiver operating characteristic, ROC)曲线评价ADC值的鉴别诊断价值,并计算ADC值与Ki-67增殖指数之间的相关性。结果 小细胞肺癌脑转移瘤组的ADCmin、ADCmean、rADCmin及rADCmean值均小于非小细胞肺癌脑转移瘤组,组间差异均具有统计学意义(P<0.05)。各ADC值均能对小细胞肺癌脑转移瘤及非小细胞肺癌脑转移瘤进行有效鉴别,其中rADCmean值的鉴别诊断效能最好,曲线下面积(area under the curve, AUC)为0.950 [95%置信区间(confidence interval, CI):0.907~0.994],最佳截断值为0.955,相应的敏感度和特异度分别为96.23%、83.87%,准确度为91.67%。小细胞肺癌脑转移瘤组的Ki-67增殖指数大于非小细胞肺癌脑转移瘤组,组间差异具有统计学意义(P<0.05)。61例肺癌脑转移瘤患者的ADCmin、ADCmean、rADCmin及rADCmean值均与Ki-67增殖指数呈不同程度的负相关(r=-0.506、r=-0.480、r=-0.569、r=-0.541)。结论 ADC值可以对肺癌脑转移瘤的组织学分型进行鉴别诊断,并可以预测Ki-67增殖指数的表达水平。
[Abstract] Objective To investigate the value of apparent diffusion coefficient (ADC) for differential diagnosis of histological type of lung cancer brain metastases and its relationship with Ki-67 proliferation index.Materials and Methods The clinical data of 20 patients with small-cell carcinoma brain metastases and 41 patients with non-small-cell lung carcinoma brain metastases confirmed by surgery were analyzed retrospectively. The minimum ADC value (ADCmin), the mean ADC value (ADCmean), and the ADC values in contralateral normal cerebral white matter were measured on the ADC map, and the relative ADCmin value (rADCmin) and relative ADCmean value (rADCmean) were calculated. The differences in ADC values were compared and analyzed, the differential diagnostic value of ADC values was evaluated by plotting receiver operating characteristic (ROC) curves, and the correlation between ADC values and Ki-67 proliferation index was calculated.Results The ADCmin, ADCmean, rADCmin and rADCmean values of the small cell lung cancer brain metastasis tumor group were smaller than those of the non-small fine lung cancer brain metastasis tumor group, and the differences between the groups were all statistically significant (P<0.05). Each ADC value could effectively discriminate between small cell lung cancer brain metastases and non-small cell lung cancer brain metastases, among which the rADCmean value had the best differential diagnostic efficacy, with an area under the curve (AUC) of 0.950 [95% confidence interval (CI): 0.907-0.994]. The optimal cutoff value was of 0.955, and the corresponding sensitivity and specificity were 96.23% and 83.87%, respectively, and the accuracy was 91.67%. The Ki-67 proliferation index in the small cell lung cancer brain metastasis group was greater than that in the non-small cell lung cancer brain metastasis group, and the difference between the groups was statistically significant (P<0.05). A total of 61 patients with lung cancer brain metastasis showed different degrees of negative correlation between the ADCmin, ADCmean, rADCmin and rADCmean values and the Ki-67 proliferation index (r=-0.506, r=-0.480, r=-0.569, r=-0.541).Conclusions ADC values can provide differential diagnosis of histological type of lung cancer brain metastases and can predict the expression level of Ki-67 proliferation index.
[关键词] 肺癌;脑转移瘤;磁共振成像;表观扩散系数;Ki-67增殖指数
[Keywords] lung neoplasms;brain metastases;magnetic resonance imaging;apparent diffusion coefficient;Ki-67 proliferation index

周凤瑜 1, 2, 3, 4   张斌 1, 2, 3, 4   董文洁 1, 2, 3, 4   张鹏 5   薛彩强 1, 2, 3, 4   刘显旺 1, 2, 3, 4   韩涛 1, 2, 3, 4   周俊林 1, 2, 3, 4*  

