分享:
分享到微信朋友圈
X
临床研究
DWI联合T2 mapping序列鉴别前列腺癌与前列腺增生价值评估
李茜玮 陈丽华 王楠 林良杰 刘爱连

Cite this article as: LI X W, CHEN L H, WANG N, et al. Evaluation of the value of DWI combined with T2 mapping sequences to identify prostate cancer and benign prostatic hyperplasia[J]. Chin J Magn Reson Imaging, 2024, 15(2): 97-102.本文引用格式李茜玮, 陈丽华, 王楠, 等. DWI联合T2 mapping序列鉴别前列腺癌与前列腺增生价值评估[J]. 磁共振成像, 2024, 15(2): 97-102. DOI:10.12015/issn.1674-8034.2024.02.014.


[摘要] 目的 探讨扩散加权成像(diffusion-weighted imaging, DWI)联合T2 mapping序列鉴别前列腺癌(prostate cancer, PCa)与前列腺增生(benign prostatic hyperplasia, BPH)的价值。材料与方法 回顾性分析本院行3.0 T MRI检查且经病理证实的56例PCa患者及40例BPH患者资料。扫描序列包括T1WI、T2WI、DWI及T2 mapping序列。两名观察者分别测量两组病灶的表观扩散系数(apparent diffusion coefficient, ADC)值及T2值。采用组内相关系数(intra-class correlation coefficient, ICC)评估两名观察者测得参数值的一致性。采用独立样本t检验或Mann-Whitney U检验分析两组病例间ADC值及T2值的差异。Logistic回归用于分析差异具有统计学意义的参数及其与基线资料联合的诊断模型。采用受试者工作特征(receiver operating characteristic, ROC)曲线评估有差异参数及联合模型的诊断效能。采用DeLong检验比较ROC曲线下面积差异。采用Spearman相关系数分析ADC值与T2值相关性。结果 两名观察者测量值一致性好(ICC>0.75)。PCa组的ADC值及T2值分别低于BPH组,差异具有统计学意义(P<0.01)。ADC值、T2值、ADC-T2及ADC-T2-年龄-总前列腺特异性抗原(total prostate specific antigen, TPSA)联合鉴别PCa与BPH的AUC值分别为0.843、0.830、0.896及0.927。DeLong检验显示ADC值与ADC-T2联合,ADC值、T2值、ADC-T2模型与ADC-T2-年龄-TPSA联合模型的ROC差异存在统计学意义(P<0.05)。ADC值与T2值呈正相关(r=0.331,P<0.01)。结论 DWI及T2 mapping序列在鉴别PCa与BPH方面具有较好的价值,并且两序列联合临床指标时诊断效能提升,可为临床无创诊断PCa及BPH提供很好的指导意义。
[Abstract] Objective The efficacy of combining diffusion weighted imaging (DWI) with T2 mapping sequences in differentiating prostate cancer (PCa) and benign prostatic hyperplasia (BPH).Materials and Methods We conducted a retrospective analysis of data from 56 patients diagnosed with PCa and 40 patients with BPH, who underwent 3.0 T MRI examinations at our hospital and received pathological confirmation. The scanning sequences included T1WI, T2WI, DWI and T2 mapping sequences. Two observers independently measured the apparent diffusion coefficient (ADC) values and T2 values of the lesions in both groups. The intra-class correlation coefficient (ICC) was used to assess inter-observer agreement. Differences in ADC values and T2 values between the two groups were analyzed using independent samples t-test or Mann-Whitney U test. Logistic regression was employed to create diagnostic models using discrepant parameters and baseline information. ROC curves were constructed to evaluate the diagnostic efficacy of the differentiated parameters and the joint model. The DeLong test was used to compare differences in the area under the ROC curve (AUC). Spearman's correlation coefficient was calculated to assess the correlation between ADC values and T2 values.Results Excellent agreement was observed between the measurements of the two observers (ICC>0.75). The PCa group exhibited significantly lower ADC and T2 values compared to the BPH group (P<0.01). The AUC values for ADC, T2, ADC-T2 joint model, and ADC-T2-age-total prostate specific antigen (TPSA) joint model in distinguishing PCa from BPH were 0.843, 0.830, 0.896 and 0.927. DeLong's test showed statistically significant differences in the ROC curves for ADC and ADC-T2 jointly and for ADC, T2, ADC-T2 model and ADC-T2-age-TPSA joint model (P< 0.05). ADC values were positively correlated with T2 values (r=0.331, P<0.01).Conclusions DWI and T2 mapping hold substantial value in differentiating between PCa and BPH. The diagnostic efficacy improves when combining these sequences with clinical indicators such as age and TPSA. This combined imaging approach offers promising non-invasive diagnostic guidance for PCa and BPH in clinical settings.
[关键词] 前列腺癌;前列腺增生;扩散加权成像;T2 mapping成像;磁共振成像;鉴别诊断
[Keywords] prostate cancer;prostatic hyperplasia;diffusion-weighted imaging;T2 mapping imaging;magnetic resonance imaging;differential diagnosis

