分享:
分享到微信朋友圈
X
临床研究
多延迟动脉自旋标记技术在动脉重度狭窄或闭塞患者脑灌注评估中的价值
李璐璐 尚松安 莫小小 梅超 张宁贵 王雪 杨鑫 伍雅婷 叶靖

Cite this article as: LI L L, SHANG S A, MO X X, et al. The value of multi-delay arterial spin labeling in the evaluation of cerebral perfusion in patients with severe arterial stenosis or occlusion[J]. Chin J Magn Reson Imaging, 2024, 15(3): 19-25.本文引用格式李璐璐, 尚松安, 莫小小, 等. 多延迟动脉自旋标记技术在动脉重度狭窄或闭塞患者脑灌注评估中的价值[J]. 磁共振成像, 2024, 15(3): 19-25. DOI:10.12015/issn.1674-8034.2024.03.004.


[摘要] 目的 探讨多延迟动脉自旋标记(muti-delayed arterial spin labeling, mASL)技术评估单侧颈内动脉或大脑中动脉重度狭窄、闭塞患者脑灌注改变的价值。材料与方法 前瞻性纳入我院神经内科临床诊断为单侧颈内动脉或大脑中动脉重度狭窄、闭塞的34例患者单延迟准连续式动脉自旋标记(pseudo continuous arterial spin labeling, pCASL)及mASL灌注图像进行动脉狭窄侧异常灌注区域评估,应用Kappa一致性检验评估两位观察者判断结果的一致性。分别在异常灌注区域手动勾画感兴趣区并获得灌注参数值,包括由pCASL灌注图像获得狭窄侧脑血流量(cerebral blood flow, CBF2020ms),mASL灌注图像获取狭窄侧校正后脑血流量(corrected cerebral blood flow, cCBF)、动脉到达时间(arterial transit time, ATT)、动脉脑血容量(artery cerebral blood volume, aCBV)及对侧动脉到达时间(relative arterial transit time, rATT)。利用配对样本t检验比较CBF2020ms及cCBF差异,独立样本t检验比较患者动脉狭窄侧ATT及rATT差异。结果 根据pCASL及mASL的结果显示,在34例患者中,10例灌注表现一致(8例均为低灌注,2例均为低灌注伴局部高信号),24例灌注表现不完全一致(其中3例pCASL表现为正常灌注,mASL表现为低灌注;21例pCASL表现为低灌注伴局部高信号,mASL表现为低灌注)。两位观察者间具有高度的一致性(Kappa系数=0.788,P<0.001)。mASL示动脉狭窄侧ATT值显著高于对侧(P<0.001)。pCASL及mASL均表现为低灌注的患者中,CBF2020ms值低于cCBF值(P=0.173)。pCASL及mASL均表现低灌注伴局部高信号的患者中,ATT延长,aCBV增加。pCASL表现为低灌注伴局部高信号且mASL表现为低灌注的患者中,CBF2020ms显著高于cCBF(P<0.001)。pCASL表现为正常灌注且mASL表现为低灌注的患者中,ATT延长但aCBV保持正常。结论 通过多延迟动脉自旋标记技术获得的多参数cCBF、ATT及aCBV能够更敏感、准确地评估单侧颈内动脉或大脑中动脉重度狭窄、闭塞患者脑组织灌注的变化,为临床诊治提供指导性意见。
[Abstract] Objective To investigate the value of multi-delayed arterial spin labeling (mASL) technique in evaluating cerebral perfusion changes in patients with severe unilateral internal carotid artery or middle cerebral artery stenosis or occlusion.Materials and Methods Perfusion images obtained from single-delayed pseudo continuous arterial spin labeling (pCASL) and mASL of 34 patients with clinical diagnosis of unilateral internal carotid artery or middle cerebral artery stenosis and occlusion in the Department of Neurology of our hospital were prospectively collected for evaluation of abnormal perfusion area on the side of arterial stenosis. The consistency of two observers in judging the abnormal perfusion area on the stenosis side was evaluated by Kappa consistency test. The region of interest was manually delineated in the abnormal perfusion region and perfusion parameter values were obtained, including cerebral blood flow (CBF2020ms) obtained from pCASL perfusion images and corrected cerebral blood flow (cCBF), arterial arrival time (ATT), arterial cerebral blood volume (aCBV) and relative arterial transit time (rATT) obtained from mASL. Paired sample t test was used to compare the differences of CBF2020ms and cCBF, and independent sample t test was used to compare the differences of ATT on the stenosis side and rATT.Results According to the results of pCASL and mASL, in 34 patients, the perfusion images of 10 cases were consistent (8 cases were hypoperfusion, 2 cases were hypoperfusion with local high signal), and the perfusion images of 24 cases were not completely consistent (3 cases of pCASL showed normal perfusion, mASL showed low perfusion; pCASL showed hypoperfusion with local hyperintensity in 21 cases, and mASL showed hypoperfusion). There was a high degree of agreement between the two observers (Kappa coefficient=0.788, P<0.001). mASL showed that ATT on the stenotic side was higher than rATT (P<0.001). In patients with hypoperfusion on both pCASL and mASL, CBF2020ms was lower than cCBF (P=0.173). In patients with both pCASL and mASL showing hypoperfusion with local hyperintensity, ATT is prolonged and aCBV is increased. CBF2020ms was significantly higher than cCBF in patients with pCASL showing hypoperfusion with local high signal and mASL showing hypoperfusion (P<0.001). Patients with normal perfusion on pCASL and hypoperfusion on mASL were found to have prolonged ATT but preserved normal aCBV.Conclusions Multi-parameter cCBF, ATT and aCBV obtained by multi-delay arterial spin labeling technique can evaluate the changes of brain perfusion in patients with severe unilateral internal carotid artery or middle cerebral artery stenosis or occlusion more sensibly and accurately, and provide guidance for clinical diagnosis and treatment.
[关键词] 动脉自旋标记技术;脑血流量;脑血容量;动脉狭窄;动脉闭塞;磁共振成像
[Keywords] arterial spin labeling;cerebral blood flow;cerebral blood volume;arterial stenosis;arterial occlusion;magnetic resonance imaging