1 兰州大学第二医院放射科,兰州 730030

2 兰州大学第二临床医学院,兰州 730030

3 甘肃省医学影像重点实验室,兰州 730030

4 医学影像人工智能甘肃省国际科技合作基地,兰州 730030

5 兰州大学第二医院病理科,兰州 730030

通信作者:周俊林,E-mail:lzuzjl601@163.com

作者贡献声明::周俊林设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金、甘肃省科技计划项目的资助;周凤瑜起草和撰写稿件,获取、分析并解释本研究的数据;张斌、董文洁、张鹏、薛彩强、刘显旺、韩涛获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82371914 甘肃省科技计划项目 21YF5FA123
收稿日期:2023-09-18
接受日期:2024-02-01
中图分类号:R445.2  R734.2  R739.41 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.02.006
本文引用格式周凤瑜, 张斌, 董文洁, 等. 表观扩散系数鉴别肺癌脑转移瘤组织学分型及其与Ki-67增殖指数的相关性[J]. 磁共振成像, 2024, 15(2): 42-47. DOI:10.12015/issn.1674-8034.2024.02.006.

0 引言

       脑转移瘤是颅内最常见的恶性肿瘤,主要的原发病灶来源于肺[1]。肺癌的发病率和死亡率居于全球恶性肿瘤首位[2],有研究表明,约40%~50%的肺癌患者在病程中会发生脑转移[3]。发生脑转移的肺癌患者往往预后不良,平均中位生存期为3~6个月[3]。肺癌主要分为两种组织学分型,即小细胞肺癌和非小细胞肺癌。小细胞肺癌是一种具有强侵袭性的神经内分泌癌,约占所有肺癌病例的13%,早期即易发生远处转移[4]。对于小细胞肺癌脑转移瘤患者,临床多采用全脑放疗或立体定向放射外科手术治疗[5, 6]。非小细胞肺癌更为常见,发生脑转移者通常进行手术治疗,术后辅以放化疗[7]。因此,对于原发灶病理类型不明确、因首先出现脑转移瘤症状而就诊的患者来说,区分肺癌脑转移瘤的不同分型对于早期制订临床决策、提高患者的生存质量至关重要。扩散加权成像(diffusion weighted imaging, DWI)是一种快速、敏感的功能性成像方法,可以检测活体组织内水分子的微观扩散运动状态,在脑肿瘤的诊断中很有价值[8]。表观扩散系数(apparent diffusion coefficient, ADC)是DWI的定量参数,已被广泛应用于神经肿瘤学领域的肿瘤病理学评估[9]。Ki-67是一种核增殖抗原,可反映细胞增殖活性,与分化程度、侵袭程度和肿瘤预后密切相关[10],也是小细胞肺癌的诊断依据之一[11]。既往有研究[12]表明ADC值有助于区分肺癌脑转移瘤的组织学分型,但未对ADC值与肺癌脑转移瘤Ki-67增殖指数之间的相关性进行深入研究,且在不同研究中,ADC值对肺癌脑转移瘤的鉴别效能也不同,因此,本研究旨在利用平均ADC值(the mean ADC, ADCmean)、最小ADC值(the minimum ADC, ADCmin)、相对ADCmean(relative ADCmean, rADCmean)、相对ADCmin(relative ADCmin, rADCmin)值对肺癌脑转移瘤的组织学分型的鉴别效能进行探讨,并评估其与Ki-67增殖指数的相关性,为临床诊疗提供依据。

1 材料与方法

1.1 一般资料

       回顾性分析兰州大学第二医院2019年6月至2023年6月经手术病理证实的肺癌脑转移瘤患者的临床病理及影像学资料。纳入标准:(1)经手术病理明确诊断为肺癌脑转移瘤;(2)经免疫组化检测Ki-67增殖指数表达状态;(3)患者术前均行T1WI、T2WI、DWI和T1增强序列扫描。排除标准:(1)图像质量不合格,不能准确测量ADC值;(2)临床、病理或影像资料不完整。最终纳入肺癌脑转移瘤患者61例,多发病例16例,单发病例45例,病灶数共84个。男34例,女27例,年龄36~80(57.7±9.4)岁,其中小细胞肺癌脑转移瘤患者20例,非小细胞肺癌脑转移瘤患者41例。样本量的确定依据如下:(1)既往类似的研究中,与本研究接近的样本量得到了较好的研究结果[9];(2)使用Gpower软件进行样本量估算,设置效度为0.8,显著性水平为0.05,检验效能为0.8,得出两组样本量分别为19和39,本研究样本量大于估算结果,因此本试验的样本量具有足够的统计检验力。本研究遵守《赫尔辛基宣言》,经兰州大学第二医院伦理委员会批准,免除受试者知情同意,批准文号:2023A-169。

