分享:
分享到微信朋友圈
X
基础研究
磁共振髓鞘探针Gd-DTDAS在多发性硬化大鼠髓鞘损伤模型中的实验研究
刘彩云 邵翠杰 翁娜 李国栋 黄丹琪 刘珈 宾莉 王旭

Cite this article as: LIU C Y, SHAO C J, WENG N, et al. Experimental study of magnetic resonance targeted myelin probe Gd-DTDAS in multiple sclerotic rat myelin injury model[J]. Chin J Magn Reson Imaging, 2024, 15(2): 122-128.本文引用格式刘彩云, 邵翠杰, 翁娜, 等. 磁共振髓鞘探针Gd-DTDAS在多发性硬化大鼠髓鞘损伤模型中的实验研究[J]. 磁共振成像, 2024, 15(2): 122-128. DOI:10.12015/issn.1674-8034.2024.02.018.


[摘要] 目的 探讨MRI对比剂Gd-DTDAS在多发性硬化(multiple sclerosis, MS)大鼠髓鞘损伤模型中的应用价值。材料与方法 细胞实验中,将少突胶质细胞前体细胞(oligodendrocyte precursor cells, OLN-93)随机分为对照组2(n=3)和溶血磷脂酰胆碱(lysophosphatidylcholine, LPC)组(n=3),LPC组细胞置于无菌共聚焦培养皿中与1 mL 800 μM LPC溶液共孵育30 min。通过噻唑蓝比色法(methyl thiazolyl tetrazolium, MTT)评价细胞毒性,计算OLN-93与Gd-DTDAS共孵育24 h后的吸光度和存活率;细胞摄取实验中,对照组2和LPC组对比,定量两组细胞对Gd-DTDAS的摄取值以及相应荧光强度的变化。动物实验中,将6~8周龄SD大鼠随机分为对照组(n=12)与实验组(n=18),实验组大鼠左侧胼胝体注射1% LPC溶液(1% LPC溶于PBS)。造模后(1、3、7 d)进行行为学观察,并在注射后7天进行T1WI及T2WI序列扫描。根据MRI异常信号部位进行大鼠脑组织Gd-DTDAS染色(n=6)以及浸泡(n=6),评估Gd-DTDAS与髓鞘部位的结合情况,其中,染色实验分组命名为对照组3与实验组3,浸泡实验分组命名为对照组4与实验组4;通过尾静脉注射Gd-DTDAS,MR评估实验组(n=6)注射Gd-DTDAS前后大脑髓鞘变化。结果 细胞毒性实验中,当Gd-DTDAS浓度增加到400 μM时,OLN-93细胞的存活率约为95%,细胞存活率差异无统计学意义(t=4.20,P>0.05)。细胞摄取实验中,两组细胞均能摄取Gd-DTDAS,LPC组摄取量显著低于对照组2,差异具有统计学意义(t=31.75,P<0.01)。动物体外实验中,与对照组3比较,Gd-DTDAS染色的实验组3脑组织切片荧光强度显著下降,差异有统计学意义(U=9,P<0.01);Gd-DTDAS浸泡中,对照组4(n=6)与实验组4(n=6)脑组织切片浸泡后MRI分辨率显著升高,差异有统计学意义(对照组4,t=8.76,P<0.01)(实验组4,t=2.89,P<0.01)。体内实验中,与尾静脉注射前比较,注射后胼胝体区域MRI T1maps弛豫性显著降低(t=14.46,P<0.01)。结论 髓鞘探针Gd-DTDAS能够更好地结合髓磷脂丰富的区域,髓鞘靶向MRI显像更佳,能特异性显示多发性硬化髓鞘损伤部位。
[Abstract] Objective To investigate the application value of MRI contrast agent Gd-DTDAS in multiple sclerosis (MS) rat myelin injury model.Materials and Methods In cell experiments, oligodendrocyte precursor cells (OLN-93) were randomly divided into control group 2 (n=3) and lysophosphatidylcholine (LPC) group (n=3), and the cells of LPC group were incubated with 1 mL of 800 μM LPC in a sterile confocal dish for 30 min. Cytotoxicity was evaluated by methyl thiazolyl tetrazolium (MTT), and the absorbance and survival rate of OLN-93 after incubation with Gd-DTDAS for 24 h were calculated. In the uptake experiment, the control group 2 and the LPC group were compared to quantify the uptake value of Gd-DTDAS and the corresponding fluorescence intensity of the two groups. In animal experiments, 6-8 week-old SD rats were randomly divided into control group (n=12) and experimental group (n=18), and the left corpus callosum of rats in the experimental group was injected with 1% LPC solution (1% LPC dissolved in PBS). After molding, behavioral observation was performed (1, 3, 7 d), and T1WI and T2WI sequence scanning were performed 7 d after injecting. Gd-DTDAS staining (n=6) and soaking (n=6) of rat brain tissue were performed according to the MRI abnormal signal site to evaluate the binding of Gd-DTDAS to the myelin site. Among them, the staining experiment was named as control group 3 and experimental group 3, while the soaking experiment group was named as control group 4 and experimental group 4. Gd-DTDAS was injected by tail vein, MRI assessed cerebral myelin sheath changes before and after Gd-DTDAS injection in the experiment group (n=6).Results In the cytotoxicity experiment, when the concentration of Gd-DTDAS increased to 400 μM, the survival rate of OLN-93 cells was about 95%, and there was no significant difference in cell survival between concentrations (t=4.20, P>0.05). In the cell uptake experiment, both groups of cells could uptake Gd-DTDAS, and the uptake of LPC group was significantly lower than that of the control group 2, and the difference was statistically significant (t=31.75, P<0.01). In vitro experiments, compared with the control group 3, the fluorescence intensity of brain tissue sections in the experiment 3 group stained with Gd-DTDAS decreased significantly, and the difference was statistically significant (U=9, P<0.01). After immersion of brain tissue slices in Gd-DTDAS, the MRI resolution significantly increased in both the control group 4 (n=3) and the experiment group 4 (n=6), with statistically significant differences (control group 4, t =8.76, P<0.01; experiment group 4, t =2.89, P<0.01). In vivo experiments, MRI T1maps relaxation in the medullary region was significantly reduced after injection compared with before tail vein injection (t =14.46, P<0.01).Conclusions The myelin probe Gd-DTDAS can better bind to myelin-rich regions, and the myelin sheath can be better targeted for MRI, and can specifically show the damage site of myelin sheath in multiple sclerosis.
[关键词] 自身免疫性疾病;多发性硬化;髓鞘探针;分子成像;磁共振成像
[Keywords] autoimmune diseases;multiple sclerosis;myelin probe;molecular imaging;magnetic resonance imaging