李璐璐 1, 2   尚松安 2   莫小小 2, 3   梅超 2, 3   张宁贵 1, 2   王雪 2, 3   杨鑫 2, 3   伍雅婷 2, 3   叶靖 2*  

1 扬州大学临床医学院,扬州 225001

2 苏北人民医院医学影像科,扬州 225001

3 大连医科大学,大连 116031

通信作者:叶靖,E-mail:yzhyejing@163.com

作者贡献声明:叶靖设计本研究的方案,对稿件关键内容进行了修改,获得了扬州市重点研发项目及苏北人民医院科研基金项目的资助;李璐璐起草和撰写稿件,获取、分析和解释本研究的数据;尚松安、莫小小、梅超、张宁贵获取、分析本研究的影像资料,对稿件重要内容进行了修改;王雪、杨鑫、伍雅婷获取、分析本研究的临床数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 扬州市重点研发项目 YZ2023082 苏北人民医院科研基金项目 SBLC22004
收稿日期:2023-10-24
接受日期:2024-01-31
中图分类号:R445.2  R543.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.03.004
本文引用格式李璐璐, 尚松安, 莫小小, 等. 多延迟动脉自旋标记技术在动脉重度狭窄或闭塞患者脑灌注评估中的价值[J]. 磁共振成像, 2024, 15(3): 19-25. DOI:10.12015/issn.1674-8034.2024.03.004.

0 引言

       缺血性脑卒中(ischemic stroke, IS)是临床工作中最为常见的一类脑血管疾病,以中老年群体好发[1],其发病后会严重损害患者的身心健康,且治疗预后较差,容易导致偏瘫等较为严重的并发症[2, 3]。既往研究证实,颅内动脉狭窄或闭塞性改变是IS发生的首要病因[4, 5],且精确地评估由此所导致的脑组织灌注变化可以有效地指导早期临床干预、保护神经功能、改善患者预后[6]。在神经影像学领域,CT灌注成像(computed tomography perfusion imaging, CTP)、动态磁敏感对比增强(dynamic susceptibility contrast, DSC)及动脉自旋标记(arterial spin labeling, ASL)是较为常用的脑灌注成像方法[7, 8, 9]。其中,CTP及DSC是基于使用对比剂进行成像,因其有创、难重复、潜在肾损伤等,一定程度上限制了其适用人群[10]。而ASL则属于一项非侵入性检查技术,在不使用外源性对比剂的条件下即可实现脑血流量(cerebral blood flow, CBF)的量化,逐渐受到临床研究及应用的青睐[11, 12, 13, 14]

       目前,准连续式动脉自旋标记序列(pseudo continuous arterial spin labeling, pCASL)是临床应用最广泛的方法,该技术较连续式ASL及脉冲式ASL有较高的信噪比及高标记效能[15],具有良好的可重复性[16]。但ASL 信号的变化受动脉到达时间(arterial transit time, ATT)这一关键血流因素的影响,尤其在表现为供血动脉发生狭窄或闭塞的人群中,ATT是显著延长的。因此,应将ATT纳入考虑以减少对CBF的测量误差[17],既往有研究采用多延迟动脉自旋标记(muti-delayed arterial spin labeling, mASL)技术设置多个标记后延迟(posted labeling delay, PLD)时间计算ATT,获得校正后的CBF,从而获取更加准确的脑血流灌注信息[18, 19, 20]。尽管如此,对于供血动脉重度狭窄或闭塞患者的脑组织低灌注状态,pCASL及mASL技术对其CBF的测量是否存在差异性,尚亟待研究证实。此外,pCASL仅获得CBF参数,而通过mASL技术能够获取ATT及动脉脑血容量(artery cerebral blood volume, aCBV)这些额外信息,其在评估脑组织血流变化方面的价值还需进一步探讨。本研究对比分析应用pCASL和采用5个PLD时间的mASL在评估单侧颈内动脉或大脑中动脉重度狭窄、闭塞患者脑灌注中的差异并深入探讨ATT及aCBV在脑组织灌注评估中的意义。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经江苏省苏北人民医院伦理委员会批准,全体受试者均签署了知情同意书,批准文号:2023js011。前瞻性纳入2022年6月至2023年6月于江苏省苏北人民医院神经内科就诊表现为缺血性脑血管病症状并且经三维时间飞跃法[21](3D time of flight, 3D TOF)磁共振血管成像(magnetic resonance angiography, MRA)证实为单侧颈内动脉或大脑中动脉重度狭窄、闭塞。其中,动脉狭窄程度测量标准参照北美症状性颈动脉内膜剥脱试验[22]:狭窄率(%)=[1-(最狭窄处动脉直径/狭窄远端正常动脉直径)]×100%,狭窄率在70%~99%为重度狭窄,狭窄程度>99%为闭塞。主要临床症状表现包括肢体无力、活动不利、偏身麻木、头晕头痛和言语不清等。入院至检查时间在7天以内。