李茜玮 1, 2   陈丽华 1, 2   王楠 1, 2   林良杰 3   刘爱连 1, 2*  

1 大连医科大学附属第一医院放射科,大连 116011

2 大连市医学影像人工智能工程技术研究中心,大连 116011

3 飞利浦(中国)投资有限公司北京分公司,北京,100016

通信作者:刘爱连,E-mail:liuailian@dmu.edu.cn

作者贡献声明::李茜玮参与研究的构思和设计,起草和撰写稿件,获取、分析和解释本研究的数据;陈丽华参与研究的构思和设计,获取、分析和解释本研究的数据,对稿件重要内容进行了修改;王楠扫描患者,获取、分析和解释本研究的数据,参与稿件重要内容的修改;林良杰参与研究的构思和设计,解释本研究的数据,对稿件重要内容进行了修改;刘爱连参与研究的构思和设计,分析和解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2023-09-11
接受日期:2024-01-24
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.02.014
本文引用格式李茜玮, 陈丽华, 王楠, 等. DWI联合T2 mapping序列鉴别前列腺癌与前列腺增生价值评估[J]. 磁共振成像, 2024, 15(2): 97-102. DOI:10.12015/issn.1674-8034.2024.02.014.

0 引言

       前列腺癌(prostate cancer, PCa)与前列腺增生(benign prostatic hyperplasia, BPH)在男性泌尿外科疾病中占比可达到60%[1]。近年来,PCa在中国的发病率逐年上升[2, 3]。BPH为好发于前列腺中央带的良性病变结节,与PCa的终末结局不同。因此准确鉴别PCa与BPH对于临床制订合理治疗措施及改善患者预后具有十分重要的作用[4]。目前,前列腺特异性抗原(prostate specific antigen, PSA)水平检测、经直肠指诊为筛查PCa的常规方法[5, 6],但均存在一定局限性,如TPSA及FPSA诊断敏感度低[7, 8, 9],直肠指诊易受诊断医师主观性的影响。病理活检虽为诊断PCa的金标准,但为一项有创性检查,并且结果具有一定的滞后性[10, 11]。MRI检查为诊断前列腺疾病的首选检查方法,具有可清晰显示前列腺结节的特点。但在实际临床诊断工作中发现部分早期PCa结节在常规MRI中可与BPH结节存在信号重叠[12],增加了临床判断结节性质的难度。近年来,多模态MRI在PCa的诊断及风险评估等方面具有较好的应用价值[13, 14, 15]。扩散加权成像(diffusion-weighted imaging, DWI)通过计算表观扩散系数(apparent diffusion coefficient, ADC)值可以定量分析病变组织的水分子弥散速率,能够更加精准地反映组织信息[16]。T2 mapping通过测量横向弛豫时间可对组织内含水量进行无创可视化和定量分析,从而进行组织成分识别和疾病的鉴别[17]。临床研究表明,DWI及T2 mapping两序列分别鉴别PCa及BPH时均有很好的价值,目前尚无研究将两序列与年龄、总前列腺特异性抗原(total prostate specific antigen, TPSA)、血清游离前列腺特异性抗原(free prostate specific antigen, FPSA)等临床因素联合评估其诊断价值[12, 18, 19]。基于此,本研究旨在探讨DWI、T2 mapping序列及临床因素联合模型在鉴别PCa与BPH方面的应用价值。

