分享:
分享到微信朋友圈
X
临床研究
症状性颈动脉粥样硬化斑块与缺血性卒中后短期mRS评分的相关性
吴静静 张亚婷 张林 尹喜 宋娟 王成伟

Cite this article as: WU J J, ZHANG Y T, ZHANG L, et al. The correlation between symptomatic carotid atherosclerotic plaques and short-term mRS score after ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(3): 26-30.本文引用格式吴静静, 张亚婷, 张林, 等. 症状性颈动脉粥样硬化斑块与缺血性卒中后短期mRS评分的相关性[J]. 磁共振成像, 2024, 15(3): 26-30. DOI:10.12015/issn.1674-8034.2024.03.005.


[摘要] 目的 使用高分辨磁共振血管壁成像(high-resolution magnetic resonance vessel wall imaging, HR-VWI)检查分析症状性颈动脉粥样硬化斑块构成与首次发生缺血性卒中患者进行卒中二级预防3个月后mRS评分的相关性,为此类患者的预后评价提供理论依据。材料与方法 2022年11月至2023年6月,在石河子大学第一附属医院招募出现缺血性卒中症状并在症状侧存在颈动脉粥样硬化斑块的患者。将其中符合纳入及排除标准且完成了3个月卒中二级预防的患者连续入组本研究并进行改良Rankin量表(modified Rankin Scale, mRS)评分,根据mRS评分将入组患者分为不良预后组(mRS≥2)和良好预后组(mRS<2)。比较两组患者的临床数据、首次HR-VWI检查的斑块成分和卒中二级预防3个月后的斑块成分。分析斑块中不同成分与mRS评分的相关性。结果 共计入组66例(不良预后组39例,良好预后组27例),两组患者的临床资料差异无统计学意义(P>0.05)。首次检查中,不良预后组含有斑块内出血的比例高于良好预后组(P<0.05),良好预后组斑块内存在钙化的比例以及钙化体积均大于不良预后组(P<0.05);卒中二级预防3个月后,不良预后组和良好预后组间含有斑块内出血的比例无明显差异(P>0.05),良好预后组中斑块内存在钙化的比例更大、钙化体积更大(P<0.05)。结论 症状性颈动脉粥样硬化斑块中的钙化及钙化体积与首次发生缺血性卒中患者进行卒中二级预防3个月后mRS评分具有相关性;症状初期行HR-VWI检查可对因颈动脉粥样硬化斑块发生缺血性卒中患者的预后评价提供理论依据。
[Abstract] Objective High resolution magnetic resonance vessel wall imaging (HR-VWI) was used to analyze the correlation between the composition of symptomatic carotid atherosclerotic plaque and the mRS score three months after secondary prevention of stroke in patients with first ischemic stroke, so as to provide a theoretical basis for the prognosis evaluation of such patients.Materials and Methods From November 2022 to June 2023, patients with ischemic stroke symptoms and carotid atherosclerotic plaque on the symptomatic side were recruited in the First Affiliated Hospital of Shihezi University. Patients who meet the inclusion and exclusion criteria and have completed secondary stroke prevention for 3 months will be continuously enrolled in this study and will receive a modified Rankin Scale (mRS) score. Based on the mRS score, the enrolled patients will be divided into a poor prognosis group (mRS≥2) and a good prognosis group (mRS<2). Compare the clinical data, plaque composition on the first HR-VWI examination, and plaque composition three months after secondary stroke prevention between two groups of patients. Analyzing the correlation between different components in plaques and mRS scores.Results A total of 66 patients were included in the group (39 in the poor prognosis group and 27 in the good prognosis group), and there was no statistically significant difference in clinical data between the two groups (P>0.05). In the first examination, the proportion of plaque bleeding in the poor prognosis group was higher than that in the good prognosis group (P<0.05), and the proportion and volume of calcification in plaques in the good prognosis group were higher than those in the poor prognosis group (P<0.05); After 3 months of secondary prevention of stroke, there was no significant difference in the proportion of plaque bleeding between the poor prognosis group and the good prognosis group (P>0.05), while the good prognosis group had a larger proportion and volume of calcification in plaques (P<0.05).Conclusions The calcification and calcification volume in symptomatic carotid atherosclerotic plaques were correlated with the mRS score 3 months after secondary prevention of stroke in patients with first ischemic stroke; HR-VWI at the initial stage of symptoms can provide a theoretical basis for the prognosis evaluation of ischemic stroke patients due to carotid atherosclerotic plaque.
[关键词] 颈动脉粥样硬化斑块;缺血性卒中;改良Rankin量表;高分辨磁共振血管壁成像;磁共振成像
[Keywords] carotid atherosclerotic plaque;ischemic stroke;modified Rankin Scale;high-resolution magnetic resonance vessel wall imaging;magnetic resonance imaging

吴静静    张亚婷    张林    尹喜    宋娟    王成伟 *  

石河子大学第一附属医院磁共振科,石河子 832000

通信作者:王成伟,E-mail:308199733@qq.com

作者贡献声明:王成伟设计本研究的方案,对稿件重要的内容进行了修改,获得了八师石河子市财政科技计划项目的基金资助;吴静静起草和撰写稿件,获取、分析及解释了本研究的数据,获得了石河子大学第一附属医院青年基金项目的基金资助;张亚婷、张林、尹喜、宋娟获取、分析及解释本研究的数据,对稿件重要的内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 八师石河子市财政科技计划项目 2022SF001 石河子大学第一附属医院青年基金项目 QN202136
收稿日期:2023-09-09
接受日期:2024-02-05
中图分类号:R445.2  R543.4  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.03.005
本文引用格式吴静静, 张亚婷, 张林, 等. 症状性颈动脉粥样硬化斑块与缺血性卒中后短期mRS评分的相关性[J]. 磁共振成像, 2024, 15(3): 26-30. DOI:10.12015/issn.1674-8034.2024.03.005.