       入组标准:(1)临床表现为缺血性脑血管疾病症状的患者;(2)经3D TOF MRA证实为单侧颈内动脉及大脑中动脉重度狭窄、闭塞;(3)发病至入院时间>4.5 h,入院后未接受溶栓或血管内治疗;(4)患者年龄>18周岁,未合并颅内出血、占位、感染性疾病及严重贫血、心力衰竭等影响血容量的疾病;(5)患者或家属签署知情同意书。排除标准:(1)双侧颈内动脉或/和大脑中动脉发生重度狭窄、闭塞;(2)经弥散加权成像证实发生大面积脑梗死者;(3)脑梗死慢性期患者。

1.2 扫描仪器及参数

       所有患者均采用联影MR790扫描仪及32通道头颈联合线圈进行检查,均行常规颅脑MRI扫描序列[T1WI、T2WI、T2液体衰减反转恢复(fluid-attenuated inversion-recovery, FLAIR)序列加权成像、弥散加权成像]、pCASL及mASL扫描序列。

       pCASL使用三维准连续式动脉自旋标记序列,扫描参数如下:重复时间5 080 ms,回波时间13.86 ms,标记时间1 800 ms,PLD 时间2 020 ms,覆盖全脑,视野224 mm×224 mm,层厚4 mm,扫描时间1 min 31 s。

       mASL使用三维准连续式动脉自旋标记序列,扫描参数如下:重复时间5 768 ms,回波时间13.86 ms,标记时间1 800 ms,5个PLD时间分别为500、1 000、1 500、2 000、2 500 ms,覆盖全脑,视野224 mm×224 mm,层厚4 mm,扫描时间3 min 19 s。

1.3 图像处理与分析

       ASL原始数据信息导入联影后处理工作站,应用脑灌注分析软件HSW-uWS-MR-BrainPerfusion-ASL3D进行处理,将pCASL及mASL所得原始图像导入脑灌注分析软件,经运动校正后分别自动生成全脑CBF伪彩图及校正后全脑cCBF(corrected cerebral blood flow, cCBF)、ATT和aCBV伪彩图。所有图像分别由两名分别具有10年(医师1,副主任医师)和5年(医师2,主治医师)神经影像诊断经验的医师采取随机、双盲法进行分析,分析内容包括:观察并测量动脉狭窄侧pCASL及mASL所显示的异常灌注区域及病变区脑皮层表面与皮层下是否存在匍匐走行条线状异常高信号,将其分为低灌注、正常灌注、高灌注及低灌注伴局部高信号,其中,将动脉狭窄侧CBF<40 mL/(100 g•min)定义为低灌注,40≤CBF≤100 mL/(100 g•min)定义为正常灌注,CBF>100 mL/(100 g•min)定义为高灌注。将两名医师的判断结果逐一进行比较,当意见不一致时通过协商解决分歧。其次,分别在全脑CBF伪彩图及校正后全脑cCBF、ATT和aCBV伪彩图上选取灌注异常区域手动勾画感兴趣区(region of interest, ROI)获得脑灌注参数值CBF2020ms及cCBF、ATT、aCBV和对侧动脉到达时间(relative arterial transit time, rATT),每例患者选取5个不同的部位测量并取平均值,对侧的ROI通过后处理软件的对称功能以确保位于相同位置。其中,aCBV<0.5 mL/100 g定义为脑血容量(cerebral blood volume, CBV)减少,0.5≤aCBV≤1.2 mL/100 g定义为CBV正常,aCBV>1.2 mL/100 g定义为CBV增加。

1.4 统计学方法

       应用SPSS 26.0统计学分析软件,P<0.05表示差异有统计学意义。本研究的连续变量采用Shapiro-Wilk检验,均服从正态分布,计量资料以均数±标准差表示,计数资料以例(%)表示。采用Kappa一致性检验分析两位观察者评判pCASL及mASL显示动脉狭窄侧灌注结果是否具有一致性。其中,Kappa值在0~1之间,0.00~0.20表明一致性极低,0.21~0.40表明一致性一般,0.41~0.60表明一致性中等,0.61~0.80表明高度一致,0.81~1.00表明几乎完全一致。采用配对样本t检验分析比较受试者动脉狭窄侧pCASL和mASL分别所得灌注参数值CBF2020ms与cCBF的差异,独立样本t检验分析比较受试者ATT与rATT的差异。

2 结果

2.1 一般资料分析

       本研究共纳入患者34例,其中男23例,女11例,年龄(60.1±2.4)岁,包括动脉重度狭窄患者18例,动脉闭塞患者16例。责任血管包含颈内动脉及大脑中动脉:单侧颈内动脉重度狭窄或闭塞患者14例,包括颈内动脉起始段7例,颈内动脉颅内段6例及颈内动脉颅外段合并颅内段1例;单侧大脑中动脉重度狭窄或闭塞患者16例,包括M1段8例,M2段4例及M1段合并M2段4例;单侧颈内动脉合并大脑中动脉重度狭窄或闭塞患者4例。

2.2 观察者间一致性比较

       对于pCASL及mASL所得灌注图像动脉狭窄侧异常灌注表现的判定,两名观察者间的Kappa系数为0.788,P值<0.001,表明两观察者间具有高度的一致性。

2.3 pCASL及mASL显示脑组织灌注特点

       在34例患者中,10例pCASL及mASL显示灌注结果一致,其中8例均表现为动脉狭窄侧低灌注,2例均表现为低灌注伴局部高信号;24例显示灌注结果不完全一致,其中3例pCASL表现为正常灌注,mASL表现为低灌注,21例pCASL表现为低灌注伴局部高信号,mASL表现为低灌注,见表1。显然,在显示低灌注方面,mASL(94.1%)较pCASL(23.5%)更具优势。