1 材料与方法

1.1 一般资料

       本研究遵守《赫尔辛基宣言》,经大连医科大学附属第一医院伦理委员会批准,免除受试者知情同意,批准文号:PJ-KS-KY-2022-277。本研究回顾性收集本院2019年7月至2022年11月因临床诊断为前列腺疾病行前列腺3.0 T MRI扫描的患者96例。纳入标准:(1)经根治术(17例)、穿刺(63例)及电切术(16例)证实为PCa或BPH;(2)DWI、T2 mapping序列资料完整;(3)图像质量好。排除标准:除PCa或BPH外伴有前列腺炎及病灶区合并前列腺囊肿患者。病例入组流程图见图1

图1  患者入组流程图。PCa:前列腺癌;BPH:前列腺增生。
Fig. 1  Flowchart of participant inclusion and exclusion. PCa: prostate cancer; BPH: benign prostatic hyperplasia.

1.2 检查设备与方法

       所有患者均在飞利浦3.0 T MRI扫描仪(Ingenia CX, Philips, Holland)行前列腺扫描。扫描前患者禁食并排空膀胱。扫描时患者取仰卧位,身体中线与扫描床中线重合。采用32通道腹部线圈,扫描序列包括T1WI、T2WI、DWI(b值=0、1 400 s/mm2)及T2 mapping。各序列扫描参数详见表1

       通过公式S=S0exp(-b×ADC)计算ADC值,其中S为施加扩散敏感梯度后的信号强度;S0为未施加扩散敏感梯度后的信号强度;b为扩散因子。

表1  序列扫描参数表
Tab. 1  Sequence scanning parameter table

1.3 图像处理与测量

       将获得的DWI、ADC及T2 mapping图像传至ISP(Intelli Space Portall, Philips Healthcare)工作站,参考T2WI及DWI图像寻找病变显示最大的层面,并获得DWI及T2 mapping融合后的伪彩图。由两名观察者(分别为具有3年前列腺疾病诊断经验的研究生及5年前列腺影像诊断经验的主治医师)在未知患者TPSA、FPSA等一般临床资料及病理结果的情况下,于ADC图和DWI与T2 mapping融合图上病灶实体显示最大层面上根据病变大小选取适当感兴趣区(region of interest, ROI),ROI覆盖结节约2/3面积,ROI的面积约为50~150 mm2。BPH组弥漫性增生者,于前列腺显示最大层面勾画ROI,覆盖移行带约2/3面积。勾画病灶时避开病变边缘、囊变、坏死及出血区,并记录ADC值及T2值(图2、3)。两名观察者第一次勾画完成ROI后间隔1月后分别对56例PCa及40例BPH病灶进行第二次ROI勾画。

图2  男,77岁,病理证实的PCa患者。T2WI(2A)、DWI图(2B)、ADC图(2C)及T2 mapping融合DWI伪彩图(2D)显示左侧移行带病灶,DWI表现为结节状高信号,ADC呈结节状低信号。ADC图(2C)及T2 mapping融合DWI伪彩图(2D)上勾画ROI,测得病灶T2值及ADC值分别为68.90 ms、0.66×10-3 mm2/s。
图3  男,66岁,病理证实的BPH患者。T2WI(3A)、DWI图(3B)、ADC图(3C)及T2 mapping融合DWI伪彩图(3D)显示左侧移行带病灶,DWI表现为结节状等信号,ADC呈结节状稍低信号。ADC图(3C)及T2 mapping融合DWI伪彩图(3D)上勾画ROI,测得病灶T2值及ADC值分别为93.45 ms、1.17×10-3 mm2/s。PCa:前列腺癌;DWI:扩散加权成像;ADC:表观扩散系数;ROI:感兴趣区;BPH:前列腺增生。
Fig. 2  A 77-year-old male patient with pathologically confirmed PCa. T2WI (2A), DWI map (2B), ADC map (2C), and T2 mapping fusion DWI pseudo-color map (2D) show a left translocation zone lesion with nodular high signal on DWI and nodular low signal on ADC. ROI is outlined in the ADC map (2C) and T2 mapping fusion DWI pseudo-color map (2D). The T2 and ADC values of the lesion are 68.90 ms and 0.66×10-3 mm²/s, respectively.
Fig. 3  A 66-year-old male patient with pathologically confirmed BPH. T2WI (3A), DWI (3B), ADC (3C), and T2 mapping fusion DWI pseudo-color map (3D) show a left translocation zone lesion with nodular isosignal on DWI and slightly low signal on ADC. ROI is outlined in the ADC map (3C) and T2 mapping fusion DWI pseudo-color map (3D). The T2 and ADC values of the lesion are measured as 93.45 ms and 1.17×10-3 mm²/s, respectively. PCa: prostate cancer; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; ROI: region of interest; BPH: benign prostatic hyperplasia.