刘彩云 1   邵翠杰 2   翁娜 1   李国栋 1   黄丹琪 1   刘珈 1   宾莉 1   王旭 1*  

1 滨州医学院附属医院核医学科,滨州 256600

2 滨州医学院附属医院医学研究中心,滨州 256600

通信作者:王旭,E-mail:wangxu1978@163.com

作者贡献声明::王旭设计本研究的方案,对稿件重要内容进行了修改;刘彩云和邵翠杰起草和撰写稿件,获取、分析本研究的数据;翁娜、李国栋、宾莉、黄丹琪、刘珈获取和解释本研究数据,对稿件重要内容进行了修改。王旭获得了国家自然科学基金的资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 81771828
收稿日期:2023-06-08
接受日期:2024-01-20
中图分类号:R445.2  R-332 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.02.018
本文引用格式刘彩云, 邵翠杰, 翁娜, 等. 磁共振髓鞘探针Gd-DTDAS在多发性硬化大鼠髓鞘损伤模型中的实验研究[J]. 磁共振成像, 2024, 15(2): 122-128. DOI:10.12015/issn.1674-8034.2024.02.018.

0 引言

       多发性硬化(multiple sclerosis, MS)是一种由免疫系统紊乱引起的中枢神经系统脱髓鞘疾病[1, 2]。全球MS患病率为(5~300)/10万人,我国每年MS患病率约0.235/10万人,其中成人为0.288/10万人[3],MS可导致身体残疾、认知障碍和生活质量下降[4, 5],并且近年来患病率和发病率呈升高趋势。MS的主要病理特征是多发性脱髓鞘,从而导致轴突损伤,引起神经功能障碍[6, 7, 8]。髓鞘脱失的检出效能直接影响多发性硬化的临床诊断、治疗和预后。目前,临床诊断MS的主要方法是MRI,评估MS脱髓鞘程度大多采用扩散张量成像(difussion tensor imaging, DTI)技术[9],但其易受炎症、水肿和轴突缺失等影响[10, 11],不能准确区分脱髓鞘病变和其他炎性病变。因此,开发直观和靶向显示脱髓鞘疾病的探针,势在必行。

       为了解决这一问题,本团队在以往的研究[12]中设计并制备了一种髓磷脂特异性磁共振对比剂Gd-DTDAS。Gd-DTDAS是以钆-二乙烯三胺五乙酸(Gadopentetate Dimeglumine, Gd-DTPA)为载体合成的,通过横酰胺基的方法连接N-甲基-4, 4′-二氨基二苯乙烯(N-methyl-4, 4'-diaminostilbene, MeDAS)。Dmedas在碱催化下与秀丙炔发生取代反应,得到炔基修饰的Dmedas,之后在碘化亚铜的催化下与对位取代的苯磺酰叠氮、单Boc保护的丙二胺发生三组分偶联生成带磺酰眯基的中间体,该中间体在三氟乙酸的条件下脱除Boc保护基后,与单羧基暴露的DTPA发生酰化反应后,在三氟乙酸的条件下脱除叔丁基保护基暴露出四个羧基,其中,三个羧基与三价离子发生螯合,经分离纯化即可[12, 13]。该新型荧光/磁共振双模态髓鞘成像探针,能够直观、靶向显示髓鞘脱失,特异性结合髓鞘,其中二苯乙烯类衍生物MeDAS具有较高的髓鞘结合力[14],二苯乙烯衍生物具有体外和原位特性,具有用于髓鞘白质成像的潜在用途。与其他髓鞘成像探针相比,其显示出更好的溶解度和亲和力[15]。Gd-DTPA通过改变组织的弛豫时间具有更好的对比效果。通过MeDAS和Gd-DTPA缀合,来开发MRI对比剂。本团队的前期研究[12]合成的新型髓鞘探针—Gd-DTDAS在大鼠大脑中动脉缺血闭塞模型(middle cerebral artery occlusion, MCAO)中具有一定的应用价值,但是前期研究中并未对髓鞘的细胞层面进行深度研究,本研究基于以往合成的Gd-DTDAS髓鞘探针,通过构建多发性硬化大鼠模型,进一步探讨Gd-DTDAS在细胞层面以及不同髓鞘损伤模型中的应用价值,本研究能够在检测髓鞘损伤方面提供一种新的思路,通过靶向髓鞘的分子探针达到直接检测髓鞘效果,对髓鞘的状态检测更加准确,能够获得良好的体内成像功能,为髓鞘损伤疾病的准确诊断和后续治疗提供了可靠的依据。

1 材料与方法

1.1 材料

1.1.1 实验细胞

       本研究采用的少突胶质细胞前体细胞(oligodendrocyte precursor cells, OLN-93),购自上海安为应用生物技术有限公司,系从原代大鼠脑胶质细胞培养中自发转化的细胞诱导分化产生。本研究所有的细胞实验均在滨州医学院烟台校区医药研究中心完成。本研究时间为2022年10月至2023年11月。