       在34例患者中,mASL示动脉狭窄侧ATT值大于rATT值[(1 625.1±213.5)ms vs.(1 207.1±235.9)ms,P<0.001],差异具有统计学意义。

       在8例pCASL及mASL均表现为低灌注的患者中,动脉狭窄侧CBF2020ms值低于cCBF值[(19.5±10.0)mL/(100 g•min)vs.(24.8±12.8)mL/(100 g•min),P=0.173],差异无统计学意义;mASL显示动脉狭窄侧ATT值较对侧延长[(1 512.8±284.8)ms vs.(1 319.6±242.8)ms,P=0.005],差异具有统计学意义,见图1

       在2例pCASL与mASL均表现动脉狭窄侧低灌注伴局部高信号患者中,mASL灌注表现中局部高信号减少,且ATT延长,局部aCBV增加,见图2

       在21例pCASL表现为动脉狭窄侧低灌注伴局部高信号,mASL表现为低灌注患者中,CBF2020ms值显著高于cCBF[(38.9±11.7)mL/(100 g•min)vs.(21.0±6.6)mL/(100 g•min),P<0.001],动脉狭窄侧ATT值显著长于rATT[(1 669.0±145.8)ms vs.(1 154.4±190.2)ms,P<0.001],差异均有统计学意义,见图3

       在3例pCASL表现为正常灌注的患者中,mASL表现为动脉狭窄侧局部低灌注,ATT显著延长,aCBV保持正常,见图4

图1  女,79岁,左侧肢体无力,言语不清1天。1A:3D TOF MRA示右侧颈内动脉起始段重度狭窄,1B:DWI示右侧额顶叶及半卵圆中心多发急性梗死灶;1C~1F依次为pCASL处理后得到的CBF伪彩图,mASL处理后得到的cCBF、ATT及aCBV伪彩图,提示pCASL及mASL灌注结果显示一致,表现为右侧额顶叶低灌注,未见局部异常高信号,ATT较对侧延长,aCBV减少。
图2  女,65岁,发作性言语不清伴肢体无力4天。2A:3D TOF MRA示左侧颈内动脉颅内外段多发重度狭窄;2B:DWI示左侧额叶亚急性梗死灶;2C~2F依次为pCASL处理后得到的CBF伪彩图,mASL处理后得到的cCBF、ATT及aCBV伪彩图,提示pCASL及mASL灌注结果显示一致,左侧额顶叶低灌注伴局部高信号,并可见cCBF伪彩图局部高信号减少,左侧额顶叶ATT 较对侧延长,局部aCBV增加。3D TOF MRA:三维时间飞跃法磁共振血管成像;DWI:弥散加权成像;pCASL:准连续式动脉自旋标记序列;CBF:脑血流量;mASL:多延迟动脉自旋标记;cCBF:校正后的脑血流量;ATT:动脉到达时间;aCBV:动脉脑血容量。
Fig. 1  Female, 79-year-old , presented with left limb weakness and slurred speech for 1 day. 1A: 3D TOF MRA shows severe stenosis in the initial segment of the right internal carotid artery; 1B: DWI shows multiple acute infarction in the right frontal-parietal lobe and centrum ovale; 1C-1F: CBF processed from pCASL, cCBF, ATT and aCBV processed from mASL, indicating that pCASL and mASL perfusion results are consistent, with right frontal-parietal hypoperfusion, no local abnormal high signal, ATT is longer with the opposite side, and the aCBV is decreased.
Fig. 2  Female, 65-year-old , presented with paroxysmal slurred speech and limb weakness for 4 days. 2A: 3D TOF MRA shows multiple severe stenosis in the intracranial and external segments of the left internal carotid artery; 2B: DWI shows left frontal subacute infarction; 2C-2F: CBF processed from pCASL, cCBF, ATT and aCBV processed from mASL, indicating consistent perfusion results, left frontal-parietal hypoperfusion with local high signal, and cCBF shows local high signal decreased, left frontal-parietal ATT is longer with the contralateral side, and local aCBV is increased. 3D TOF MRA: 3D time of flight magnetic resonance angiography; DWI: diffusion-weighted imaging; pCASL: pseudo continuous arterial spin labeling; CBF: cerebral blood flow; mASL: muti-delayed arterial spin labeling; cCBF: corrected cerebral blood flow; ATT: arterial transit time; aCBV: artery cerebral blood volume.
图3  男,45岁,右侧上肢乏力7小时。3A:3D TOF MRA示左侧大脑中动脉M1段重度狭窄;3B:DWI示左侧额顶叶多发急性梗死,考虑分水岭梗死;3C~3F依次为pCASL处理后得到的CBF伪彩图,mASL处理后得到的cCBF、ATT及aCBV伪彩图,提示pCASL及mASL显示灌注结果不完全一致,pCASL提示左侧额顶叶低灌注伴局部高信号,mASL提示左额顶叶低灌注,未见局部高信号,ATT显著延长,aCBV减少。
图4  女,55岁,头晕4天。4A:3D TOF MRA示右侧颈内动脉起始段重度狭窄;4B:DWI示无明显急性梗死灶;4C~4F依次为pCASL处理后得到的CBF伪彩图,mASL处理后的cCBF、ATT及aCBV伪彩图,pCASL示未见明显异常低灌注区域,mASL示右侧顶叶低灌,ATT延长,aCBV保持正常。3D TOF MRA:三维时间飞跃法磁共振血管成像;DWI:弥散加权成像;pCASL:准连续式动脉自旋标记序列;CBF:脑血流量;mASL:多延迟动脉自旋标记;cCBF:校正后的脑血流量;ATT:动脉到达时间;aCBV:动脉脑血容量。
Fig. 3  Male, 45 years old, presented with right upper limb weakness for 7 hours. 3A: 3D TOF MRA shows severe stenosis in the M1 segment of the left middle cerebral artery; 3B: DWI shows multiple acute infarction in the left frontal-parietal lobe, considering watershed infarction; 3C-3F: CBF processed from pCASL, cCBF, ATT and aCBV processed from mASL, indicate that pCASL and mASL showed incomplete consistent perfusion results, pCASL indicates hypoperfusion of left frontal and parietal lobes with local hyperintensity, mASL indicates hypoperfusion of left frontal and parietal lobes, no local hyperintensity, significant extension of ATT, and reduced aCBV.
Fig. 4  Female, 55-year-old, presented with dizziness for 4 days. 4A: 3D TOF MRA shows severe stenosis in the initial segment of the right internal carotid artery; 4B: DWI shows no obvious acute infarction; 4C-4F: CBF processed from pCASL, cCBF, ATT and aCBV processed from mASL, pCASL shows no obvious abnormal hypoperfusion area, mASL shows right parietal hypoperfusion, ATT extension, and the aCBV remains normal. 3D TOF MRA: 3D time of flight magnetic resonance angiography; DWI: diffusion-weighted imaging; pCASL: pseudo continuous arterial spin labeling; CBF: cerebral blood flow; mASL: muti-delayed arterial spin labeling; cCBF: corrected cerebral blood flow; ATT: arterial transit time; aCBV: artery cerebral blood volume.
表1  pCASL与mASL灌注表现比较
Tab. 1  Comparison of perfusion performance between pCASL and mASL