1.4 统计学分析

       采用组内相关系数(intra-class correlation coefficient, ICC)比较两名观察者测量各参数值的一致性。采用Shapior-Wilk检验数据的正态性,符合正态分布的数据表示为均值±标准差格式,不符合正态分布的数据表示为中位数(25分位数,75分位数)格式。采用独立样本t检验或Mann-Whitney U检验评估两组病例患者的基线资料,并将区分两组病例差异有统计学意义的基线资料与定量参数联合进行后续分析。采用二元logistic回归构建差异有统计学意义的参数及其与基线资料的联合诊断模型。采用受试者工作特征(receiver operating characteristic curve, ROC)曲线评估差异有统计学意义数据单独或联合模型对两组病变的鉴别效能,并记录各参数值区分两组病例的ROC曲线下面积(area under the curve, AUC)、敏感度、特异度及阈值。采用DeLong检验比较各AUC差异。采用方差因子膨胀分析检验评估ADC值与T2值是否存在共线性。采用Spearman相关系数分析ADC值与T2值相关性。P<0.05为差异具有统计学意义。

2 结果

2.1 基线资料分析

       入组PCa病例56例,年龄54~81(70±7)岁,BPH病例40例,年龄56~84(66±8)岁。PCa组的年龄及TPSA均大于BPH组,差异具有统计学意义(P=0.017、0.001),其余基线资料差异无统计学意义(P>0.05),详见表2

表2  两组病例基线资料分析
Tab. 2  Baseline data of the two groups of cases

2.2 两名观察者组间及组内参数值一致性检验

       PCa及BPH组的ADC值及T2值均不符合正态分布。两名观察者测得ADC值及T2值一致性好(ICC>0.75),结果详见表3表4

表3  测量者间测得两组ADC值及T2值的一致性检验
Tab. 3  Inter-reader consistency test of ADC and T2 values measurement
表4  测量者内测得ADC值及T2值组内一致性检验
Tab. 4  Intra-reader consistency test of ADC and T2 values measured by the two observers

2.3 两组DWI及T2 mapping定量参数结果对比

       PCa组ADC值及T2值均低于BPH组,差异具有统计学意义(P<0.01)(表5)。

表5  两组病灶ADC值与T2值的比较
Tab. 5  Comparison of ADC values and T2 values of the lesions in the two groups

2.4 两组各模型诊断效能评估

       ADC值、T2值独立模型,ADC-T2联合模型,以及ADC-T2-年龄-TPSA联合模型鉴别两组的AUC值分别为0.843、0.830、0.896及0.927(表6图4)。ADC值与T2值、T2值与ADC-T2联合模型的AUC差异无统计学意义(Z=0.004、1.772,P=0.822、0.076);ADC值与ADC-T2联合,ADC值、T2值、ADC-T2联合模型与ADC-T2-年龄-TPSA联合模型的AUC值差异具有统计学意义(Z=2.020、2.801、2.544、2.104,P=0.043、0.005、0.011、0.035)。

图4  单参数及联合模型鉴别两组病例受试者工作特征曲线图。ADC:表观扩散系数;TPSA:总前列腺特异性抗原。
Fig. 4  Receiver operating characteristic curves of single parameter and combined model to identify the two groups of cases. ADC: apparent diffusion coefficient; TPSA: total prostate specific antigen.
表6  各扫描参数鉴别两组效能比较
Tab. 6  Comparison of the efficacy of the two groups of cases identified by each scanning parameter

2.5 ADC值与T2值相关性分析

       方差膨胀因子分析检验示ADC值及T2值的方差膨胀系数(variance inflation factor, VIF)值均<10,表明两者不存在共线性。ADC值与T2值呈正相关(r=0.331,P<0.01),见图5

图5  表观扩散系数(ADC)值与T2值相关性图。
Fig. 5  Correlation plot of T2 values and apparent diffusion coefficient (ADC) values.

