分享:
分享到微信朋友圈
X
临床研究
磁共振表观扩散系数鉴别诊断移行带高危前列腺癌及与病理分级分组的相关性
李鹏 李艳 徐洁 景丽

Cite this article as: LI P, LI Y, XU J, et al. Differential diagnosis of MRI apparent diffusion coefficient for high-risk prostate cancer in the transition zone and its correlation with pathological grading group[J]. Chin J Magn Reson Imaging, 2024, 15(2): 77-82, 89.本文引用格式李鹏, 李艳, 徐洁, 等. 磁共振表观扩散系数鉴别诊断移行带高危前列腺癌及与病理分级分组的相关性[J]. 磁共振成像, 2024, 15(2): 77-82, 89. DOI:10.12015/issn.1674-8034.2024.02.011.


[摘要] 目的 探讨磁共振扩散加权成像(diffusion-weighted imaging, DWI)的表观扩散系数(apparent diffusion coefficient, ADC)值和相对ADC值对移行带高危前列腺癌(high-risk prostate cancer, hPCa)的鉴别诊断价值及与国际泌尿病理学会(International Society of Urological Pathology, ISUP)前列腺癌分级分组(grading group, GG)的相关性。材料与方法 回顾性分析经病理证实的40例移行带前列腺癌患者的双参数MRI资料,分别测量移行带癌灶和基质型增生结节的平均ADC(mean ADC, ADCmean)值和最小ADC(minimum ADC, ADCmin)值,并计算移行带癌灶与基质型增生结节ADC比值的相对ADCmean(relative ADCmean, rADCmean)值和相对ADCmin(relative ADCmin, rADCmin)值。比较hPCa组与低危前列腺癌(low-risk prostate cancer, lPCa)组之间ADCmean、ADCmin、rADCmean和rADCmin值的差异。绘制受试者工作特征(receiver operating characteristic, ROC)曲线评估ADC各参数对移行带hPCa的诊断效能,并根据约登指数确定最佳截断值。采用DeLong检验比较ROC曲线下面积(area under the curve, AUC)的差异。Spearman相关分析ADC各参数与ISUP GG之间的相关性。结果 hPCa组的ADCmean、ADCmin、rADCmean和rADCmin值均低于lPCa组(P均<0.05)。ADCmean、ADCmin、rADCmean和rADCmin鉴别诊断移行带hPCa的AUC分别为0.775 [95%置信区间(confidence interval, CI):0.615~0.892]、0.879(95% CI:0.736~0.960)、0.751(95% CI:0.589~0.874)和0.914(95% CI:0.782~0.979),rADCmin的AUC最大。rADCmin与ADCmean和rADCmean的AUC差异均有统计学意义(P均<0.05),但与ADCmin的AUC差异无统计学意义(P>0.05)。当rADCmin最佳截断值取0.664×10-3 mm2/s,约登指数最大(0.783),诊断移行带hPCa的敏感度和特异度分别为100.00%、78.26%。ADCmean、ADCmin、rADCmean和rADCmin值与ISUP GG均呈负相关[r=-0.486(95% CI:-0.755~-0.151)、-0.613(95% CI:-0.769~-0.365)、-0.553(95% CI:-0.745~-0.260)、-0.678(95% CI:-0.810~-0.474),P均≤0.001]。结论 rADCmin鉴别诊断移行带hPCa的效能高,并且能够无创预测移行带PCa的ISUP GG,有助于为患者的个性化治疗决策提供支持。
[Abstract] Objective To investigate the differential diagnostic value of apparent diffusion coefficient (ADC) and relative ADC values of diffusion weighted imaging (DWI) for high-risk prostate cancer (hPCa) in the transition zone and their correlation with International Society of Urological Pathology (ISUP) grading group (GG).Materials and Methods Retrospective analysis was performed on biparametric MRI data from 40 patients with transition zone prostate cancer confirmed by pathology. This analysis involved measuring the mean ADC (ADCmean) and minimum ADC (ADCmin) of transition zone prostate cancer and stromal hyperplastic nodules. Additionally, it calculated the relative ADCmean (rADCmean) and relative ADCmin (rADCmin), defined as the ratio of ADC values between transition zone carcinoma foci and stromal hyperplastic nodules. The receiver operating characteristic (ROC) curve was used to assess the diagnostic efficacy of each ADC parameter for hPCa in the transition zone and to determine the optimal cutoff value based on the Youden's index. DeLong's test was used to compare the differences in area under the curve (AUC) of the ROC curve. Spearman correlation analysis was performed to analyze the correlation between each of the ADC parameters and ISUP GG.Results The values of ADCmean, ADCmin, rADCmean and rADCmin in the hPCa group were lower than those in the lPCa group (all P<0.05). The AUCs for the differential diagnosis of hPCa in the transition zone were 0.775 [95% confidence interval (CI): 0.615-0.892]、0.879 (95% CI: 0.736-0.960)、0.751 (95% CI: 0.589-0.874) and 0.914 (95% CI: 0.782-0.979) for ADCmean, ADCmin, rADCmean and rADCmin, respectively. The maximum AUC was observed with rADCmin. rADCmin showed statistically significant differences in AUC compared to both ADCmean and rADCmean (all P<0.05), but not with ADCmin (P>0.05). When the optimal cutoff value of rADCmin was taken as 0.664×10-3 mm2/s with the highest Youden's index (0.783), the sensitivity and specificity of diagnosing hPCa in the transition zone were 100.00% and 78.26%, respectively. ADCmean, ADCmin, rADCmean and rADCmin values were all negatively correlated with ISUP GG [r=-0.486 (95% CI: -0.755--0.151), -0.613 (95% CI: -0.769--0.365), -0.553 (95% CI: -0.745--0.260) and -0.678 (95% CI: -0.810--0.474, all P≤0.001].Conclusions The efficacy of rADCmin in differential diagnosing hPCa in the transition zone was high. rADCmin was able to noninvasively predict ISUP GG of PCa in the transition zone, which can help to provide personalized treatment decision support for patients.
[关键词] 前列腺肿瘤;前列腺增生;移行带;磁共振成像;表观扩散系数;分级分组
[Keywords] prostate neoplasms;prostate hyperplasia;transition zone;magnetic resonance imaging;apparent diffusion coefficient;grading group