3 讨论

       本研究对比分析应用pCASL和采用5个PLD时间的mASL评估单侧颈内动脉或大脑中动脉重度狭窄、闭塞患者脑灌注的差异,结果显示在供血动脉重度狭窄、闭塞患者中,采用mASL成像技术,基于ATT进行校正,可以改善pCASL对CBF量化的低估,减少动脉通过伪影(artery transmit artifact, ATA)对脑灌注评估的影响,联合参数ATT及aCBV能够更加全面评估脑组织缺血后复杂多变的灌注状态,为临床医师选择个体化治疗方案提供依据。本研究是国内首次探讨mASL成像技术在单侧颈内动脉或大脑中动脉重度狭窄、闭塞患者的脑灌注评估中的价值。

3.1 mASL成像技术的优越性

       在IS患者中,维持脑血流动力学稳定至关重要,因此临床上需要对脑组织灌注进行评估以选择最优的治疗策略。ASL是一种无创的脑灌注定量评估技术,已广泛应用于临床研究[23]。当ASL应用于伴有供血动脉重度狭窄或闭塞的患者时,由于ATT延长,应适当选择较长的PLD时间提高CBF量化的准确性[24]。依据动脉自旋标记脑灌注MRI技术规范化应用专家共识[25],在应用单个PLD时间进行ASL成像时,推荐设置时间为2 025 ms。然而,由于脑组织血管床血液含量不同及供血动脉不同病理状态会导致不同体素之间ATT的差异,进而影响CBF测量的准确性。mASL技术通过设置多个PLD时间计算全脑各体素ATT,并依此校正CBF,可以有效地消除ATT差异导致的测量CBF的误差。LYU等[26]研究认为设置5个PLD时间对于测量CBF具有较好的重复性。因此,本研究采用PLD时间为2 020 ms的pCASL和设置5个PLD时间的mASL技术同时对患者进行脑灌注成像,比较两者显示灌注异常的差异,结果表明pCASL对动脉狭窄侧灌注减低区域存在一定程度的低估,这与既往研究结果[27, 28]一致。由此可见,mASL技术能够改善对脑组织CBF的低估,并通过计算获取参数ATT及aCBV,从而全面评估脑组织缺血后灌注变化。

3.2 ATA在动脉重度狭窄或闭塞患者脑血流量评估中的影响

       在供血动脉发生严重狭窄或闭塞导致的慢性脑缺血过程中,ATT显著延长[28],本研究得出相一致的结论,笔者分析包含以下两个潜在原因:一是因为供血动脉狭窄,直接导致血流速度缓慢;二是因为供血动脉发生重度狭窄及闭塞导致大脑启用迂曲细长的侧支循环进行代偿,间接影响脑血流到达时间。既往研究表明侧支循环是ATT延长的主要原因[18]。在pCASL成像中,当ATT延长,将导致被标记的血液滞留于血管内,显示为病变区脑皮层表面与皮层下匍匐走行的条线状异常高信号[23, 29],被称为ATA,在一定程度上会导致对脑血流量的高估。本研究发现,多数患者在pCASL成像中出现ATA现象,当采用mASL技术成像时,多数患者表现为灌注减低,ATA现象消失。这表明采用mASL可以有效减少ATT延长导致的ATA现象,从而突出被ATA现象所掩盖的低灌注区域,有效避免其对CBF量化的影响,据此诊断医师能够更加敏感地发现脑组织缺血区域,提高诊疗效率。