1.2 扫描设备与参数

       采用Siemens Verio 3.0 T超导MR扫描仪,选择32通道相控阵头线圈,患者取仰卧位,行头颅MRI平扫及增强扫描。GRE序列T1WI扫描参数:TR 250 ms,TE 2.48 ms,层厚5 mm,层间距1.0 mm,视野22 cm×22 cm,矩阵256×256。TSE序列T2WI扫描参数: TR 4 000 ms,TE 96 ms,层厚5 mm,层间距1.0 mm,视野22 cm×22 cm,矩阵256×256。SE序列DWI扫描参数: TR 4 500 ms,TE 102 ms,层厚5.0 mm,层间距1.0 mm,矩阵256×256,两个b值分别为0、1 000 s/mm2,在x、y、z轴3个方向上施加扩散梯度。经肘静脉高压团注对比剂钆特酸葡胺(Bayer Schering PharmaAG,Berlin,Germany),剂量0.1 mmol/kg,流率3 mL/s,获得轴位、矢状位和冠状位T1WI增强图像。

1.3 图像分析与ADC值测量

       将DWI原始图像导入工作站后获得ADC图像,由2名具有5年以上工作经验的放射科医师(分别为主治医师和副主任医师),采用双盲法进行阅片。尽量避开瘤体坏死、囊变及出血区,对肿瘤实性成分测量ADC值。在每个层面上放置3个感兴趣区(region of interest, ROI),每个ROI大小为15~25 mm2,测量2~3个层面,所有ROI中最低的ADC值即为ADCmin值;在肿瘤最大径处测得的平均值作为ADCmean值;在病灶对侧的半卵圆中心放置同样大小的ROI,测量正常脑白质的ADC平均值,计算获得rADCmin和rADCmean值(rADCmin值=ADCmin值/正常脑白质ADC值,rADCmean值=ADCmean值/正常脑白质ADC值)。将两名医师测量的ADC值均值作为最终结果。

1.4 病理检查

       所有经手术病理切除的肿瘤标本均行HE及免疫组化染色。使用单克隆小鼠抗人Ki-67抗体进行Ki-67蛋白的免疫组化分析。每张切片均由一位有15年工作经验的病理科副主任医师诊断。选择染色肿瘤细胞数量最多的区域进行计数,在10个HPF下计数1 000个细胞的染色情况,阳性细胞数/总细胞计数即为Ki-67增殖指数。

1.5 统计学分析

       统计学分析通过SPSS 25.0软件进行。使用Shapiro-Wilk检验评估各参数是否符合正态分布,符合正态分布的参数用x¯±s表示,并使用独立样本t检验进行组间差异比较;不符合正态分布的参数用MQ1, Q3)表示,并使用Mann-Whitney U检验进行组间差异比较。绘制受试者工作特征(receiver operating characteristic, ROC)曲线以评估ADCmin、ADCmean、rADCmin及rADCmean的鉴别诊断能力。采用Spearman相关系数分析ADC值与Ki-67增殖指数间的相关性。P<0.05认为差异有统计学意义。

2 结果

2.1 小细胞肺癌和非小细胞肺癌脑转移瘤组间ADC值的比较

       小细胞肺癌脑转移瘤组(图1)的ADCmin、ADCmean、rADCmin及rADCmean值均小于非小细肺癌脑转移瘤组(图2),组间差异均具有统计学意义(P<0.05)(表1图3)。ROC曲线显示各ADC值均能对小细胞肺癌脑转移瘤和非小细胞肺癌脑转移瘤进行有效区分,其中rADCmean值的鉴别效能最好,AUC值为0.950,最佳截断值为0.955,相应的敏感度和特异度分别为96.23%、83.87%,准确度为91.67%(表2图4)。