1.1.2 实验动物

       实验动物为6~8周龄SPF级SD雄性大鼠(235~250 g),由济南朋悦实验动物中心提供。动物合格证书号SYXK(鲁)20180029,所有动物均安置在滨州医学院实验动物中心洁净级动物室,昼夜循环12 h,室温(23±2)℃,湿度(50±5)%。动物适应环境3天后开始实验。所有实验步骤均按照美国国家研究委员会《实验动物护理和使用指南》进行,并经滨州医学院伦理委员会批准,批准文号:2022-204号。本研究所有的动物实验均在滨州医学院烟台校区医药研究中心完成。

1.1.3 实验设备

       采用滨州医学院医药研究中心的实验设备。酶标仪(Tecan公司,bzmcty,瑞士)、冰冻切片机(徕卡公司,CM1950,德国)、激光共聚焦显微镜(卡尔蔡司公司,Zeiss LSM880,德国)、7.0 T小动物MRI(Bruker BioSpec USR 70/20,Paravision 6.0.1,德国)、脑立体定位仪(瑞沃德公司,D01950,中国)。

1.2 方法

1.2.1 细胞培养

       利用DMEM培养基培养OLN-93细胞,并置于5% CO2、37 ℃的培养箱中完成,传代培养,选择对数生长期细胞进行实验。

1.2.2 细胞毒性实验

       OLN-93细胞常规培养,细胞生长至80%后,进行胰蛋白酶消化,重悬细胞,以每孔4×104细胞的密度接种到96孔板中,放入培养箱中静置24 h。细胞贴壁后,加入不同浓度Gd-DTDAS溶液(25、50、100、200、400 μM),置入培养箱中共孵育24 h,24 h后,弃去初始96孔板内的所有液体。每孔添加10 µL噻唑蓝(methyl thiazolyl tetrazolium, MTT)溶液(30 mg/mL),培养箱中继续培养4 h。弃去培养基和MTT溶液,并在每孔中加入100 µL二甲基亚砜溶液。37℃避光反应,至振荡器上混匀10 min,使用酶标仪进行吸光度检测,570 nm处读取各孔吸光度(OD值),计算细胞存活率,见公式(1)。在该实验中,分为实验组1,对照组1,空白对照组。实验组1加入不同浓度Gd-DTDAS溶液(25、50、100、200、400 μM),对照组1加入无血清培养基,空白对照组不做任何处理。

1.2.3 细胞摄取实验

       将OLN-93细胞以1×105/mL的密度接种于共聚焦培养皿中,并置入培养箱中静置过夜。待细胞贴壁后,加入1 mL溶血磷脂酰胆碱(lysophosphatidylcholine, LPC)溶液继续培养,30 min后添加1 mL Gd-DTDAS溶液(400 μM)与细胞共孵育2 h,共聚焦培养皿中加入0.5 mL 4%多聚甲醛固定15 min,弃去培养基,依次使用PBS缓冲液和超纯水清洗三遍。共聚焦显微镜观察OLN-93细胞对Gd-DTDAS的摄取情况,对照组2和LPC组随机分组,每组各三个共聚焦小皿,其中,每皿各取六个感兴趣区,各感兴趣区平均分散保证均匀性,Image J软件对荧光强度进行分析处理。该实验中,设有对照组2和LPC组。LPC组为加入1mL LPC溶液的OLN-93细胞,对照组2为相同条件下未添加LPC溶液的OLN-93细胞。

1.2.4 多发性硬化大鼠模型

       使用2%异氟烷麻醉大鼠,将其固定在脑立体定位仪上。大鼠头部备皮,75%乙醇消毒后暴露前后囟门,将大鼠头部调平,根据Watson的脑立体定位图谱[16],将X、Y轴置于前囟左侧且前方1 mm处并标记,使用动物颅骨钻在标记处钻孔,打通颅骨,缓慢下降Z轴到距离颅骨表面约4 mm的位置。将提前备好的1% LPC溶液(1% LPC溶于PBS)缓慢注射到右侧胼胝体内,注射完毕后静置5 min,防止回流。缝合头皮,进行消毒,术后将大鼠放置于加热垫直至清醒。

1.2.5 动物模型成功判断标准

       本研究通过两种方法验证动物模型是否成功,首先是通过神经缺损评分Longa(神经系统残疾状态量表)法评定神经功能缺损程度,0分表现为无神经损伤症状;1分表现为提尾不能伸展病灶对侧前爪;2分表现为爬行时向健侧转圈;3分表现为爬行时向对侧倾倒;4分表现为意识障碍,不能自发爬行。将评分≥1分动物纳入实验[17]。分值越高,说明动物行为障碍越严重。其次通过MRI T2WI结构像成像观察髓鞘结构的改变,在注射LPC 7天后进行MRI,成像后处死大鼠进行组织学评估[18]

1.2.6 MRI扫描参数

       大鼠经2%异氟烷气体麻醉后,采用四通道头部线圈进行头部定位扫描。T1WI(RARE序列)扫描参数:TR 1 500 ms,TE 8 ms,翻转角90°,FOV 32 mm×32 mm,矩阵256×256,层厚0.8 mm,层数32;T1maps扫描参数:TR 100~5 500 ms,TE 8 ms,翻转角90°,FOV 32 mm×32 mm,矩阵256×256,层厚0.8 mm,层数32;T2WI(Turbo RARE序列)扫描参数:TR 3 500 ms,TE 33 ms,翻转角90°,FOV 32 mm×32 mm,矩阵256×256,层厚0.8 mm,层数32。

1.2.7 取材及标本处理

       大鼠经2%异氟烷麻醉后,灌注固定,分离脑组织,制成2 mm厚的脑切片,相继在4%多聚甲醛溶液中固定24 h,Gd-DTDAS溶液中浸泡24 h,为了减少组织界面的磁化率伪影,室温下使用PBS缓冲液冲洗脑切片,将清洗后的切片嵌入琼脂糖包埋后进行T1WI扫描。浸泡实验中,随机分组,正常大鼠脑切片设为对照组4,LPC大鼠模型的脑切片设为实验组4。