3.3 aCBV在动脉重度狭窄或闭塞患者脑灌注评估中的意义

       aCBV是评估脑组织灌注状态和血管活性的重要指标[30, 31]。它直接反映了脑组织的血液供应能力,是维持脑组织正常生理功能和代谢活动的必要条件。aCBV的变化会影响脑组织的正常功能,因此对其进行监测和评估具有重要意义。参照高培毅[32]研究将梗死前低灌注状态分期,其中脑循环储备失代偿期的Ⅱ期表现为达峰时间、平均通过时间延长以及相对脑血流流量下降,相对CBV基本正常或轻度下降。该阶段内脑循环及脑代谢均失代偿,星形胶质细胞足板易发生肿胀,部分神经元已处于凋亡过程中,若缺血进一步加重,将导致神经元不可逆的损伤。本研究发现,在部分单侧供血动脉发生重度狭窄、闭塞患者中,pCASL成像中未提示明显的低灌注区域,而采用mASL成像时,可以发现存在低灌注区域并伴有ATT延长,但aCBV保持正常,且患者均未发生急性梗死灶。我们推测这部分患者在发生单侧供血动脉重度狭窄或闭塞时,颅内可以形成代偿良好的侧支循环维持aCBV,满足脑细胞的基本代谢需求,从而避免发生急性缺血事件。但由于侧支循环的迂曲细长,在采用pCASL成像时,被标记的血液相对缓慢,部分停留在微血管间,导致采集信号增高,进而在一定程度上高估了脑血流灌注,无法提示缺血区域。因此,mASL获得多参数可以早期敏感地识别因供血动脉狭窄处于脑循环储备失代偿期的脑组织,及时采取积极的干预措施,延缓脑组织缺血进展。

       本研究中,2例患者在mASL成像校正后,仍存在低灌注区域伴有局部高信号,但局部高信号数量减少,同时aCBV显著增加,表明患者存在局部脑组织高灌注。分析其主要原因可能是长期脑动脉狭窄或闭塞条件下,颅内可代偿开放前、后交通动脉,大脑前与中动脉之间、大脑中与后动脉之间的吻合侧支循环,由于局部低氧代谢,血管扩张,血流缓慢,从而导致局部血容量增加。其次,可能与病变血管部分自发性再通有关。既往有研究显示约30%未经过血管内治疗的脑梗死患者的责任血管在症状出现后的1周内仍会出现自发性再通[33]。研究证明,3D pCASL检查下显示的梗死后高灌注与出血转化相关,且认为迟发(首发症状12 h以上)的过度灌注更有可能发生严重的出血转化[34, 35]。mASL技术可以显著减少ATA对脑组织局部高灌注评估的干扰,同时结合参数aCBV可以更为精准地呈现高灌注区域,为患者预后评估提供有益的线索和依据。

3.4 本研究的局限性

       本研究尚存在以下局限性:第一,本研究样本量较小,仅纳入颈内动脉及大脑中动脉重度狭窄、闭塞患者进行对侧比较性研究,还需要进一步扩大研究样本细化责任血管进行定量分析。第二,本研究采用动脉供血区域手工勾画ROI获取平均值的方法,未能分别测量供血动脉ROI灰质和白质的脑血流灌注参数,不利于分析对于脑血流灌注更加敏感的灰质区域,且手工勾画ROI可重复性较差,依赖于操作者,需在多个层面上手动绘制ROI,耗时较长。今后需要开展自动分割技术以提高效率并进行脑实质的分区进行深入探讨。第三,本研究未纳入美国国立卫生院卒中量表及脑卒中改良Rankin量表等神经量表对患者的转归进行相关性研究,后续将进一步跟踪随访。

4 结论

       综上所述,mASL技术获取多个灌注参数,更加全面地对脑组织血流变化进行评估,为供血动脉重度狭窄、闭塞患者的脑灌注评估提供了一种无创、准确且敏感的检查方法,从而协助临床医生选择适当的诊治措施以及评估治疗效果,具有极高的应用价值和发展前景。