3 讨论

       本研究通过定量MRI评估DWI联合T2 mapping序列在鉴别PCa与BPH方面的价值,并首次联合年龄及TPSA等一般临床资料构建联合模型探索其应用价值。研究结果表明DWI序列及T2 mapping序列可有效鉴别PCa与BPH,两序列联合临床指标后诊断效能显著提升,具有很好的临床应用前景。

3.1 DWI序列评估PCa及BPH的价值

       通过计算DWI序列ADC值可反映细胞内外水分子的弥散程度[20]。本研究中,PCa组ADC值低于BPH组,分析是由于PCa组的前列腺腺体及上皮细胞为肿瘤细胞所取代,肿瘤细胞数量增多及细胞核增大、核浆比失调致细胞内外间隙减小,与朱光斌等[21]、吴慧等[22]的研究结果相似。

3.2 T2 mapping序列评估PCa及BPH的价值

       T2 mapping通过采集一系列T2加权自旋回波MRI图像生成信号衰减曲线来计算组织内体素水平的T2弛豫时间[23]。近年来,T2 mapping已用于心脏、骨关节、子宫及直肠等部位疾病的研究[24, 25, 26, 27],在前列腺方面的应用也越来越广泛[28, 29]。本研究中,PCa组的T2值低于BPH组。推测其原因:在PCa患者中,肿瘤细胞增殖加快,细胞密度增大致细胞间水分子含量减少;此外,由于恶性上皮细胞的增殖,腺体结构紊乱、破坏致腺腔减小,最终使前列腺导管及腺泡内水含量相对减少[19],以上两方面原因共同导致PCa组T2弛豫时间缩短。本研究结果与梁结宜等[18]的研究结果相似,但本研究样本量更大,进一步验证了该序列对于鉴别两组疾病的价值。此外,HEPP等[30]发现DWI及T2 mapping序列对于鉴别PCa与慢性前列腺炎具有一定的价值,但目前鲜有文献联合两序列探究其鉴别PCa与BPH的价值。

3.3 联合模型评估PCa及BPH的价值

       本研究发现ADC-T2联合模型在鉴别两种疾病时效能提升,且显著高于单独ADC值的效能。由于T2值反映组织细胞间自由水的含量,ADC值反映组织细胞间水分子的弥散速率,两者相互补充、相辅相成,这也可能是两序列联合获得信息增益的原因。同时,两序列联合后对于鉴别PCa及BPH的特异度有所提升,但敏感度降低,这提示DWI联合T2 mapping序列准确性提高的同时可能有一部分病例存在漏诊。

       此外,本研究将区分两组病例有差异的临床指标(年龄、TPSA)与定量参数进行联合,构建了ADC-T2-年龄-TPSA联合模型,发现该模型区分PCa及BPH的AUC值达到0.927,并实现AUC值进一步提升的同时敏感度和特异度增加的双重获益。本研究还发现ADC值与T2值呈正相关。原因可能为:随着肿瘤恶性程度的升高,肿瘤细胞增殖速度加快,肿瘤细胞排列更紧密,肿瘤细胞间自由水的含量减少,T2值减少;同时肿瘤细胞间水分子弥散受限致ADC值减小,符合理论预期。

3.4 局限性及展望

       (1)本研究样本数据少,后续拟收集更多样本量后进一步细化纳排标准,并完善研究两组疾病的临床模型和综合模型;(2)勾画ROI时未勾画肿瘤全域,不能准确评估肿瘤的异质性;(3)本研究联合模型未与其他功能序列联合模型进行效能比较,后续有待进一步进行对比研究;(4)本研究所扫描图像的层厚均大于前列腺影像报告和数据系统指南的推荐层厚3 mm,可能存在部分病变细节显示欠佳及部分容积效应的影响,使研究结果存在一定偏倚,后续有待进一步优化序列扫描层厚。