1.2.8 病理染色

       将10 μM厚的大鼠脑组织冰冻切片置入Gd-DTDAS溶液(400 μM)中孵育30 min,PBS缓冲液中清洗脑切片以去除多余的Gd-DTDAS溶液。贴片后共聚焦激光扫描显微镜进行拍摄,每组共九个感兴趣区,各感兴趣区均匀分布,利用Image J软件对荧光强度进行分析处理。染色实验中,随机分组,正常大鼠的冰冻切片设为对照组3,模型鼠的冰冻切片设为实验组3。

1.3 统计学分析

       根据研究目的和研究类型,选择了经典的两个独立样本均值比较和配对t检验的样本量估算公式,设定检验水准为α=0.05,检验功效为0.9。所有数据使用均数±标准差表示,使用统计软件Graph Pad Prism 8(Graph Pad Software公司,美国)进行统计分析。数据经过正态性检验和方差齐性检验,符合正态分布采用t检验,不符合正态性数据则采用Mann Whitney U检验。其中,细胞毒性实验,采用配对t检验;细胞摄取实验,采用两样本t检验分析;Gd-DTDAS染色,采用Mann Whitney U分析;体外Gd-DTDAS髓鞘显像和尾静脉注射Gd-DTDAS,采用配对t检验;P<0.05表示差异具有统计学意义。

2 结果

2.1 样本量估算

       基于公式(2)计算样本量至少3只,检验水准为0.05,检验功效为0.9,本实验采用实验组18只大鼠,其中染色实验,浸泡实验,尾静脉注射实验各6只,对照组12只大鼠,其中染色实验,浸泡实验各6只。

2.2 Gd-DTDAS对OLN-93生长活性没有影响

       在无激光照射的情况下,Gd-DTDAS与OLN-93细胞共孵育后并未影响细胞生长,当Gd-DTDAS溶液浓度递增到400 μM(t=4.20,P>0.05)时,OLN-93细胞的存活率仍为95%左右,各个浓度细胞存活率差异无统计学意义。证明Gd-DTDAS对其存活无抑制作用,Gd-DTDAS具有较好的生物相容性(图1表1)。

图1  Gd-DTDAS作用于OLN-93细胞24 h后细胞存活率。
Fig. 1  Cell survival rate of OLN-93 cells treated with Gd-DTDAS after 24 h.
表1  Gd-DTDAS不同浓度细胞吸光度比较
Tab. 1  Comparison of cell absorbance at different concentrations of Gd-DTDAS

2.3 Gd-DTDAS有较强的靶向能力

       当LPC组和对照组2细胞与Gd-DTDAS共孵育后,对照组2的摄取能力较强,荧光强度达到100 a.u.;LPC组细胞形态皱缩,与对照组2相比,荧光强度约46 a.u.,明显降低(t =31.75,P<0.01)。表明Gd-DTDAS具有髓鞘结合的特异性,证明了Gd-DTDAS能够对细胞层面的髓鞘进行显像,对髓鞘有较强的靶向结合能力(图2)。

图2  Gd-DTDAS在不同形态OLN-93细胞中的摄取能力以及荧光强度对比。2A:对照组2为OLN-93细胞摄取Gd-DTDAS;2B:对照组2明场;2C:对照组2与明场融合;2D:溶血磷脂酰胆碱(LPC)组加入1 mL LPC溶液的OLN-93细胞摄取Gd-DTDAS;2E:LPC组明场;2F:LPC组与明场融合;2G:对照组2和LPC组荧光强度对比。**表示P<0.01。
Fig. 2  Comparison of uptake ability and fluorescence intensity of Gd-DTDAS in different for multiple sclerosis (MS) of OLN-93 cells. 2A: The control group 2 OLN-93 cells uptake Gd-DTDAS; 2B: Control group 2 Ming field; 2C: The control group 2 is fused with the Ming field; 2D: Uptake of Gd DTDAS by OLN-93 cells in lysophosphatidylcholine (LPC) group with 1 mL of LPC solution added; 2E: Experimental group Ming field; 2F: Integration of experimental group and Ming field; 2G: There is a significant difference in fluorescence intensity between the control group 2 and the LPC group. ** is P<0.01.

2.4 Gd-DTDAS染色特异性

       图3显示,Gd-DTDAS溶液对SD大鼠的胼胝体区域进行染色,对照组3中的Gd-DTDAS与胼胝体中的髓磷脂结合荧光强度高达120 a.u.,实验组3中的Gd-DTDAS与胼胝体损伤部位的结合显著减少,荧光强度40 a.u.,明显下降(U=9,P<0.01,图3)。证明Gd-DTDAS能够对富含髓磷脂的区域特异性结合从而突出受损的髓鞘部位。

图3  胼胝体区域的Gd-DAPAS染色图。3A:对照组3中大鼠胼胝体冰冻切片与Gd-DTDAS结合,胼胝体髓鞘结构完整,纤维排列紧密,荧光轻度较强;3B:实验组3髓鞘纤维无序稀疏,出现髓鞘空泡,荧光强度变弱;3C:对照组3和实验组3荧光强度对比。对照组3为不注射溶血磷脂酰胆碱(LPC)溶液的大鼠;实验组3为胼胝体区域注射LPC溶液后7天大鼠。**表示P<0.01。(Gd-DTDAS染色 ×40)。
Fig. 3  Gd-DAPAS staining of corpus callosum. 3A: In the control group 3, the frozen sections of the corpus callosum of rats are combined with Gd-DTDAS, and the myelin sheath structure of the corpus callosum is complete, the fibers are closely arranged, and the fluorescence is slightly stronger; 3B: The experiment group 3 shows disordered and sparse myelin fibers, with myelin vacuoles and weakened fluorescence intensity; 3C: Comparison of fluorescence intensity between the control group 3 and the experiment group 3. The control group 3 is rats with no injection of lysophosphatidylcholine (LPC) solution. The experiment group 3 is rats 7 days after injection of LPC solution into the corpus callosum region. ** is P<0.01. (Gd-DTDAS staining ×40).