[1]
WANG Y, ZHAO X, LIU L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study[J]. Stroke, 2014, 45(3): 663-669. DOI: 10.1161/STROKEAHA.113.003508.
[2]
SCHIPHORST A T, TURC G, HASSEN W B, et al. Incidence, severity and impact on functional outcome of persistent hypoperfusion despite large-vessel recanalization, a potential marker of impaired microvascular reperfusion: Systematic review of the clinical literature[J]. J Cereb Blood Flow Metab, 2024, 44(1): 38-49. DOI: 10.1177/0271678X231209069.
[3]
李春梅, 吴学永, 邓新源. 3.0 T磁共振3D-ASL联合DWI技术在脑缺血性疾病中的应用价值[J]. 影像研究与医学应用, 2022, 6(17): 89-91.
LI C M, WU X Y, DENG X Y. Application value of 3.0 T magnetic resonance 3D-ASL combined with DWI technology in cerebral ischemic diseases[J]. Journal of Imaging Research and Medical Application, 2022, 6(17): 89-91.
[4]
JAISWAL S K, FULING Y, LI M. Prevalence of intracranial artery stenosis in patients with acute ischemic stroke in a tertiary care hospital of China[J]. JNMA J Nepal Med Assoc, 2020, 58(229): 634-639. DOI: 10.31729/jnma.5201.
[5]
闫天志, 张超, 刘清祥, 等. 大脑中动脉粥样硬化斑块特征及脑灌注分析与急性脑梗死发生的相关性研究[J]. 磁共振成像, 2022, 13(5): 106-110. DOI: 10.12015/issn.1674-8034.2022.05.019.
YAN T Z, ZHANG C, LIU Q X, et al. The correlation between the characteristics of middle cerebral artery atherosclerotic plaque, cerebral perfusion and the occurrence of acute cerebral infarction[J]. Chin J Magn Reson Imaging, 2022, 13(5): 106-110. DOI: 10.12015/issn.1674-8034.2022.05.019.
[6]
MOSCONI M G, PACIARONI M. Treatments in ischemic stroke: Current and future[J]. Eur Neurol, 2022, 85(5): 349-366. DOI: 10.1159/000525822.
[7]
VACLAVIK D, VOLNY O, CIMFLOVA P, et al. The importance of CT perfusion for diagnosis and treatment of ischemic stroke in anterior circulation[J/OL]. J Integr Neurosci, 2022, 21(3): 92 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/35633173/. DOI: 10.31083/j.jin2103092.
[8]
ZEDDE M, NAPOLI M, GRISENDI I, et al. Perfusion status in lacunar stroke: A pathophysiological issue[J/OL]. Diagnostics (Basel), 2023, 13(12): 2003 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/37370898/. DOI: 10.3390/diagnostics13122003.
[9]
LINDNER T, BOLAR D S, ACHTEN E, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[10]
秦元林, 于昊, 陈月芹. 多模态MRI对急性缺血性脑卒中诊断及预后评估的研究进展[J]. 磁共振成像, 2022, 13(8): 112-116. DOI: 10.12015/issn.1674-8034.2022.08.025.
QIN Y L, YU H, CHEN Y Q. Research progress of multimodal MRI in the diagnosis and prognosis assessment of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(8): 112-116. DOI: 10.12015/issn.1674-8034.2022.08.025.
[11]
LI R, JIN S, WANG Y, et al. Brain perfusion alterations on 3D pseudocontinuous arterial spin-labeling MR imaging in patients with autoimmune encephalitis: A case series and literature review[J]. AJNR Am J Neuroradiol, 2022, 43(5): 701-706. DOI: 10.3174/ajnr.A7478.
[12]
王禄伟, 杜金骏, 韩秉艳. 3.0 T MRI pCASL技术评价脑瘫患儿手术疗效的应用价值[J]. 磁共振成像, 2020, 11(9): 726-729. DOI: 10.12015/issn.1674-8034.2020.09.002.
WANG L W, DU J J, HAN B Y. Application value of 3.0 T MRI pCASL technology in evaluating the curative effect of children with cerebral palsy[J]. Chin J Magn Reson Imaging, 2020, 11(9): 726-729. DOI: 10.12015/issn.1674-8034.2020.09.002.
[13]
HAIDAR H, MAJZOUB R E, HAJEER S, et al. Arterial spin labeling (ASL-MRI) versus fluorodeoxyglucose-PET (FDG-PET) in diagnosing dementia: a systematic review and meta-analysis[J/OL]. BMC Neurol, 2023, 23(1): 385 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/37875879/. DOI: 10.1186/s12883-023-03432-y.
[14]
颜楚明, 马青峰. 动脉自旋标记在急性缺血性脑卒中中的临床应用[J]. 中华脑血管病杂志(电子版), 2020, 14(3): 151-154. DOI: 10.11817/j.issn.1673-9248.2020.03.006.
YAN C M, MA Q F. Clinical application of arterial spin labeling in acute ischemic stroke[J]. Chinese Journal of Cerebrovascular Disease (electronic edition), 2020, 14(3): 151-154. DOI: 10.11817/j.issn.1673-9248.2020.03.006.
[15]
BINNIE L R, PAULS M M H, BENJAMIN P, et al. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease[J]. Transl Stroke Res, 2022, 13(4): 583-594. DOI: 10.1007/s12975-021-00983-5.
[16]
SHIRVANI S, TOKARCZUK P, STATTON B, et al. Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge[J]. Eur Radiol, 2019, 29(1): 232-240. DOI: 10.1007/s00330-018-5628-3.
[17]
姜海龙, 苏文, 陈慧铀, 等. 双参数动脉自旋标记成像在评估急性缺血性卒中侧支循环和预后中的应用价值[J]. 磁共振成像, 2023, 14(3): 53-57, 80. DOI: 10.12015/issn.1674-8034.2023.03.010.
JIANG H L, SU W, CHEN H Y, et al. Application value of arterial spin labeling imaging with dual parameters in evaluating collateral circulation and prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(3): 53-57, 80. DOI: 10.12015/issn.1674-8034.2023.03.010.
[18]
YU H, LI Y, FENG Y, et al. Enhanced arterial spin labeling magnetic resonance imaging of cerebral blood flow of the anterior and posterior circulations in patients with intracranial atherosclerotic stenosis[J/OL]. Front Neurosci, 2021, 15: 823876 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/35250438/. DOI: 10.3389/fnins.2021.823876.
[19]