李鹏 1, 2   李艳 1   徐洁 2   景丽 2*  

1 宁夏医科大学总医院放射科,银川 750004

2 宁夏医科大学基础医学院病理学系,银川 750004

通信作者:景丽,E-mail:jingli_nxmu@163.com

作者贡献声明::景丽设计本研究的方案,对稿件重要内容进行了修改;李鹏起草和撰写稿件,获取、分析和解释本研究的数据,参与获得宁夏回族自治区重点研发计划资助项目;李艳、徐洁获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁夏回族自治区重点研发计划项目 2019BEG03033
收稿日期:2023-11-20
接受日期:2024-01-20
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.02.011
本文引用格式李鹏, 李艳, 徐洁, 等. 磁共振表观扩散系数鉴别诊断移行带高危前列腺癌及与病理分级分组的相关性[J]. 磁共振成像, 2024, 15(2): 77-82, 89. DOI:10.12015/issn.1674-8034.2024.02.011.

0 引言

       前列腺癌(prostate cancer, PCa)是男性泌尿生殖系统最常见的恶性肿瘤之一。最新数据显示,PCa的发病率位于男性恶性肿瘤的第2位,死亡率位居第5位[1]。美国SEER(The Surveillance, Epidemiology and End Results)数据(2004~2010年)显示,局限性PCa的五年生存率明显高于转移性PCa(100% vs. 28%)[2]。因此,对PCa患者进行准确的危险度分级对于患者的预后具有重要意义。2014年国际泌尿病理学会(International Society of Urological Pathology, ISUP)共识会议上根据Gleason评分(Gleason score, GS)和疾病危险度的不同提出新的分级分组(grading group, GG)方法,即PCa ISUP GG系统[3]。由病理GS系统进一步发展来的ISUP GG系统被认为能够有效区分PCa的危险度[3],有研究显示移行带PCa的危险度低于外周带[4, 5]。基于前列腺成像和报告数据系统(Prostate Imaging and Reporting Data System, PI-RADS)评分的PCa多参数MRI(multiparametric MRI, mpMRI)临床应用已进入深度实践中[6, 7, 8, 9]。最新发布的PI-RADS 2.1版指南继续推荐T2加权成像(T2 weighted imaging, T2WI)作为移行带癌灶检出的主要序列,并且将典型的增生结节从PI-RADS 2.0版的2分降低为1分;同时,T2WI评分为2~3分的结节则需要根据扩散加权成像(diffusion weighted imaging, DWI)/表观扩散系数(apparent diffusion coefficient, ADC)的信号强度确定其最终评分;动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)则不用于移行带PCa的检出[10, 11]。TAVAKOLI等[12]最新发表在Radiology的研究也显示,定量ADC值有助于PI-RADS 2.1版评分为3分或4分病变的升级,而无论是定量还是定性DCE-MRI对PI-RASD 2.1版评分为3分病变的危险度分级均无关。多数学者研究显示ADC值与PCa GS具有一定相关性[13, 14, 15, 16, 17, 18],但研究多集中在外周带。前列腺移行带组织病理学成分复杂,癌灶常与良性前列腺增生(benign prostatic hyperplasia, BPH)结节同时存在[19]。并且由于高危PCa(high-risk PCa, hPCa)和低危PCa(low-risk PCa, lPCa)在DWI和ADC图上具有相似表现,使常规测量平均ADC(mean ADC, ADCmean)值在评估移行带PCa危险度分级方面中的应用价值受限。为了解决上述临床研究的难点,尽量消除个体间差异可能会对癌灶ADC值测量产生的影响,本研究通过测量相对ADC值(即癌灶与基质型增生结节的ADC比值),探讨rADC对移行带hPCa的鉴别诊断价值及与病理GS和ISUP GG的相关性,旨在为DWI技术在移行带PCa术前危险度分级评估和患者个性化治疗策略的制订提供更多的定量影像学数据支持。