2.5 体外Gd-DTDAS髓鞘显像

       为了评估MRI检测Gd-DTDAS髓鞘显像的可行性,使用Gd-DTDAS对实验组4和对照组4的脑组织进行体外浸泡实验。在Gd-DTDAS浸泡前进行7.0 T MRI的T1WI扫描,如图4显示,Gd-DTDAS溶液浸泡前,实验组4和对照组4的胼胝体区域分辨率均较差,浸泡后,在相同条件下重新进行扫描,对照组4和实验组4胼胝体区域分辨率升高,可见良好的对比度,浸泡前后胼胝体之间的差异有统计学意义(对照组4,t=8.76,P<0.01)(实验组4,t=6.21,P<0.01),实验组4损伤部位更加突出(表2)。证明Gd-DTDAS可对髓鞘进行靶向性显像(图4)。

图4  体外脑组织浸泡Gd-DTDAS。4A:对照组4未浸泡Gd-DTDAS脑组织,胼胝体髓鞘部位显示不清;4B:实验组4未浸泡Gd-DTDAS脑组织,胼胝体髓鞘损伤部位显示不清;4C:对照组4为浸泡Gd-DTDAS脑组织,胼胝体部位髓鞘显示清晰;4D:实验组4为浸泡Gd-DTDAS脑组织,胼胝体损伤髓鞘显示清晰。对照组4为不注射溶血磷脂酰胆碱(LPC)溶液的大鼠;实验组4为胼胝体区域注射LPC溶液后7天大鼠。
Fig. 4  Extracorporeal brain tissue immersion Gd-DTDAS. 4A: In the control group 4, Gd-DTDAS brain tissue is not soaked, and the myelin sheath of corpus callosum is not clearly displayed; 4B: In experiment group 4, Gd-DTDAS brain tissue is not soaked, and the location of myelin sheath injury in corpus callosum is not clear; 4C: The control group 4 is soaked in Gd-DTDAS brain tissue, and the myelin sheath of corpus callosum is clearly displayed; 4D: In experiment group 4, Gd-DTDAS brain tissue is soaked, and the injured myelin sheath of corpus callosum is clearly displayed. The control group 4 is rats with no injection of lysophosphatidylcholine (LPC) solution. The experiment group 4 is rats 7 days after injection of LPC solution into the corpus callosum region.
表2  对照组4与实验组4浸泡前后胼胝体区域分辨率比较
Tab. 2  Comparison of regional resolution between the corpus callosum regions before and after immersion in the control group 4 and experiment group 4

2.6 体内Gd-DTDAS髓鞘显像

       尾静脉注射Gd-DTDAS前后进行7.0 T小动物MRI。对实验组大鼠即模型鼠注射Gd-DTDAS前后进行MRI,注射Gd-DTDAS前,T1WI和T1maps在有髓区域(如胼胝体和纹状体)和无髓区域之间没有明显区别。注射Gd-DTDAS 5 min后再次进行扫描,T1WI显示大脑信号整体降低,但分辨率仍不理想,T1maps序列显示Gd-DTDAS与胼胝体有髓部位结合,显著缩短T1弛豫时间。而胼胝体损伤部位T1弛豫时间相对较长,损伤处与未损伤处差异有统计学意义[(168.70±0.14)s vs.(136.00±2.32)s;t=14.46,P<0.01]。这表明Gd-DTDAS可以对髓鞘靶向结合缩短弛豫时间(图5)。

图5  尾静脉注射Gd-DTDAS。5A:未注射Gd-DTDAS的T1WI,髓鞘信号略低;5B:注射Gd-DTDAS的T1WI成像,信号整体降低,箭头所指为损伤部位;5C:未注射Gd-DTDAS的T1maps值,弛豫性高;5D:注射Gd-DTDAS的T1maps值,富含髓鞘区域弛豫性明显降低,箭头所指为损伤部位,弛豫性相对较高;5E:未注射Gd-DTDAS的T2WI成像,损伤部位明显;5F:胼胝体损伤部位示意图,箭头所指红色区域为胼胝体损伤部位。
Fig. 5  Intravenous injection of Gd-DTDAS. 5A: T1WI without Gd-DTDAS injection, slightly lower myelin signal; 5B: T1WI imaging of Gd-DTDAS injection shows an overall decrease in signal, with the arrow indicating the injury site; 5C: The T1maps value of Gd-DTDAS without injection shows high relaxation; 5D: The T1maps values of Gd-DTDAS injection show a significant decrease in relaxation in myelin rich areas, with the arrow pointing to the injury site and relatively high relaxation; 5E: T2WI imaging without Gd-DTDAS injection shows significant damage to the site; 5F: The schematic diagram of the injured part of the corpus callosum. The red area indicated by the arrow is the injured part of the corpus callosum.

3 讨论

       本研究首次通过7.0 T MRI联合髓鞘探针Gd-DTDAS评估MS大鼠模型的脱髓鞘表现,通过细胞实验对Gd-DTDAS的安全性进行了评价,通过动物实验对Gd-DTDAS的显像能力进行了评估。研究结果表明,Gd-DTDAS具有安全性并且在MS大鼠中表现出较好的显像能力。目前,MRI已成为诊断和检测髓鞘相关疾病的主要工具。然而,MRI测量髓鞘的方法主要通过间接的方式来实现并且难以鉴别脱髓鞘病变与其他炎性病变。本研究为国内首次使用髓鞘探针Gd-DTDAS评估MS大鼠模型,能够直接检测损伤部位的髓鞘变化,为可视化损伤部位的髓鞘变化提供了方法,为临床诊治多发性硬化髓鞘损伤提供新的思路。