4 结论

       综上所述,DWI及T2 mapping序列在无创区分PCa与BPH中具有很好的价值,并且两序列联合临床指标可进一步提升诊断效能,可在临床无创诊断PCa及BPH时提供很好的指导。

[1]
张玉琴, 黄松雄, 陈钦, 等. 磁敏感加权成像对前列腺癌和前列腺增生的鉴别价值分析[J]. 福建医药杂志, 2021, 43(1): 33-36. DOI: 10.3969/j.issn.1002-2600.2021.01.012.
ZHANG Y Q, HUANG S X, CHEN Q, et al. Differential value of susceptibility weighted imaging in prostate cancer and prostatic hyperplasia[J]. Fujian Med J, 2021, 43(1): 33-36. DOI: 10.3969/j.issn.1002-2600.2021.01.012.
[2]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA a Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[3]
JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90. DOI: 10.3322/caac.20107.
[4]
RAWLA P. Epidemiology of prostate cancer[J]. World J Oncol, 2019, 10(2): 63-89. DOI: 10.14740/wjon1191.
[5]
INGOLE S M, MEHTA R U, KAZI Z N, et al. Multiparametric magnetic resonance imaging in evaluation of clinically significant prostate cancer[J]. Indian J Radiol Imaging, 2021, 31(1): 65-77. DOI: 10.1055/s-0041-1730093.
[6]
何燕妮, 刘红梅. 前列腺常见疾病经直肠超声造影增强模式[J]. 中国医学影像技术, 2019, 35(6): 954-956. DOI: 10.13929/j.1003-3289.201807175.
HE Y N, LIU H M. Enhancement patterns in contrast-enhanced transrectal ultrasonography of prostate diseases[J]. Chin J Med Imag Technol, 2019, 35(6): 954-956. DOI: 10.13929/j.1003-3289.201807175.
[7]
CATALONA W J, SMITH D S, RATLIFF T L, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer[J]. N Engl J Med, 1991, 324(17): 1156-1161. DOI: 10.1056/NEJM199104253241702.
[8]
年新文, 任善成, 许传亮, 等. 前列腺癌早期诊断标志物的研究进展[J]. 临床泌尿外科杂志, 2016, 31(9): 852-856. DOI: 10.13201/j.issn.1001-1420.2016.09.021.
NIAN X W, REN S C, XU C L, et al. Research progress of markers in early diagnosis of prostate cancer[J]. J Clin Urol, 2016, 31(9): 852-856. DOI: 10.13201/j.issn.1001-1420.2016.09.021.
[9]
LOJANAPIWAT B, ANUTRAKULCHAI W, CHONGRUKSUT W, et al. Correlation and diagnostic performance of the prostate-specific antigen level with the diagnosis, aggressiveness, and bone metastasis of prostate cancer in clinical practice[J]. Prostate Int, 2014, 2(3): 133-139. DOI: 10.12954/PI.14054.
[10]
LI B, CAI W C, LV D J, et al. Comparison of MRS and DWI in the diagnosis of prostate cancer based on sextant analysis[J]. J Magn Reson Imaging, 2013, 37(1): 194-200. DOI: 10.1002/jmri.23809.
[11]
朱旭, 马翼, 潘昌杰. T2 mapping与T2*mapping定量值在前列腺病变中的诊断价值[J]. 大连医科大学学报, 2021, 43(5): 438-441. DOI: 10.11724/jdmu.2021.05.11.
ZHU X, MA Y, PAN C J. Diagnostic value of quantitative T2 mapping and T2*mapping in prostatic lesions[J]. J Dalian Med Univ, 2021, 43(5): 438-441. DOI: 10.11724/jdmu.2021.05.11.
[12]
饶向红. 3. 0T MRI在前列腺癌与前列腺增生诊断中的应用价值评价[J]. 影像研究与医学应用, 2021, 5(16): 177-178. DOI: 10.3969/j.issn.2096-3807.2021.16.083.
RAO X H. Evaluation of the application value of 3.0T MRI in the diagnosis of prostate cancer and benign prostatic hyperplasia. Imaging Research and Medical Applications[J], 2021, 5(16):177-178. DOI: 10.3969/j.issn.2096-3807.2021.16.083.