1 材料与方法

1.1 临床资料

       回顾性分析2020年6月至2023年11月在宁夏医科大学总医院行前列腺mpMRI检查并经根治术或穿刺病理证实的40例PCa患者的影像学资料。纳入标准:(1)MRI显示病灶均位于前列腺移行带,不累及外周带;(2)MRI检查后1个月内行前列腺穿刺活检;(3)所有患者均经病理证实。排除标准:(1)患者MRI检查前有恶性肿瘤相关治疗史;(2)MRI图像质量不能满足诊断和测量所需;(3)癌灶累及整个移行带,以致不能准确识别基质型增生结节。当患者存在穿刺活检ISUP GG与根治术切除标本ISUP GG不一致时,以根治术为准。本研究遵守《赫尔辛基宣言》,并通过宁夏医科大学总医院医学伦理委员会审核(批准文号:2018-339),免除受试者知情同意。

1.2 MRI检查

       采用美国GE SIGNA™ Architect 3.0 T MRI扫描仪进行检查,32通道心脏相控阵表面线圈(美国GE公司),扫描范围以耻骨联合为中心,覆盖前列腺和精囊腺,至少包括轴位脂肪抑制T2WI序列、冠状位或矢状位脂肪抑制T2WI序列,以及轴位DWI序列。轴位脂肪抑制T2WI序列扫描参数:TR 6 739 ms,TE 102 ms,视野24 cm,矩阵320×320,层厚3 mm,层间距1 mm。冠状位或矢状位脂肪抑制T2WI扫描参数:TR 5 306 ms,TE 100 ms,视野28 cm,矩阵384×384,层厚3.5 mm,层间距1 mm。轴位DWI扫描参数:TR 500 ms,TE 78 ms,视野24 cm,矩阵160×140,层厚3 mm,层间距1 mm,b值50、1 000 s/mm2

1.3 图像分析

       严格依据PI-RADS 2.1版指南,由1名8年以上泌尿生殖系统MRI诊断经验的主治医师和1名10年以上泌尿生殖系统MRI诊断经验的副主任医师分别独立阅读前列腺MRI影像资料和测量ADC值,如有分歧时由1名20年以上泌尿生殖系统MRI诊断经验的主任医师进一步评估并协商解决。DWI图像后处理采用GE ADW 4.7 READ View工作站。首先根据T2WI、DWI表现和病理结果记录在ADC图上确定移行带癌灶的位置,勾画出感兴趣区域(region of interest, ROI),软件自动生成ROI内的ADC值,避开出血、钙化、囊变及炎症区域。本研究中ADC值的测量包括ADCmean和最小ADC(minimum ADC, ADCmin)值两部分。参考相关文献[20, 21],ADCmean值的测量选择在ADC图上肿瘤范围最大的层面(需覆盖实性病变一半以上)勾画ROI,测量3次取平均值;ADCmin值的测量选择在ADC图上癌灶弥散受限最明显的区域勾画ROI,ROI大小约10 mm2,测量3次取最小值。同时,在T2WI图像上全面观察BPH结节的类型和分布,选择具有假包膜、边界清晰的类圆形低信号结节作为基质型增生结节在ADC图上的典型层面勾画ROI,不包含假包膜,测量3次取平均值或最小值,轴位T2WI和DWI及ADC图层面需保持一致。每位患者测量一个癌灶和一个基质型增生结节。当出现多个癌灶时,选择一个主病灶测量,即病理ISUP GG最高对应ADC图弥散受限最明显的病灶进行测量。rADC值的计算方法如下:相对ADCmean(relative ADCmean, rADCmean)=癌灶ADCmean/基质型增生结节ADCmean,相对ADCmin(relative ADCmin, rADCmin)=癌灶ADCmin/基质型增生结节ADCmin。

1.4 病理分析

       由1名10年以上泌尿生殖系统超声诊断经验的副主任医师根据mpMRI表现和建议靶向穿刺的部位进行直肠超声引导下前列腺系统穿刺。将穿刺活检或根治术切除标本进行固定、脱水、透明、包埋和切片后,苏木精-伊红染色,并在低、高倍光学显微镜下观察、分析。由1名10年以上泌尿生殖系统病理诊断经验的副主任医师根据指南[3]进行PCa病理GS和ISUP GG,共分为5组:GG 1级(GS 6分)、GG 2级(GS 3+4=7分)、GG 3级(GS 4+3=7分)、GG 4级(GS 8分)和GG 5级(GS 9~10分)。根据危险度分级将GG≤2级定义为lPCa,GG≥3级定义为hPCa[4]