3.1 髓鞘探针检测髓鞘变化的应用现状

       MS是全球年轻人最常见的退行性神经系统疾病[19],是一种由免疫系统介导的疾病,在中枢神经系统中呈现炎症病变,从而导致髓磷脂含量降低[2, 20]。影像学检查在MS的诊断和监测中起着重要作用[21, 22, 23],但是,常规MRI难以鉴别脱髓鞘病变与其他炎性病变。髓鞘探针易制备且可用性强,具有高特异性、高亲和力和高敏感度,不同的成像方法可以用于对相同疾病靶向病灶的活体研究,有助于探讨脱髓鞘疾病的髓鞘可塑性、轴突变性与神经功能障碍的关系[24, 25]。目前,已有学者合成了一系列结合髓磷脂的探针,如[C]MeDAS、[F]PENDAS、[F]FMeDAS和TAFDAS,并作为放射性示踪剂进行了体内PET成像[26, 27];还有学者报告了一种名为Gd-DODAS的髓磷脂靶向MRI对比剂[28],该类对比剂可以在体内和体外特异性靶向髓鞘,对髓鞘进行直观的显像。

3.2 细胞实验结果分析

       本研究所采用的OLN-93细胞是一种少突胶质前体细胞系,可在体外分化,模拟少突胶质细胞(oligodendrocytes, OLs)分化成熟过程,是用于研究髓鞘发育和再生的常用体外细胞培养模型[29]。OLN-93可分化为成熟的OLs,OLs是构成神经元髓鞘的主要细胞[30, 31, 32]。LPC是一种溶血磷脂,能够与细胞膜结合,快速诱导细胞膜通透性,非特异性破坏髓磷脂[33, 34]。本研究通过MTT细胞毒性实验和细胞摄取实验测试了Gd-DTDAS对OLN-93细胞的影响,结果表明,在浓度高达400 μM时,细胞存活率仍然很高并且与浓度为0 μM时差异无统计学意义,说明Gd-DTDAS具有良好的生物相容性。在评价Gd-DTDAS的成像效果时,必须兼顾细胞毒性作用,以往文献大多通过台盼蓝染色评价损伤细胞比例或基于MTT的细胞增殖实验评价药物的细胞毒性作用[35, 36],前者容易受到染色剂作用的时间因素等影响,而后者得出的安全浓度远高于实际安全浓度[37]。因此,本研究通过MTT法对髓鞘探针的安全性进行评估,客观反映Gd-DTDAS的生理状态,在一定程度上为临床应用提供更多的有效证据,在未来临床开发方面具有重要意义。由于Gd-DTDAS是一种荧光化合物,所以在细胞摄取实验中,通过定量分析LPC组和对照组2的荧光强度分析Gd-DTDAS是否能够被不同形态的OLN-93细胞摄取。结果表明,LPC组损伤处荧光强度明显下降,与对照组2差异有统计学意义,表明该药物有特异性结合髓鞘的潜力。但是未来仍然需要大样本实验进行验证。

3.3 动物实验结果分析

       LPC动物模型是一种毒素诱导的模型,可以诱导中枢神经系统局部发生急性脱髓鞘损伤,该模型诱导时间较短,并且脱髓鞘病变过程中无神经性炎症参与,是研究白质区域脱髓鞘的理想模型,该模型在以往研究中被学者大量使用[38, 39],所以本研究使用LPC模型用于模拟MS患者脱髓鞘的病理机制。在Gd-DTDAS染色实验中对照组3的荧光强度高于实验组3,这表明Gd-DTDAS的染色依赖于髓鞘的存在,Gd-DTDAS的保留与整个胼胝体的髓鞘分布成正比[40]。在LPC处理的大鼠胼胝体中,Gd-DTDAS与脱髓鞘灶结合显著减少,该结果表明Gd-DTDAS可以选择性地对脑中的髓磷脂进行染色[26, 41]。这与我们团队之前使用牢固蓝染色检测MCAO大鼠髓鞘变化得到的结果一致[12, 27]。在大鼠脑组织浸泡Gd-DTDAS的MRI中发现,Gd-DTDAS浸泡之前,T1WI分辨率较低,髓鞘显示不清;浸泡之后,髓鞘显示清晰,对比更优[42],进一步证明了Gd-DTDAS与髓鞘的特异性结合能力。该结果表明Gd-DTDAS优先分布在高度髓鞘化的区域,并且能够检测局灶诱导的脱髓鞘区域。在大鼠尾静脉输注Gd-DTDAS后髓鞘形成的体内MRI中,发现注射前T1WI的分辨率较低,注射后,大脑整体信号较低,但没有观察到显著差异;进行T1maps扫描后,显示大鼠有髓部位的弛豫时间减少[42],这一结果与上述体外实验结果一致。

4 局限性与展望

       局限性:(1)动物实验存在一定局限性,由于定性研究以及实验条件的限制,本研究中纳入样本量过小,对样本量要求过低,但未来本团队会进行大样本研究,并结合动物实验深入机制探讨;(2)LPC模型并非由免疫系统介导,仅能够体现MS疾病的特定方面,其本身的病理变化与人类MS的疾病进程不完全吻合,无法完全模拟人类MS的疾病进程,我们需要更好地理解MS发病机制的复杂性及其在个体患者中的异质性,运用多种不同机制的动物模型,综合评价对比剂的显像效果;(3)未对髓鞘的变化进行长期的检测,将在后续监测大鼠的再髓鞘的改变以完善实验。

       本研究中的髓鞘探针Gd-DTDAS能够区分MS病变内髓磷脂密度的差异,用于监测体内髓鞘的变化,是一种有前景的成像标志物,为临床诊治多发性硬化髓鞘损伤提供新的思路。未来可在临床联合多模态影像对多发性硬化患者进行回顾性分析和前瞻性分析,以期更好地指导多发性硬化患者的临床诊疗,从而改善患者的预后。

5 结论

       靶向髓鞘探针Gd-DTDAS具有良好的髓鞘可视化功能,更好地结合髓磷脂丰富的区域,髓鞘靶向MR显像更佳,能特异性显示多发性硬化髓鞘损伤部位,有效地跟踪中枢神经中髓鞘的变化,为多发性硬化的诊断、预后和治疗提供一个新的分子影像工具。该研究证明了Gd-DTPA-MeDAS是优秀的MRI靶向标记髓鞘的对比剂。