[13]
曾桔, 印隆林. 超高b值扩散加权成像及体素内不相干运动成像用于前列腺癌诊断[J]. 中国医学影像技术, 2020, 36(8): 1220-1224. DOI: 10.13929/j.issn.1003-3289.2020.08.024.
ZENG J, YIN L L. Ultra-high b value diffusion-weighted imaging and intravoxel incoherent motion imaging in diagnosis of prostatic neoplasms[J]. Chin J Med Imag Technol, 2020, 36(8): 1220-1224. DOI: 10.13929/j.issn.1003-3289.2020.08.024.
[14]
詹华刚, 李玉梅. MRI动态增强扫描联合DWI对良性前列腺增生与前列腺癌的鉴别分析[J]. 河南医学研究, 2021, 30(24): 4543-4546. DOI: 10.3969/j.issn.1004-437X.2021.24.040.
ZHAN H G, LI Y M. Differential analysis of dynamic contrast-enhanced MRI combined with DWI in benign prostatic hyperplasia and prostate cancer[J]. Henan Med Res, 2021, 30(24): 4543-4546. DOI: 10.3969/j.issn.1004-437X.2021.24.040.
[15]
ZHANG W, ZHANG W T, LI X, et al. Predicting tumor perineural invasion status in high-grade prostate cancer based on a clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images[J/OL]. Cancers, 2022, 15(1): 86 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov//3661208. DOI: 10.3390/cancers15010086.
[16]
LI S J, ZHANG Z X, LIU J, et al. The value of T2 mapping for evaluating the pathological type, grade and depth of myometrial invasion in endometrial carcinoma[J]. Zhonghua Zhong Liu Za Zhi, 2023, 45(8): 673-680. DOI: 10.3760/cma.j.cn112152-20220124-00055.
[17]
朱柳红, 刘豪, 周建军. 磁共振T2 mapping技术在体部恶性肿瘤中的研究进展[J]. 磁共振成像, 2020, 11(5): 398-400. DOI: 10.12015/issn.1674-8034.2020.05.019.
ZHU L H, LIU H, ZHOU J J. Research progress of magnetic resonance T2-mapping in body malignant tumors[J]. Chin J Magn Reson Imag, 2020, 11(5): 398-400. DOI: 10.12015/issn.1674-8034.2020.05.019.
[18]
梁结宜, 王宇泽, 雷强, 等. T2值对中央腺体前列腺癌与前列腺增生诊断价值的初步探讨[J]. 实用放射学杂志, 2019, 35(9): 1464-1467. DOI: 10.3969/j.issn.1002-1671.2019.09.021.
LIANG J Y, WANG Y Z, LEI Q, et al. Preliminary study of T2 value in the diagnosis of central gland prostate cancer and benign prostatic hyperplasia[J]. J Pract Radiol, 2019, 35(9): 1464-1467. DOI: 10.3969/j.issn.1002-1671.2019.09.021.
[19]
胡文君, 刘爱连, 陈丽华, 等. 酰胺质子转移成像联合T2-mapping鉴别前列腺癌与前列腺增生的价值[J]. 放射学实践, 2022, 37(11): 1416-1421. DOI: 10.13609/j.cnki.1000-0313.2022.11.015.
HU W J, LIU A L, CHEN L H, et al. The value of amide proton transfer imaging combined with T2-mapping for differentiating prostate cancer from benign prostatic hyperplasia[J]. Radiol Pract, 2022, 37(11): 1416-1421. DOI: 10.13609/j.cnki.1000-0313.2022.11.015.
[20]
MAZZONI L N, LUCARINI S, CHITI S, et al. Diffusion-weighted signal models in healthy and cancerous peripheral prostate tissues: comparison of outcomes obtained at different b-values[J]. J Magn Reson Imaging, 2014, 39(3): 512-518. DOI: 10.1002/jmri.24184.
[21]
朱光斌, 罗锦文, 邓义, 等. 磁共振动态增强定量参数和ADC值对前列腺癌的临床诊断价值[J]. 中国医学计算机成像杂志, 2021, 27(4): 308-312. DOI: 10.19627/j.cnki.cn31-1700/th.2021.04.006.