1.5 统计学分析

       采用IBM SPSS软件(Version 25, Armonk, NY, USA)和MedCalc Statistical Software version 19.0.4(MedCalc Software bvba, Ostend, Belgium,https://www.medcalc.org, 2019)对数据行统计分析,计量资料先行正态性检验及方差齐性检验。符合正态分布的数据采用平均值±标准差(x¯±s)表示,组间两两比较采用独立样本t检验;不符合正态分布的数据采用中位数(上下四分位数)[MP25, P75)]表示,组间两两比较采用Mann-Whitney U检验。观察者之间一致性分析采用组内相关系数(intra-class correlation coefficient, ICC)评价,ICC>0.75认为一致性良好。诊断效能采用受试者工作特征(receiver operating characteristic, ROC)曲线分析,两组间曲线下面积(area under the curve, AUC)的比较采用DeLong检验。根据约登指数,确定ADC诊断移行带hPCa的最佳截断值,计算敏感度和特异度。Spearman相关分析移行带PCa ADC与病理GS和ISUP GG之间的相关性。双侧检验,检验水准α=0.05。

2 结果

2.1 入组病例资料

       40例移行带PCa中,GS 6分12例,GS 3+4=7分11例,GS 4+3=7分9例,GS 8分6例,GS 9~10分2例;其中,hPCa组17例(GG 3~5级),lPCa组23例(GG 1~2级)。hPCa组患者年龄57~80(69.06±6.59)岁,lPCa组患者年龄61~84(71.13±6.55)岁,两组间年龄差异无统计学意义(t=0.987,P=0.330),详见表1

表1  hPCa组和lPCa组基本资料比较
Tab. 1  Comparison of basic information between hPCa and lPCa groups

2.2 移行带hPCa组和lPCa组ADC各参数值的结果及比较

       2名观察者测量癌灶的ADCmean和ADCmin值一致性良好[ICC系数:0.871(95% CI:0.770~0.929)和0.915(95% CI:0.842~0.955)],2名观察者测量基质型增生结节的ADCmean和ADCmin值一致性亦良好[ICC系数:0.843(95% CI:0.724~0.914)和0.884(95% CI:0.786~0.938)]。移行带hPCa组和lPCa组ADCmean、ADCmin、rADCmean和rADCmin值见表2。hPCa组的ADCmean、ADCmin、rADCmean和rADCmin值均小于lPCa组,差异均具有统计学意义(P均<0.05)(图1~2)。

图1  男,68岁,移行带高危前列腺癌。1A:抑脂T2WI显示右侧移行带不规则低信号,癌变病灶边界不清晰(箭);1B:扩散加权成像(DWI)显示癌变病灶高信号(箭);1C:表观扩散系数(ADC)图显示癌变病灶低信号(箭);1D:病理结果(HE ×100)为前列腺癌(Gleason评分3+5=8分,ISUP分级分组为4级)。
图2  男,60岁,移行带低危前列腺癌。2A:抑脂T2WI显示左侧移行带结节状低信号,癌变病灶边界欠清(箭);2B:DWI显示癌变病灶不均质高信号(箭);2C:ADC图显示癌变病灶不均质低信号(箭);2D:病理结果(HE ×100)为前列腺癌(Gleason评分3+3=6分,ISUP分级分组为1级)。ISUP:国际泌尿病理学会。
Fig. 1  Male, 68 years old, patient of high-risk prostate cancer in the transition zone. 1A: Inhibitory T2WI shows irregular low signal on the right side of the transition zone with unclear boundaries for the cancerous lesion (arrow); 1B: Diffusion-weighted imaging (DWI) shows high signal intensity for the cancerous lesion (arrow); 1C: Apparent diffusion coefficient (ADC) map shows low signal intensity for the cancerous lesion (arrow); 1D: Pathological findings (HE ×100) shows prostate cancer (Gleason score 3+5=8, ISUP grading group 4).
Fig. 2  Male, 60 years old, patient of low-risk prostate cancer in the transition zone. 2A: Inhibitory T2WI shows nodular low signal intensity on the left side of the transition zone with unclear boundaries for the cancerous lesion (arrow); 2B: DWI shows heterogeneous high signal intensity for the nodular cancerous lesion (arrow); 2C: ADC map shows heterogeneous low signal intensity for the cancerous lesion (arrow); 2D: Pathological findings (HE ×100) shows prostate cancer (Gleason score 3+3=6, ISUP grading group 1). ISUP: International Society of Urological Pathology.
表2  hPCa组和lPCa组ADC各参数比较
Tab. 2  Comparison of ADC parameters values between hPCa and lPCa groups