图1  男,56岁,右侧小脑半球小细胞肺癌脑转移瘤。1A、1B:分别为T1WI、T2WI图像,右侧小脑半球见一类圆形混杂信号影,呈长T1等T2信号改变,内见多发点状长T2信号影,周围见大片水肿带,脑干及第四脑室受压变形;1C:DWI呈稍高信号;1D:ADC信号不均匀减低;1E:T1WI增强扫描后病灶呈不均匀花瓣样强化,水肿带未见强化;1F:病理图(HE ×200)示异型上皮细胞杂乱排列,胞浆稀少,核呈短梭形,染色质细腻,核分裂象多见,坏死易见。
图2  女,41岁,右侧颞叶非小细胞肺癌(腺癌)脑转移瘤。2A、2B:分别为T1WI、T2WI图像,右侧颞叶类圆形占位性病变,呈等T1等T2信号,内可见斑片状短T1短T2信号,周围可见少许水肿区;2C:DWI呈等、低信号,局部见小片状高信号;2D:ADC呈等、稍低信号;2E:增强扫描病灶明显不均匀强化;2F:病理图(HE ×200)示细胞呈乳头腺管样结构,大小不一,胞质丰富,核大深染,核分裂象多见。DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 1  Male, 56 years old, hemisphere small cell lung cancer brain metastases in the right cerebellar. 1A, 1B:T1WI and T2WI images, respectively, right cerebellar hemisphere, a class of round mixed signal shadow, long T1 isotropic T2 signal changes, with multiple punctate long T2 signal shadow, surrounded by a large edema band, the brainstem and the fourth ventricle compression and deformation; 1C: DWI is slightly high signal; 1D: ADC signal unevenly attenuate; 1E: Uneven petal-like enhancement of the lesion after T1WI enhancement scanning, with no enhancement in the edema band; 1F: Pathological image (HE ×200), heterogeneous epithelial cells are promiscuously arranged, with scanty cytoplasm, short spindle-shaped nuclei, fine chromatin, frequent nuclear schizophrenia, and easy necrosis.
Fig. 2  Female, 41 years old, non-small cell lung cancer (adenocarcinoma) brain metastasis in the right temporal lobe. 2A, 2B: T1WI and T2WI images, respectively, right temporal lobe round-like occupying lesion with isotropic T1 and isotropic T2 signals, with patches of short T1 and short T2 signals, surrounded by a few areas of edema; 2C: Isotropic and low signals on DWI, with localized small patchy high signals; 2D: ADC is equal and slightly lower signal; 2E: Enhancement scan of the lesion is obviously inhomogeneous enhancement; 2F: Pathological image (HE ×200), the cells show a papillary glandular duct-like structure with variable size, abundant cytoplasm, large deeply stained nuclei, and numerous nuclear schizophrenia. DWI: diffusion-weighted imaging; ADC: apparent diffusion coefficient.
图3  两组间各ADC参数比较的箱线图。小细胞肺癌脑转移瘤组的ADCmin、ADCmean、rADCmin和rADCmean值均低于非小细胞肺癌脑转移瘤组。圆圈代表在均数1.5~3.0倍范围的极值。
图4  各ADC值鉴别小细胞肺癌及非小细胞肺癌脑转移瘤的ROC曲线。ADC:表观扩散系数;ROC:受试者工作特征;ADCmin:最小ADC值;ADCmean:平均ADC值;rADCmin:相对最小ADC值;rADCmean:相对平均ADC值。
Fig. 3  Box line plot comparing each ADC parameter between the two groups. The ADCmin, ADCmean, rADCmin and rADCmean values are lower in the small cell lung cancer brain metastasis tumor group than in the non-small cell lung cancer brain metastasis tumor group. Circles represent extreme values in the range of 1.5 to 3.0 times the mean.
Fig. 4  ROC curves for each ADC value to identify small cell lung cancer and non-small cell lung cancer brain metastases. ADC: apparent diffusion coefficient; ROC: receiver operating characteristic; ADCmin: the minimum ADC value; ADCmean: the mean ADC value; rADCmin: relative ADCmin; rADCmean: relative ADCmean.
表1  小细胞肺癌和非小细胞肺癌脑转移瘤的ADC值对比
Tab. 1  Comparison of ADC values of brain metastases from small cell lung cancer and non-small cell lung cancer
表2  ADC值鉴别小细胞肺癌和非小细胞肺癌脑转移瘤的ROC曲线分析结果
Tab. 2  Results of ROC curve analysis of ADC values to identify brain metastases from small cell lung cancer and non-small cell lung cancer

2.2 ADC值与Ki-67增殖指数的相关性

       小细胞肺癌脑转移瘤组的Ki-67增殖指数大于非小细胞肺癌脑转移瘤组,组间差异具有统计学意义(P均<0.05)。61例肺癌脑转移瘤患者的ADCmin、ADCmean、rADCmin及rADCmean值均与Ki-67增殖指数呈不同程度的负相关(r=-0.506、r=-0.480、r=-0.569、r=-0.541),即较高的Ki-67增殖指数对应较低的ADC值(图5)。