ZHU G B, LUO J W, DENG Y, et al. Diagnostic value of quantitative analysis of ADC value and DCE-MRI parameters for prostate cancer[J]. Chin Comput Med Imag, 2021, 27(4): 308-312. DOI: 10.19627/j.cnki.cn31-1700/th.2021.04.006.
[22]
吴慧, 吴静, 蔚纳, 等. 单指数、双指数、拉伸指数DWI模型鉴别前列腺癌与基质型前列腺增生的价值研究[J]. 磁共振成像, 2020, 11(7): 546-551. DOI: 10.12015/issn.1674-8034.2020.07.014.
WU H, WU J, YU N, et al. The value of mono-exponential, bi-exponential and stretched exponential DWI models in identifying prostate cancer and stromal prostate hyperplasia[J]. Chin J Magn Reson Imag, 2020, 11(7): 546-551. DOI: 10.12015/issn.1674-8034.2020.07.014.
[23]
SABOURI S, CHANG S D, SAVDIE R, et al. Luminal water imaging: a new MR imaging T2 mapping technique for prostate cancer diagnosis[J]. Radiology, 2017, 284(2): 451-459. DOI: 10.1148/radiol.2017161687.
[24]
牟俊, 王頔, 刘新峰, 等. 心脏磁共振T2-mapping技术在急性心肌炎中的应用价值[J]. 放射学实践, 2020, 35(11): 1424-1428. DOI: 10.13609/j.cnki.1000-0313.2020.11.011.
MOU J, WANG D, LIU X F, et al. The application value of T2-mapping sequence of cardiovascular magnetic resonance imaging to monitor myocardial inflammation in acute myocarditis[J]. Radiol Pract, 2020, 35(11): 1424-1428. DOI: 10.13609/j.cnki.1000-0313.2020.11.011.
[25]
REGATTE R R, AKELLA S V, LONNER J H, et al. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2[J]. J Magn Reson Imaging, 2006, 23(4): 547-553. DOI: 10.1002/jmri.20536.
[26]
马长军, 刘爱连, 田士峰, 等. 酰胺质子转移加权成像联合T2mapping序列对子宫内膜癌术前风险评估的价值初探[J]. 磁共振成像, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
MA C J, LIU A L, TIAN S F, et al. Preliminary study of APT combined with T2 mapping sequence in preoperative risk assessment of endometrial carcinoma[J]. Chin J Magn Reson Imag, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
[27]
董宛, 陈安良, 刘爱连, 等. 初探酰胺质子转移加权和T2 mapping对直肠癌化疗和未化疗的定量对比研究[J]. 磁共振成像, 2021, 12(7): 24-28. DOI: 10.12015/issn.1674-8034.2021.07.005.
DONG W, CHEN A L, LIU A L, et al. Comparation of amide proton transfer-weighted and T2 mapping in quantifying rectal cancer with and without chemotherapy: a preliminary study[J]. Chin J Magn Reson Imag, 2021, 12(7): 24-28. DOI: 10.12015/issn.1674-8034.2021.07.005.
[28]
KLINGEBIEL M, SCHIMMÖLLER L, WEILAND E, et al. Value of T2 mapping MRI for prostate cancer detection and classification[J]. J Magn Reson Imaging, 2022, 56(2): 413-422. DOI: 10.1002/jmri.28061.
[29]
SØRLAND K I, SUNOQROT M R S, SANDSMARK E, et al. Pseudo-T2 mapping for normalization of T2-weighted prostate MRI[J]. MAGMA, 2022, 35(4): 573-585. DOI: 10.1007/s10334-022-01003-9.
[30]
HEPP T, KALMBACH L, KOLB M, et al. T2 mapping for the characterization of prostate lesions[J]. World J Urol, 2022, 40(6): 1455-1461. DOI: 10.1007/s00345-022-03991-8.

上一篇 基于双参数MRI的深度学习-临床混合模型对临床显著性前列腺癌诊断价值的研究
下一篇 基于半月板MRI的3D卷积神经网络模型预测膝骨关节炎发生的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2