2.3 ADC各参数鉴别诊断移行带hPCa的ROC曲线分析及比较

       ROC曲线分析结果显示:ADCmean、ADCmin、rADCmean和rADCmin值诊断移行带hPCa的AUC分别为0.775、0.879、0.751和0.914;除rADCmin和rADCmean、rADCmin和ADCmean之间的AUC差异有统计学意义(Z=2.312、2.049,P均<0.05),其余组间两两比较差异均无统计学意义(P均>0.05)。当rADCmin最佳截断值为0.664×10-3 mm2/s时约登指数最大,为0.783,诊断移行带hPCa的敏感度和特异度分别为100.00%、78.26%。详见表3图3

图3  ADC各参数鉴别诊断移行带高危前列腺癌的受试者工作特征曲线。ADC为表观扩散系数。
Fig. 3  Receiver operating characteristic curves of ADC parameters for differential diagnosis of high-risk prostate cancer in the transition zone. ADC: apparent diffusion coefficient.
表3  ADC各参数诊断移行带高危前列腺癌的效能比较
Tab. 3  Comparison of the efficacy of ADC parameters for diagnosing high-risk prostate cancer in the transition zone

2.4 ADC各参数与移行带PCa病理GS和ISUP GG的相关性分析

       Spearman相关分析显示:ADCmean、ADCmin、rADCmean和rADCmin值与移行带PCa病理GS均呈负相关[r=-0.430(95% CI:-0.699~-0.099)、-0.501(95% CI:-0.696~-0.263)、-0.558(95% CI:-0.760~-0.271)、-0.558(95% CI:-0.737~-0.319),P均≤0.006],与ISUP GG亦均呈负相关[r=-0.486(95% CI:-0.755~-0.151)、-0.613(95% CI:-0.769~-0.365)、-0.553(95% CI:-0.745~-0.260)、-0.678(95% CI:-0.810~-0.474),P均≤0.001](图4)。

图4  前列腺癌患者平均ADC值、最小ADC值、相对平均ADC值、相对最小ADC值与Gleason评分和ISUP分级分组的相关性。ADC:表观扩散系数;ISUP:国际泌尿病理学会。
Fig. 4  Correlation of mean ADC, minimum ADC, relative ADCmean and relative ADCmin values of the prostate cancer patients with the Gleason score and ISUP grading group. ADC: apparent diffusion coefficient; ISUP: International Society of Urological Pathology.

3 讨论

       相比于ADCmean,ADCmin的区域能更准确地代表肿瘤异质性最高的部位[22],rADC则能更真实地反映肿瘤组织的扩散受限特性[23]。本研究采用ADCmin和rADCmin鉴别诊断移行带hPCa与lPCa,并分析其与PCa危险度分级的相关性,研究结果显示ADCmin和rADCmin诊断移行带hPCa的AUC均大于ADCmean和rADCmean,并且以rADCmin与移行带PCa病理GS和ISUP GG的相关性最高。本研究探索了rADCmin用于鉴别移行带hPCa和量化评估PCa危险度分级方面的潜力,有助于临床医师对患者做出更精准的个体化评估。

3.1 ADCmin在鉴别诊断移行带hPCa中的应用

       DWI技术是目前被认为唯一能无创反映活体组织水分子扩散运动特性的功能MRI技术,在PCa的早期诊断、分期、疗效和预后评估中具有重要价值[24, 25, 26]。细胞微环境内水分子扩散受限与组织内细胞的密度直接相关[27],是ADC能够有效鉴别良恶性组织以及评估肿瘤分化程度的病理基础。相较于正常前列腺组织或增生组织中的腺上皮细胞,癌细胞密度更大且排列更致密、紊乱,细胞间隙缩小更明显。但DWI的高信号易受多种主观因素和T2透射效应的影响,ADC则可以消除T2透射效应且最大程度减少主观因素的影响,能够对不同病变组织水分子的扩散运动特性进行量化评估。ADCmean主要反映的是癌组织扩散受限的整体水平[21],亦受组织异质性的影响[28]。而ADCmin则主要反映的是癌组织扩散受限最严重的区域,病理代表着癌组织分化最差、癌细胞排列最密集的部分[22]。因此,相比于ADCmean,ADCmin更适合用于评估肿瘤的危险度。本研究结果显示,ADCmean和ADCmin在移行带hPCa组和lPCa组之间的差异均有统计学意义,以ADCmin在鉴别移行带hPCa中的价值更大。一诺等[29]研究也显示,ADCmin诊断中高危PCa的效能优于ADCmean。