KIM H G, LEE J H, CHOI J W, et al. Multidelay arterial spin-labeling MRI in neonates and Infants: Cerebral perfusion changes during brain maturation[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1912-1918. DOI: 10.3174/ajnr.A5774.
[20]
MORI T, ITO H, HARADA M, et al. Multi-delay arterial spin labeling brain magnetic resonance imaging study for pediatric autism[J]. Brain Dev, 2020, 42(4): 315-321. DOI: 10.1016/j.braindev.2020.01.007.
[21]
AMRAN D, ARTZI M, AIZENSTEIN O, et al. BV-GAN: 3D time-of-flight magnetic resonance angiography cerebrovascular vessel segmentation using adversarial CNNs[J/OL]. J Med Imaging (Bellingham), 2022, 9(4): 044503 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/36061214/. DOI: 10.1117/1.JMI.9.4.044503.
[22]
AROUS E J, JUDELSON D R, AGRAWAL A, et al. Computed tomography angiography-derived area stenosis calculations overestimate degree of carotid stenosis compared with North American Symptomatic Carotid Endarterectomy Trial-derived diameter stenosis calculations[J/OL]. J Vasc Surg, 2021, 74(2): 579-585.e2 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/33548432/. DOI: 10.1016/j.jvs.2020.12.085.
[23]
杨丽, 贺元彦, 李彦瑶, 等. 3D-ASL中动脉穿行伪影和动脉内高信号对急性缺血性脑卒中患者近期临床预后的评估价值[J]. 磁共振成像, 2023, 14(10): 36-41. DOI: 10.12015/issn.1674-8034.2023.10.007.
YANG L, HE Y Y, LI Y Y, et al. 3D-ASL of arterial transit artifact and the intra-arterial high-intensity signal in the evaluation of short-term clinical outcomes in patients with acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(10): 36-41. DOI: 10.12015/issn.1674-8034.2023.10.007.
[24]
SUZUKI Y, CLEMENT P, DAI W, et al. ASL lexicon and reporting recommendations: A consensus report from the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI)[J/OL]. Magn Reson Med, 2023 [2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/37876299/. DOI: 10.1002/mrm.29815.
[25]
中华医学会放射学分会质量管理与安全管理学组, 中华医学会放射学分会磁共振学组. 动脉自旋标记脑灌注MRI技术规范化应用专家共识[J]. 中华放射学杂志, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
Quality Management and Safety Management Group, Radiology Branch of Chinese Medical Association, Magnetic resonance Group, Radiology Branch of Chinese Medical Association. Expert consensus on the standardized application of arterial spin-labeled cerebral perfusion MRI technique[J]. Chin J Radiol, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
[26]
LYU J, MA N, LIEBESKIND D S, et al. Arterial spin labeling magnetic resonance imaging estimation of antegrade and collateral flow in unilateral middle cerebral artery stenosis[J]. Stroke, 2016, 47(2): 428-433. DOI: 10.1161/STROKEAHA.115.011057.
[27]
FAN A P, GUO J, KHALIGHI M M, et al. Long-delay arterial spin labeling provides more accurate cerebral blood flow measurements in moyamoya patients: A simultaneous positron emission tomography/MRI study[J]. Stroke, 2017, 48(9): 2441-2449. DOI: 10.1161/STROKEAHA.117.017773.
[28]
AMEMIYA S, WATANABE Y, TAKEI N, et al. Arterial transit time-based multidelay combination strategy improves arterial spin labeling cerebral blood flow measurement accuracy in severe steno-occlusive diseases[J]. J Magn Reson Imaging, 2022, 55(1): 178-187. DOI: 10.1002/jmri.27823.
[29]
SOGABE S, SATOMI J, TADA Y, et al. Intra-arterial high signals on arterial spin labeling perfusion images predict the occluded internal carotid artery segment[J]. Neuroradiology, 2017, 59(6): 587-595. DOI: 10.1007/s00234-017-1828-9.
[30]
LI B H, WANG J H, YANG S, et al. Cerebral blood volume index may be a predictor of independent outcome of thrombectomy in stroke patients with low ASPECTS[J]. J Clin Neurosci, 2022, 103: 188-192. DOI: 10.1016/j.jocn.2022.07.006.
[31]
BROOCKS G, HAUPT W, MCDONOUGH R, et al. Impact of relative cerebral blood volume reduction on early neurological improvement in extensive ischemic stroke[J]. Eur J Neurol, 2022, 29(11): 3264-3272. DOI: 10.1111/ene.15491.
[32]
高培毅. 脑梗死前期脑局部低灌注的CT灌注成像表现及分期[J]. 中国卒中杂志, 2008, 3(2): 114-119. DOI: 10.3969/j.issn.1673-5765.2008.02.008.
GAO P Y. CT perfusion imaging findings and staging of local cerebral hypoperfusion in the early stage of cerebral infarction[J]. Chin J Stroke, 2008, 3(2): 114-119. DOI: 10.3969/j.issn.1673-5765.2008.02.008.
[33]
张莹, 陈振, 王新丽, 等. 颈内动脉系统脑梗死责任血管自发性再通的MRA研究[J]. 国际医学放射学杂志, 2017, 40(5): 511-515. DOI: 10.19300/j.2017.L5405zt.
ZHANG Y, CHEN Z, WANG X L, et al. MRA study of spontaneous recanalization of cerebral infarction in the internal carotid artery system[J]. International Journal of Medical Radiology, 2017, 40(5): 511-515. DOI: 10.19300/j.2017.L5405zt.
[34]
YU S, LIEBESKIND D S, DUA S, et al. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke[J]. J Cereb Blood Flow Metab, 2015, 35(4): 630-637. DOI: 10.1038/jcbfm.2014.238.
[35]
NIIBO T, OHTA H, MIYATA S, et al. Prediction of blood-brain barrier disruption and intracerebral hemorrhagic infarction using arterial spin-labeling magnetic resonance imaging[J]. Stroke, 2017, 48(1): 117-122. DOI: 10.1161/STROKEAHA.116.013923.

上一篇 基于功能连接分析对基底节区卒中患者的偏侧化研究
下一篇 症状性颈动脉粥样硬化斑块与缺血性卒中后短期mRS评分的相关性
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2