图5  肺癌脑转移瘤各ADC值与Ki-67增殖指数相关性的散点图。ADCmin、ADCmean、rADCmin和rADCmean与Ki-67增殖指数间均呈不同程度的负相关关系。ADC:表观扩散系数;ADCmin:最小ADC值;ADCmean:平均ADC值;rADCmin:相对最小ADC值;rADCmean:相对平均ADC值。
Fig. 5  Scatter plot of the correlation between each ADC value and Ki-67 proliferation index in lung cancer brain metastases. ADCmin, ADCmean, rADCmin and rADCmean showed different degrees of negative correlation with Ki-67 proliferation index. ADC: apparent diffusion coefficient; ADCmin: the minimum ADC value; ADCmean: the mean ADC value; rADCmin: relative ADCmin; rADCmean: relative ADCmean.

3 讨论

       本研究回顾性分析了20例小细胞肺癌及41例非小细胞肺癌脑转移瘤患者的ADC值差异,并进一步探讨了肺癌脑转移瘤的ADC值与Ki-67增殖指数间的关系,结果表明小细胞肺癌脑转移瘤组的ADCmin、ADCmean、rADCmin和rADCmean值均低于非小细胞肺癌脑转移瘤组,其中rADCmean值的鉴别诊断效能最好,还发现肺癌脑转移瘤的ADC值与Ki-67增殖指数呈明显的负相关关系,既往关于肺癌脑转移瘤组织学分型的研究仅局限于ADC及rADC值,而本研究对ADCmean、ADCmin、rADCmean、rADCmin四个参数与肺癌脑转移瘤病理分型的关系进行了分析,并对四个参数的鉴别诊断效能进行了比较,且创新性地探讨了ADC值与Ki-67增殖指数之间的相关性,得到了可靠、真实的结果,因此认为ADC值可作为识别肺癌脑转移瘤的组织学分型、预测Ki-67增殖指数的重要手段,为肺癌脑转移瘤患者的个体化治疗提供依据。

3.1 小细胞肺癌和非小细胞肺癌脑转移瘤ADC值的对比分析

       DWI作为一种功能性成像方式,可以通过分析病理状态下细胞内外水分子的扩散情况来反映肿瘤内部的病理生理状态,从而对疾病进行诊断。表观扩散系数值是DWI的重要参数,可反映肿瘤细胞排列密度、细胞基质和细胞膜的完整性,对于脑肿瘤的分级、鉴别诊断、预测预后和分子状态评估具有重要价值[13, 14, 15]。多项研究表明,ADC值不仅能够区分不同来源的脑转移瘤,还有助于其组织学分型的诊断[9, 16, 17]。影响ADC值的因素有:细胞密度、细胞核/细胞质比值、胞浆内大分子物质含量以及细胞膜的通透性[18, 19]。恶性肿瘤细胞排列紧密,组织间隙小,且核/浆比例高,导致细胞内外水分子自由扩散运动受到限制,因此ADC值减低[20, 21]。本研究分析结果发现,小细胞肺癌脑转移瘤组的各ADC值均小于非小细肺癌脑转移瘤组,组间差异具有统计学意义(P<0.05),与既往研究结果一致[12, 16]。这可能是因为小细胞肺癌脑转移瘤组肿瘤细胞体积较小,排列密集,且胞质含量少,导致细胞内外水分子扩散受限,从而表现为更低的ADC值。此外,由于ADC值易受个体因素或技术因素的影响,无法成为稳定的评估参数。为减少ADC值的变异性,本研究引入rADC的概念(即病变区域的ADC值和对侧正常脑白质的ADC值的比值)。rADC值是个较为稳定的定量参数,可准确反映病变组织内分子水平的病理改变。既往研究表明,rADC值在诊断病灶组织学类型方面优于ADC值[22, 23]。在本研究中,rADCmean和rADCmin的鉴别效能优于ADCmin及ADCmean,且rADCmean的鉴别效能最好。因此,本研究结果进一步说明,通过计算rADC值来减少ADC值的变异性、获取可靠稳定的研究结果是可行的。