[1]
ALSHEHRI A, AL-IEDANI O, ARM J, et al. Neural diffusion tensor imaging metrics correlate with clinical measures in people with relapsing-remitting MS[J]. Neuroradiol J, 2022, 35(5): 592-599. DOI: 10.1177/19714009211067400.
[2]
FILIPPI M, PREZIOSA P, BARKHOF F, et al. Diagnosis of progressive multiple sclerosis from the imaging perspective: a review[J]. JAMA Neurol, 2021, 78(3): 351-364. DOI: 10.1001/jamaneurol.2020.4689.
[3]
WALTON C, KING R, RECHTMAN L, et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition[J]. Mult Scler, 2020, 26(14): 1816-1821. DOI: 10.1177/1352458520970841.
[4]
TIAN D C, ZHANG C Y, YUAN M, et al. Incidence of multiple sclerosis in China: a nationwide hospital-based study[J/OL]. Lancet Reg Health West Pac, 2020, 1: 100010 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/34327341/. DOI: 10.1016/j.lanwpc.2020.100010.
[5]
OLEK M J. Multiple sclerosis[J/OL]. Ann Intern Med, 2021, 174(6): ITC81-ITC96 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/34097429/. DOI: 10.7326/aitc202106150.
[6]
FILIPPI M, BAR-OR A, PIEHL F, et al. Multiple sclerosis[J/OL]. Nat Rev Dis Primers, 2018, 4: 43 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/30410033/. DOI: 10.1038/s41572-018-0041-4.
[7]
HAIDER L, ZRZAVY T, HAMETNER S, et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain[J]. Brain, 2016, 139(Pt 3): 807-815. DOI: 10.1093/brain/awv398.
[8]
LASSMANN H, BRÜCK W, LUCCHINETTI C F. The immunopathology of multiple sclerosis: an overview[J]. Brain Pathol, 2007, 17(2): 210-218. DOI: 10.1111/j.1750-3639.2007.00064.x.
[9]
ZHUO Z Z, LI Y M, DUAN Y Y, et al. Subtyping relapsing-remitting multiple sclerosis using structural MRI[J]. J Neurol, 2021, 268(5): 1808-1817. DOI: 10.1007/s00415-020-10376-7.
[10]
HEATH F, HURLEY S A, JOHANSEN-BERG H, et al. Advances in noninvasive myelin imaging[J]. Dev Neurobiol, 2018, 78(2): 136-151. DOI: 10.1002/dneu.22552.
[11]
PETIET A, ADANYEGUH I, AIGROT M S, et al. Ultrahigh field imaging of myelin disease models: toward specific markers of myelin integrity?[J]. J Comp Neurol, 2019, 527(13): 2179-2189. DOI: 10.1002/cne.24598.
[12]
WEI B, WENG N, FU L, et al. Synthesis and bioactivity evaluation of a myelin-specific contrast agent for magnetic resonance imaging of myelination in central nervous system[J/OL]. Bioorg Med Chem, 2023, 84: 117257 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/37001243/. DOI: 10.1016/j.bmc.2023.117257.
[13]
FRISCH M L, POLARZ S. Molecular fusion of surfactant and Lewis-acid properties for attacking dirt by catalytic bond cleavage[J/OL]. Sci Rep, 2021, 11: 5131 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/33664375/. DOI: 10.1038/s41598-021-84654-3.
[14]
DE PAULA FARIA D. Myelin positron emission tomography (PET) imaging in multiple sclerosis[J]. Neural Regen Res, 2020, 15(10): 1842-1843. DOI: 10.4103/1673-5374.280311.
[15]
WU C Y, WEI J J, TIAN D H, et al. Molecular probes for imaging myelinated white matter in CNS[J]. J Med Chem, 2008, 51(21): 6682-6688. DOI: 10.1021/jm8003637.
[16]
JOHNSON G A, CALABRESE E, BADEA A, et al. A multidimensional magnetic resonance histology atlas of the Wistar rat brain[J]. Neuroimage, 2012, 62(3): 1848-1856. DOI: 10.1016/j.neuroimage.2012.05.041.
[17]
BI S J, DONG X Y, WANG Z Y, et al. Salvianolic acid B alleviates neurological injury by upregulating stanniocalcin 1 expression[J/OL]. Ann Transl Med, 2022, 10(13): 739 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/35957712/. DOI: 10.21037/atm-21-4779.
[18]
WU C Y, WEI J J, TIAN D H, et al. Molecular probes for imaging myelinated white matter in CNS[J]. J Med Chem, 2008, 51(21): 6682-6688. DOI: 10.1021/jm8003637.
[19]
WALLIN M T, CULPEPPER W J, CAMPBELL J D, et al. The prevalence of MS in the United States: a population-based estimate using health claims data[J/OL]. Neurology, 2019, 92(10): e1029-e1040 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/30770430/. DOI: 10.1212/WNL.0000000000007035.
[20]
MAHAD D H, TRAPP B D, LASSMANN H. Pathological mechanisms in progressive multiple sclerosis[J]. Lancet Neurol, 2015, 14(2): 183-193. DOI: 10.1016/S1474-4422(14)70256-X.
[21]
FUJIYOSHI K, HIKISHIMA K, NAKAHARA J, et al. Application of q-space diffusion MRI for the visualization of white matter[J]. J Neurosci, 2016, 36(9): 2796-2808. DOI: 10.1523/JNEUROSCI.1770-15.2016.
[22]
SHETH V R, FAN S J, HE Q, et al. Inversion recovery ultrashort echo time magnetic resonance imaging: a method for simultaneous direct detection of myelin and high signal demonstration of iron deposition in the brain - A feasibility study[J/OL]. Magn Reson Imaging, 2017, 38: 87-94 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/28038965/. DOI: 10.1016/j.mri.2016.12.025.
[23]