3.2 rADC在鉴别诊断移行带hPCa中的应用

       在临床工作中,ADC易受多种因素的影响。首先,患者个体间的生理学状态会影响其数值的波动。TAMADA等[30]研究发现由于BPH导致前列腺液的分泌和存储增加,成年男性前列腺移行带的ADC值会随着年龄的增长而增加。此外,患者的体温和个体代谢状态也会影响ADC值的变化[31]。其次,ADC作为反映细胞微环境质子扩散结构和磁性环境的特异参数,各种病理和病理生理状态均会导致该区域ADC值的改变,如前列腺炎、BPH及前列腺缺血等,并且不同的设备和b值也会影响ADC值的大小。为了消除上述影响ADC值可比性的因素,LIM等[32]引入“标化ADC值”的概念,之后有学者陆续采用癌灶与正常外周带ADC的比值作为标化ADC用于鉴别前列腺良恶性病变[20, 33-34],并且发现标化ADC较ADC在鉴别前列腺良恶性病变中的价值更高。但少见采用标化ADC鉴别移行带hPCa的研究报道。由于存在解剖分区的差异性,本研究采用癌灶ADC与基质型增生结节ADC的比值定义rADC,用于鉴别诊断移行带hPCa与lPCa。结果显示rADCmin诊断移行带hPCa的AUC均高于ADCmin和rADCmean(0.914 vs. 0.879和0.751)。当rADCmin取0.664×10-3 mm2/s,诊断移行带hPCa的敏感度可以到达100.00%,特异度为78.26%,存在一定的过度诊断。提示rADCmin是值得临床深入研究的ADC候选参数。

3.3 ADC在移行带PCa病理分级中的应用

       既往已有研究显示,ADC值与PCa病理GS呈负相关[35, 36]。本研究结果显示,ADCmean、ADCmin、rADCmean和rADCmin值与移行带PCa病理GS均呈负相关,与ISUP GG亦均呈负相关,但均以rADCmin的相关系数最高,提示rADCmin在评估PCa的分化程度和预测危险度分级方面的应用价值可能更大。WU等[20]研究显示,ADCmin在评估PCa侵袭性中的价值比ADCmean更高,LEBOVICI等[37]研究显示rADC比ADC能更准确地预测PCa的危险度分级,均与本研究结果基本一致。分析原因可能是随着PCa ISUP GG的升高,其恶性程度增高,癌细胞异型性更大,核浆比更高,细胞密度更大,细胞排列更紧密,细胞外间隙更小,水分子扩散受限程度更大,ADC值降低更明显。相信在未来的PI-RADS版本更新中,PI-RADS主观评分结合ADC值的定量测量可能更有助于检测hPCa和指导lPCa的临床主动监测,并减少不必要的穿刺活检。

3.4 本研究的局限性

       (1)本研究为单中心,样本量偏小,未进行外部验证,结果可能存在一定偏倚;(2)部分患者以穿刺活检病理为金标准,因此少部分小病灶的病理评分结果可能与ADC值测量之间存在位置偏移性误差;(3)对于少部分移行带癌灶较大的病例或合并BPH不明显的病例,基质型增生结节的准确勾画存在一定困难。下一步将扩大样本量并进行多中心外部研究验证。