3.2 肺癌脑转移瘤ADC值与Ki-67增殖指数的相关性分析

       Ki-67是在增殖细胞中表达的一种核抗原,由位于人类10q26.2染色体上的MKI-67基因编码,存在于除G0期以外的所有细胞周期,通常在G1晚期可以检测到其表达,并在M期达到高峰,有丝分裂之后便迅速消散[24]。因此,Ki-67可以作为反映肿瘤细胞增殖活性的可靠指标,其高阳性率代表生长周期中肿瘤细胞比例大,肿瘤增殖速度快,预后不良[24, 25]。目前,Ki-67增殖指数已经被广泛应用于肿瘤分级、发生发展及预测预后[26, 27, 28]。既往研究表明,Ki-67增殖指数与ADC值可能存在一定的相关性。LI等[29]研究发现,Ⅱ级和Ⅲ级颅内孤立性纤维瘤/血管外皮细胞瘤的ADC值与Ki-67增殖指数呈显著负相关。刘宏等[28]的研究结果与之类似,该研究发现乳腺癌ADC值与Ki-67增殖指数呈负相关。这些研究证明ADC值可在术前无创性预测肿瘤增殖情况,有助于制订个体化临床决策。本研究结果显示,小细胞肺癌脑转移瘤组的Ki-67增殖指数高于非小细胞肺癌脑转移瘤组,组间差异具有统计学意义(P<0.05)。61例肺癌脑转移瘤患者的ADCmin、ADCmean、rADCmin及rADCmean值均与Ki-67增殖指数呈不同程度的负相关。随着Ki-67增殖指数的升高,所有ADC值均呈下降趋势,与既往研究结果一致[30, 31]。这种负相关可能是因为当Ki-67高表达时,肿瘤细胞增殖活性强,排列紧密,细胞内外水分子活动受限,导致ADC值降低。因此,本研究结果显示肺癌脑转移瘤ADC值可以在术前无创性预测肺癌脑转移瘤的增殖情况。

3.3 本研究的局限性

       本研究仍存在有一些不足之处:首先,本研究为单中心回顾性研究,研究结果可能存在统计学偏差;其次,本研究没有对非小细胞肺癌脑转移瘤进行进一步组织学分类,今后更深入的研究可对非小细胞肺癌脑转移瘤组织学分型进行更精确的分类。

4 结论

       综上所述,肺癌脑转移瘤的ADC值可有效鉴别小细胞肺癌和非小细胞肺癌,且rADCmean值的鉴别效能最好。此外,肺癌脑转移瘤的ADC值与Ki-67增殖指数呈明显负相关。因此,ADC值可用于识别肺癌脑转移瘤的组织学分型,并预测肿瘤增殖情况,为肺癌脑转移瘤患者的个体化治疗提供依据。