DONADIEU M, LEE N J, GAITÁN M I, et al. In vivo MRI is sensitive to remyelination in a nonhuman primate model of multiple sclerosis[J/OL]. Elife, 2023, 12: e73786 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/37083540/. DOI: 10.7554/eLife.73786.
[24]
XIN W, CHAN J R. Myelin plasticity: sculpting circuits in learning and memory[J]. Nat Rev Neurosci, 2020, 21(12): 682-694. DOI: 10.1038/s41583-020-00379-8.
[25]
DE FARIA O, PIVONKOVA H, VARGA B, et al. Periods of synchronized myelin changes shape brain function and plasticity[J]. Nat Neurosci, 2021, 24(11): 1508-1521. DOI: 10.1038/s41593-021-00917-2.
[26]
WU C Y, ZHU J Q, BAESLACK J, et al. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord[J]. Ann Neurol, 2013, 74(5): 688-698. DOI: 10.1002/ana.23965.
[27]
VAN DER WEIJDEN C W J, MEILOF J F, VAN DER HOORN A, et al. Quantitative assessment of myelin density using[11C]MeDAS PET in patients with multiple sclerosis: a first-in-human study[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3492-3507. DOI: 10.1007/s00259-022-05770-4.
[28]
FRULLANO L, ZHU J Q, MILLER R H, et al. Synthesis and characterization of a novel gadolinium-based contrast agent for magnetic resonance imaging of myelination[J]. J Med Chem, 2013, 56(4): 1629-1640. DOI: 10.1021/jm301435z.
[29]
BUCKINX R, SMOLDERS I, SAHEBALI S, et al. Morphological changes do not reflect biochemical and functional differentiation in OLN-93 oligodendroglial cells[J]. J Neurosci Methods, 2009, 184(1): 1-9. DOI: 10.1016/j.jneumeth.2009.07.004.
[30]
XIE Y, ZHANG X H, XU P F, et al. Aberrant oligodendroglial LDL receptor orchestrates demyelination in chronic cerebral ischemia[J/OL]. J Clin Invest, 2021, 131(1): e128114 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/33141760/. DOI: 10.1172/JCI128114.
[31]
周颖, 苏敏, 杰吉甫, 等. OLN-93细胞系分化条件探讨[J]. 中国组织化学与细胞化学杂志, 2020, 29(2): 125-130. DOI: 10.16705/j.cnki.1004-1850.2020.02.004.
ZHOU Y, SU M, JIE J F, et al. Study on the optimal differentiation culture media for OLN-93 cell culture[J]. Chin J Histochem Cytochem, 2020, 29(2): 125-130. DOI: 10.16705/j.cnki.1004-1850.2020.02.004.
[32]
YU Q, GUAN T, GUO Y, et al. The initial myelination in the central nervous system[J/OL]. ASN Neuro, 2023, 15: 17590914231163039 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/36974372/. DOI: 10.1177/17590914231163039.
[33]
PLEMEL J R, MICHAELS N J, WEISHAUPT N, et al. Mechanisms of lysophosphatidylcholine-induced demyelination: a primary lipid disrupting myelinopathy[J]. Glia, 2018, 66(2): 327-347. DOI: 10.1002/glia.23245.
[34]
WALY B E, BUTTIGIEG E, KARAKUS C, et al. Longitudinal intravital microscopy reveals axon degeneration concomitant with inflammatory cell infiltration in an LPC model of demyelination[J/OL]. Front Cell Neurosci, 2020, 14: 165 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/32655371/. DOI: 10.3389/fncel.2020.00165.
[35]
PEZZANITE L, CHOW L, PIQUINI G, et al. Use of in vitro assays to identify antibiotics that are cytotoxic to normal equine chondrocytes and synovial cells[J]. Equine Vet J, 2021, 53(3): 579-589. DOI: 10.1111/evj.13314.
[36]
WANG J S, MA D, LI Y, et al. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles[J]. Anticancer Drugs, 2014, 25(3): 303-314. DOI: 10.1097/CAD.0000000000000046.
[37]
AZADPOUR M, FARAJOLLAHI M M, VARZI A M, et al. Extraction, chemical composition, antioxidant property, and In-vitro anticancer activity of silymarin from Silybum marianum on kb and A549 cell lines[J]. Curr Drug Discov Technol, 2021, 18(4): 511-517. DOI: 10.2174/1570163817666200827111127.
[38]
BIRGBAUER E, RAO T S, WEBB M. Lysolecithin induces demyelination in vitro in a cerebellar slice culture system[J]. J Neurosci Res, 2004, 78(2): 157-166. DOI: 10.1002/jnr.20248.
[39]
HOLLER J G, HENRIKSEN D P, MIKKELSEN S, et al. Erratum to: shock in the emergency department; a 12year population based cohort study[J/OL]. Scand J Trauma Resusc Emerg Med, 2017, 25(1): 103 [2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/29070046/. DOI: 10.1186/s13049-017-0429-2.
[40]
WU C Y, ECK B, ZHANG S, et al. Discovery of 1, 2, 3-triazole derivatives for multimodality PET/CT/cryoimaging of myelination in the central nervous system[J]. J Med Chem, 2017, 60(3): 987-999. DOI: 10.1021/acs.jmedchem.6b01328.
[41]
FRULLANO L, WANG C N, MILLER R H, et al. A myelin-specific contrast agent for magnetic resonance imaging of myelination[J]. J Am Chem Soc, 2011, 133(6): 1611-1613. DOI: 10.1021/ja1040896.
[42]
FRULLANO L, ZHU J Q, WANG C N, et al. Myelin imaging compound (MIC) enhanced magnetic resonance imaging of myelination[J]. J Med Chem, 2012, 55(1): 94-105. DOI: 10.1021/jm201010e.

上一篇 双耳分听模式下汉语语言信号和韵律信号的处理:一项fMRI研究
下一篇 VMHC与ReHo在评价tDCS改善脑卒中后认知障碍中的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2