4 结论

       综上所述,ADCmin能够有效鉴别移行带hPCa并用于量化评估PCa的危险度分级,有望为PCa患者的个性化治疗决策制订提供更多客观影像学支持。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
叶定伟, 朱耀. 中国前列腺癌的流行病学概述和启示[J].中华外科杂志, 2015(4): 249-252. DOI: 10.3760/cma.j.issn.0529-5815.2015.04.003.
YE D W, ZHU Y. Epidemiology of prostate cancer in China: an overview and clinical implication[J]. Chin J Surg, 2015(4): 249-252. DOI: 10.3760/cma.j.issn.0529-5815.2015.04.003.
[3]
EPSTEIN J I, EGEVAD L, AMIN M B, et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system[J]. Am J Surg Pathol, 2016, 40(2): 244-252. DOI: 10.1097/PAS.0000000000000530.
[4]
肖遵健, 任静, 韩晔, 等. 双参数MRI定位解剖分区预测前列腺癌危险度的价值[J]. 中华医学杂志, 2023, 103(19): 1455-1460. DOI: 10.3760/cma.j.cn112137-20221219-02677.
XIAO Z J, REN J, HAN Y, et al. The anatomic zone localization based on biparametric MRI for the prediction of the risk degree of prostate cancer[J]. Natl Med J China, 2023, 103(19): 1455-1460. DOI: 10.3760/cma.j.cn112137-20221219-02677.
[5]
TELOKEN P E, LI J, WOODS C G, et al. The impact of prostate cancer zonal origin on pathological parameters at radical prostatectomy and subsequent biochemical failure[J]. J Urol, 2017, 198(6): 1316-1323. DOI: 10.1016/j.juro.2017.05.075.
[6]
PAN Y S, SHEN C, CHEN X F, et al. bpMRI and mpMRI for detecting prostate cancer: a retrospective cohort study[J/OL]. Front Surg, 2022, 9: 1096387 [2023-10-21]. https://pubmed.ncbi.nlm.nih.gov/36726941/. DOI: 10.3389/fsurg.2022.1096387.
[7]
LIU Y Y, WANG S, XU G, et al. Effectiveness and accuracy of MRI-ultrasound fusion targeted biopsy based on PI-RADS v2.1 category in transition/peripheral zone of the prostate[J]. J Magn Reson Imaging, 2023, 58(3): 709-717. DOI: 10.1002/jmri.28614.
[8]
AYDIN H, TOPSAKAL K, AYYILDIZ V A, et al. Quantitative evaluation of late gadolinium enhancement to the differential diagnosis of prostate cancer and prostatitis in mpMRI[J]. J Coll Physicians Surg Pak, 2023, 33(1): 20-26. DOI: 10.29271/jcpsp.2023.01.20.
[9]
KAZAN O, GUNDUZ N, KIR G, et al. The cribriform morphology impairs Gleason 7 prostate cancer lesion detection on multiparametric magnetic resonance imaging[J]. Prostate, 2023, 83(4): 331-339. DOI: 10.1002/pros.24465.
[10]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3):340-351. DOI: 10.1016/j.eururo.2019.02.033.
[11]
LIM C S, ABREU-GOMEZ J, CARRION I, et al. Prevalence of prostate cancer in PI-RADS version 2.1 transition zone atypical nodules upgraded by abnormal DWI: correlation with MRI-directed TRUS-guided targeted biopsy[J]. AJR Am J Roentgenol, 2021, 216(3): 683-690. DOI: 10.2214/AJR.20.23932.
[12]
TAVAKOLI A A, HIELSCHER T, BADURA P, et al. Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer[J]. Radiology, 2023, 306(1): 186-199. DOI: 10.1148/radiol.212692.
[13]
INGOLE S M, MEHTA R U, KAZI Z N, et al. Multiparametric magnetic resonance imaging in evaluation of clinically significant prostate cancer[J]. Indian J Radiol Imaging, 2021, 31(1): 65-77. DOI: 10.1055/s-0041-1730093.
[14]
KARAARSLAN E, ALTAN KUS A, ALIS D, et al. Performance of apparent diffusion coefficient values and ratios for the prediction of prostate cancer aggressiveness across different MRI acquisition settings[J]. Diagn Interv Radiol, 2022, 28(1): 12-20. DOI: 10.5152/dir.2022.20732.
[15]
ZHU G B, LUO J W, OUYANG Z M, et al. The assessment of prostate cancer aggressiveness using a combination of quantitative diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging[J]. Cancer Manag Res, 2021, 13: 5287-5295. DOI: 10.2147/CMAR.S319306.
[16]
FAIELLA E, SANTUCCI D, VERTULLI D, et al. The role of multiparametric MRI in the diagnosis of local recurrence after radical prostatectomy and before salvage radiotherapy[J]. Actas Urol Esp, 2022, 46(7): 397-406. DOI: 10.1016/j.acuroe.2021.12.011.
[17]
LUCARELLI N M, VILLANOVA I, MAGGIALETTI N, et al. Quantitative ADC: an additional tool in the evaluation of prostate cancer?[J/OL]. J Pers Med, 2023, 13(9): 1378 [2023-10-21]. https://pubmed.ncbi.nlm.nih.gov/37763146/. DOI: 10.3390/jpm13091378.
[18]
ROEST C, KWEE T C, SAHA A, et al. AI-assisted biparametric MRI surveillance of prostate cancer: feasibility study[J]. Eur Radiol, 2023, 33(1): 89-96. DOI: 10.1007/s00330-022-09032-7.
[19]
林俊坤, 钟治平, 陈志远, 等. PI-RADS v2.1联合ADC值对前列腺移行带癌的诊断效能评估[J]. 中国医学计算机成像杂志, 2022, 28(5): 510-516. DOI: 10.3969/j.issn.1006-5741.2022.05.013.