[1]
LAMBA N, WEN P Y, AIZER A A. Epidemiology of brain metastases and leptomeningeal disease[J]. Neuro-oncology, 2021, 23(9): 1447-1456. DOI: 10.1093/neuonc/noab101.
[2]
ZHU Y Z, CUI Y S, ZHENG X, et al. Small-cell lung cancer brain metastasis: from molecular mechanisms to diagnosis and treatment[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(12): 166557 [2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/36162624/. DOI: 10.1016/j.bbadis.2022.166557.
[3]
LIU W W, POWELL C A, WANG Q. Tumor microenvironment in lung cancer-derived brain metastasis[J]. Chin Med J, 2022, 135(15): 1781-1791. DOI: 10.1097/CM9.0000000000002127.
[4]
WANG W Z, SHULMAN A, AMANN J M, et al. Small cell lung cancer: Subtypes and therapeutic implications[J]. Semin Cancer Biol, 2022, 86(Pt 2): 543-554. DOI: 10.1016/j.semcancer.2022.04.001.
[5]
GAEBE K, LI A Y, PARK A, et al. Stereotactic radiosurgery versus whole brain radiotherapy in patients with intracranial metastatic disease and small-cell lung cancer: a systematic review and meta-analysis[J]. Lancet Oncol, 2022, 23(7): 931-939. DOI: 10.1016/S1470-2045(22)00271-6.
[6]
VIANI G A, GOUVEIA A G, LOUIE A V, et al. Stereotactic radiosurgery for brain metastases from small cell lung cancer without prior whole-brain radiotherapy: a meta-analysis[J/OL]. Radiother Oncol, 2021, 162: 45-51 [2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/34171453/. DOI: 10.1016/j.radonc.2021.06.026.
[7]
WANG J L, ELDER J B. Techniques for open surgical resection of brain metastases[J]. Neurosurg Clin N Am, 2020, 31(4): 527-536. DOI: 10.1016/j.nec.2020.06.003.
[8]
ZHU D, SHAO Y J, YANG Z W, et al. Magnetic resonance imaging characteristics of brain metastases in small cell lung cancer[J]. Cancer Med, 2023, 12(14): 15199-15206. DOI: 10.1002/cam4.6206.
[9]
MEYER H J, FIEDLER E, KORNHUBER M, et al. Comparison of diffusion-weighted imaging findings in brain metastases of different origin[J]. Clin Imaging, 2015, 39(6): 965-969. DOI: 10.1016/j.clinimag.2015.06.015.
[10]
RICHARDS-TAYLOR S, EWINGS S M, JAYNES E, et al. The assessment of Ki-67 as a prognostic marker in neuroendocrine tumours: a systematic review and meta-analysis[J]. J Clin Pathol, 2016, 69(7): 612-618. DOI: 10.1136/jclinpath-2015-203340.
[11]
TRAVIS W D, BRAMBILLA E, NICHOLSON A G, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification[J]. J Thorac Oncol, 2015, 10(9): 1243-1260. DOI: 10.1097/JTO.0000000000000630.
[12]
MÜLLER S J, KHADHRAOUI E, NEEF N E, et al. Differentiation of brain metastases from small and non-small lung cancers using apparent diffusion coefficient (ADC) maps[J/OL]. BMC Med Imaging, 2021, 21(1): 70 [2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/33858368/. DOI: 10.1186/s12880-021-00602-7.
[13]
ZHU B, ZHOU G P, WANG S W, et al. Association between the apparent diffusion coefficient and the preoperative chemotherapy response of patients with locally advanced gastric cancer[J]. J Gastrointest Oncol, 2023, 14(1): 119-127. DOI: 10.21037/jgo-23-30.
[14]
LIU X W, HAN L, LIU H, et al. Apparent diffusion coefficient to evaluate adult intracranial ependymomas: relationship to ki-67 proliferation index[J]. J Neuroimaging, 2021, 31(1): 132-136. DOI: 10.1111/jon.12789.
[15]
BERGHOFF A S, SPANBERGER T, ILHAN-MUTLU A, et al. Preoperative diffusion-weighted imaging of single brain metastases correlates with patient survival times[J/OL]. PLoS One, 2013, 8(2): e55464 [2023-08-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564927/. DOI: 10.1371/journal.pone.0055464.
[16]
INCESU L, ABDULLAYEV S, OZTURK M, et al. Role of apparent diffusion coefficient measurement in differentiating histological subtypes of brain metastasis of lung cancer[J]. Rev Assoc Med Bras, 2022, 68(9): 1318-1323. DOI: 10.1590/1806-9282.20220630.
[17]
AHN S J, PARK M, BANG S, et al. Apparent diffusion coefficient histogram in breast cancer brain metastases may predict their biological subtype and progression[J/OL]. Sci Rep, 2018, 8(1): 9947 [2023-09-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028481/. DOI: 10.1038/s41598-018-28315-y.
[18]
BILGIN S S, GULTEKIN M A, YURTSEVER I, et al. Diffusion tensor imaging can discriminate the primary cell type of intracranial metastases for patients with lung cancer[J]. Magn Reson Med Sci, 2022, 21(3): 425-431. DOI: 10.2463/mrms.mp.2020-0183.
[19]
韩涛, 张婧, 王丹, 等. MRI基本征象结合ADC值鉴别垂体大腺瘤和鞍区脑膜瘤[J]. 磁共振成像, 2021, 12(5): 6-11. DOI: 10.12015/issn.1674-8034.2021.05.002.
HAN T, ZHANG J, WANG D, et al. Differential diagnosis of pituitary macroadenomas and sellar meningiomas by MRI basic signs combined with ADC value[J]. Chin J Magn Reson Imag, 2021, 12(5): 6-11. DOI: 10.12015/issn.1674-8034.2021.05.002.
[20]
ZHAO S H, QIANG J W, ZHANG G F, et al. Diffusion-weighted MR imaging for differentiating borderline from malignant epithelial tumours of the ovary: pathological correlation[J]. Eur Radiol, 2014, 24(9): 2292-2299. DOI: 10.1007/s00330-014-3236-4.
[21]
ZHENG X J, LU J Z, ZHANG H Q, et al. Apparent diffusion coefficient is a good marker in predicting the prognosis in colorectal cancer liver metastases: a diagnostic study[J]. J Gastrointest Oncol, 2022, 13(5): 2375-2381. DOI: 10.21037/jgo-22-861.
[22]
SHEN Y Q, LV F J, XIAO Z B, et al. Utility of the relative apparent diffusion coefficient for preoperative assessment of low risk endometrial carcinoma[J/OL]. Clin Imaging, 2019, 56: 28-32 [2023-09-03]. https://pubmed.ncbi.nlm.nih.gov/30851496/. DOI: 10.1016/j.clinimag.2019.03.001.
[23]
丁升, 吴梦琳, 郭琪, 等. 应用相对表观扩散系数评估膀胱癌侵袭性及增殖性的初步研究[J]. 临床放射学杂志, 2021, 40(6): 1227-1230. DOI: 10.13437/j.cnki.jcr.2021.06.040.
DING S, WU M L, GUO Q, et al. Preliminary study on the application of relative apparent diffusion coefficient to assess the invasiveness and proliferation of bladder cancer[J]. J Clin Radiol, 2021, 40(6): 1227-1230. DOI: 10.13437/j.cnki.jcr.2021.06.040.
[24]
MENON S S, GURUVAYOORAPPAN C, SAKTHIVEL K M, et al. Ki-67 protein as a tumour proliferation marker[J/OL]. Clin Chim Acta, 2019, 491: 39-45 [2023-09-03]. https://pubmed.ncbi.nlm.nih.gov/30653951/. DOI: 10.1016/j.cca.2019.01.011.
[25]
SOBECKI M, MROUJ K, COLINGE J, et al. Cell-cycle regulation accounts for variability in ki-67 expression levels[J]. Cancer Res, 2017, 77(10): 2722-2734. DOI: 10.1158/0008-5472.CAN-16-0707.
[26]
ZHANG A, WANG X, FAN C, et al. The Role of Ki67 in Evaluating Neoadjuvant Endocrine Therapy of Hormone Receptor-Positive Breast Cancer[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 687244. [2023-09-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597938/. DOI: 10.3389/fendo.2021.687244.
[27]
KE X A, ZHAO J, LIU X W, et al. Apparent diffusion coefficient values effectively predict cell proliferation and determine oligodendroglioma grade[J/OL]. Neurosurg Rev, 2023, 46(1): 83 [2023-09-03]. https://pubmed.ncbi.nlm.nih.gov/37022533/. DOI: 10.1007/s10143-023-01989-3.
[28]
刘宏, 刘显旺, 刘光耀, 等. 表观扩散系数术前区分Luminal型与非Luminal型乳腺癌及其与Ki-67增殖指数的相关性研究[J]. 磁共振成像, 2023, 14(4): 51-56. DOI: 10.12015/issn.1674-8034.2023.04.010.
LIU H, LIU X W, LIU G Y, et al. The value of apparent diffusion coefficient value in differentiating the Luminal-type and non-Luminal-type breast cancer and evaluating tumor cell proliferation activity[J]. Chin J Magn Reson Imag, 2023, 14(4): 51-56. DOI: 10.12015/issn.1674-8034.2023.04.010.
[29]
LI S L, ZHOU Q, ZHANG P, et al. The relationship between the apparent diffusion coefficient and the Ki-67 proliferation index in intracranial solitary fibrous tumor/hemangiopericytoma[J]. Neurosurg Rev, 2022, 45(2): 1625-1633. DOI: 10.1007/s10143-021-01687-y.
[30]
KIYOSE M, HERRMANN E, ROESLER J, et al. MR imaging profile and histopathological characteristics of tumour vasculature, cell density and proliferation rate define two distinct growth patterns of human brain metastases from lung cancer[J]. Neuroradiology, 2023, 65(2): 275-285. DOI: 10.1007/s00234-022-03060-2.
[31]
REN H N, MA J B, WANG J. Correlation between apparent diffusion coefficient and Ki-67 in different pathological types of lung cancer[J]. Transl Cancer Res, 2021, 10(12): 5364-5371. DOI: 10.21037/tcr-21-2515.

上一篇 心脏磁共振影像组学对肥厚型心肌病的价值研究
下一篇 乳腺癌患者化疗早期大脑皮层表面形态学改变和癌症相关疲劳变化的关系:基于表面形态测量方法
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2