LIN J K, ZHONG Z P, CHEN Z Y, et al. Evaluation of the diagnostic performance of PI-RADS v2.1 combined with ADC value in prostate transitional zone cancer[J]. Chin Comput Med Imag, 2022, 28(5): 510-516. DOI: 10.3969/j.issn.1006-5741.2022.05.013.
[20]
WU X, REINIKAINEN P, VANHANEN A, et al. Correlation between apparent diffusion coefficient value on diffusion-weighted MR imaging and Gleason score in prostate cancer[J]. Diagn Interv Imaging, 2017, 98(1): 63-71. DOI: 10.1016/j.diii.2016.08.009.
[21]
PARK S Y, OH Y T, JUNG D C, et al. Diffusion-weighted imaging predicts upgrading of Gleason score in biopsy-proven low grade prostate cancers[J]. BJU Int, 2017, 119(1): 57-66. DOI: 10.1111/bju.13436.
[22]
MURAKAMI R, HIRAI T, SUGAHARA T, et al. Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one-versus two-parameter pilot method[J]. Radiology, 2009, 251(3): 838-845. DOI: 10.1148/radiol.2513080899.
[23]
SHEN Y Q, LV F J, XIAO Z B, et al. Utility of the relative apparent diffusion coefficient for preoperative assessment of low risk endometrial carcinoma[J]. Clin Imaging, 2019, 56: 28-32. DOI: 10.1016/j.clinimag.2019.03.001.
[24]
SCIALPI M, MARTORANA E, SCIALPI P, et al. S-PI-RADS and PI-RRADS for biparametric MRI in the detection of prostate cancer and post-treatment local recurrence[J]. Anticancer Res, 2023, 43(1): 297-303. DOI: 10.21873/anticanres.16163.
[25]
TAMADA T, UEDA Y, UENO Y, et al. Diffusion-weighted imaging in prostate cancer[J]. Magma, 2022, 35(4): 533-547. DOI: 10.1007/s10334-021-00957-6.
[26]
YUAN J, POON D M C, LO G, et al. A narrative review of MRI acquisition for MR-guided-radiotherapy in prostate cancer[J]. Quant Imaging Med Surg, 2022, 12(2): 1585-1607. DOI: 10.21037/qims-21-697.
[27]
MALAYERI A A, KHOULI R H EL, ZAHEER A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up[J]. Radiographics, 2011, 31(6): 1773-1791. DOI: 10.1148/rg.316115515.
[28]
方磊, 方慧, 金利, 等. ADC最小值对外周带早期前列腺癌与慢性前列腺炎的鉴别诊断价值[J]. 磁共振成像, 2023, 14(7): 93-97. DOI: 10.12015/issn.1674-8034.2023.07.016.
FANG L, FANG H, JIN L, et al. The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone[J]. Chin J Magn Reson Imag, 2023, 14(7): 93-97. DOI: 10.12015/issn.1674-8034.2023.07.016.
[29]
一诺, 王雅菁, 王鹏, 等. 磁共振表观扩散系数鉴别前列腺癌预后相关风险分层的应用研究[J]. 磁共振成像, 2022, 13(12): 104-110. DOI: 10.12015/issn.1674-8034.2022.12.018.
YI N, WANG Y J, WANG P, et al. Application of MRI apparent diffusion coefficient in identifying prognostic risk stratification of prostate cancer[J]. Chin J Magn Reson Imag, 2022, 13(12): 104-110. DOI: 10.12015/issn.1674-8034.2022.12.018.
[30]
TAMADA T, SONE T, TOSHIMITSU S, et al. Age-related and zonal anatomical changes of apparent diffusion coefficient values in normal human prostatic tissues[J]. J Magn Reson Imaging, 2008, 27(3): 552-556. DOI: 10.1002/jmri.21117.
[31]
BAMMER R. Basic principles of diffusion-weighted imaging[J]. Eur J Radiol, 2003, 45(3): 169-184. DOI: 10.1016/s0720-048x(02)00303-0.
[32]
LIM H K, KIM J K, KIM K A, et al. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection: a multireader study[J]. Radiology, 2009, 250(1): 145-151. DOI: 10.1148/radiol.2501080207.
[33]
LI S, WANG K X, LI J L, et al. AI-predicted mpMRI image features for the prediction of clinically significant prostate cancer[J]. Int Urol Nephrol, 2023, 55(11): 2703-2715. DOI: 10.1007/s11255-023-03722-x.
[34]
KIM M J, PARK S Y. Biparametric magnetic resonance imaging-derived nomogram to detect clinically significant prostate cancer by targeted biopsy for index lesion[J]. J Magn Reson Imaging, 2022, 55(4): 1226-1233. DOI: 10.1002/jmri.27841.
[35]
WARNDAHL B A, BORISCH E A, KAWASHIMA A, et al. Conventional vs. reduced field of view diffusion weighted imaging of the prostate: comparison of image quality, correlation with histology, and inter-reader agreement[J]. Magn Reson Imaging, 2018, 47: 67-76. DOI: 10.1016/j.mri.2017.10.011.
[36]
SUROV A, MEYER H J, WIENKE A. Correlations between apparent diffusion coefficient and gleason score in prostate cancer: a systematic review[J]. Eur Urol Oncol, 2020, 3(4): 489-497. DOI: 10.1016/j.euo.2018.12.006.
[37]
LEBOVICI A, SFRANGEU S A, FEIER, et al. Evaluation of the normal-to-diseased apparent diffusion coefficient ratio as an indicator of prostate cancer aggressiveness[J/OL]. BMC Med Imaging, 2014, 14: 15 [2023-10-21]. https://pubmed.ncbi.nlm.nih.gov/24885552/. DOI: 10.1186/1471-2342-14-15.

上一篇 18F-PSMA-1007 PET/CT与mp-MRI对前列腺癌的检测效能及与病理分级的相关性研究
下一篇 基于不同扩散模型参数图的影像组学分析磁共振早期诊断临床显著性前列腺癌的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2