0 引言

       颈动脉狭窄是一种动脉狭窄闭塞的疾病,通常由动脉粥样硬化引起[1]。颈动脉狭窄的临床表现严重程度存在显著差异,导致颈动脉狭窄的动脉粥样斑块可以稳定无症状;也可以成为大脑栓塞的源头,导致缺血事件,它是8%~15%缺血性卒中(症状性颈动脉狭窄)的潜在原因[2]。颈动脉狭窄评估和管理的最重要方面是评估发生缺血性事件的风险,不同阶段采取不同的治疗原则,在急性期,神经保护是主要治疗方法[3];减少脑缺血再灌注损伤也至关重要。在亚急性和慢性阶段,功能恢复成为首要目标[4]。因此需要确定所提出的治疗方案带来的益处以及潜在并发症的风险[5],即要判断患者神经功能预后。而单纯依靠狭窄程度进行判断并不能满足临床个体化治疗方案制订的需要,尽管众所周知,狭窄程度是预测同侧脑血管事件风险的最重要的标志物。但目前随着深入研究,发现仅仅关注狭窄程度并不足以决定在一些颈动脉粥样硬化患者中选择哪种治疗方案是最好的,而关注动脉粥样硬化斑块的成分可能会有所帮助[6, 7]。高分辨磁共振血管壁成像(high-resolution magnetic resonance vessel wall imaging, HR-VWI)具有分辨率高、可视化血管壁结构、非侵入性等优点,被认为是一种可靠的评估斑块成分的方法[8, 9, 10, 11]。已有多项研究[12, 13, 14]应用HR-VWI探究何种斑块成分是预测卒中复发风险的标记物,但是对于卒中未复发患者为何短期内出现不同的神经功能预后,这种情况是否与卒中发生时的斑块成分有关的研究却少见报道,如果二者具有相关性,那么在选择治疗方法前通过分析斑块成分对患者的预后做出评价,将有利于临床制订个性化治疗策略。因此,本研究使用HR-VWI检查探究首次发生缺血性卒中患者的症状性颈动脉粥样硬化斑块构成与卒中二级预防3个月后mRS评分的相关性,并结合3个月后的斑块构成进行验证,以明确斑块内何种成分从症状初期至卒中二级预防3个月均与改良Rankin量表(modified Rankin Scale, mRS)评分具有相关性,为此类患者的预后评价提供理论依据。

1 材料与方法

1.1 研究对象

       2022年11月至2023年6月,在石河子大学第一附属医院连续招募首次出现缺血性卒中症状并1周内通过磁共振血管成像(magnetic resonance angiography, MRA)确定在症状侧存在颈动脉粥样硬化斑块的患者。缺血性卒中症状定义为突然出现的神经功能缺陷,持续超过24小时,除了血管起因外没有明显原因,并且在CT/MR图像上没有脑内出血征象。并根据纳入标准和排除标准进行筛选,以尽可能确保颈动脉动脉粥样硬化作为真正的缺血事件主要诱因。

       将招募的患者按照纳入及排除标准加入本研究。本研究遵守《赫尔辛基宣言》,经石河子大学第一附属医院伦理委员会批准,批准文号:KJ2023-031-01,全体受试者均签署了知情同意书。

       纳入标准:(1)45岁≤年龄≤80岁;(2)首次发生缺血性卒中;(3)有明显的症状侧;(4)入院时美国国立卫生研究院中风量表(National Institute of Health Stroke Scale, NIHSS)评分[15]>0且<15;(5)入院1周内行HR-VWI检查;(6)症状侧的颈内动脉狭窄程度≥50%。

       排除标准:(1)非脑缺血性卒中疾病,包括颅内出血(颅内实质性出血、蛛网膜下腔出血、硬脑膜下血肿或硬脑膜外血肿)、肿瘤、感染等;(2)疑似心源性栓塞或先前有先天性心脏病、风湿性心脏病、房颤等病史;(3)疑似非动脉粥样硬化性血管病变(如血管炎、动脉夹层或脑动脉闭塞症);(4)颈动脉支架置入术史或颈动脉内膜切除术史;(5)将进行紧急溶栓或介入治疗;(6)经MRA确认同侧颅内颈动脉或大脑中动脉存在严重狭窄或闭塞现象;(7)由于失语或瘫痪而无法说话或书写等;(8)已知的神经系统疾病或严重的慢性疾病。

       根据纳入及排除标准招募患者,记录患者出院时的NIHSS评分,将NIHSS评分>0且≤20的患者入组并进行3个月的随访,每2周电话随访并记录:(1)是否遵医嘱规律进行缺血性卒中二级预防;(2)是否出现新/复发急、慢性病或/和需要进行新的治疗。将其中遵循医嘱规律进行缺血性卒中二级预防且未再次出现新/复发急、慢性病的患者在随访满3个月时由神经科专家对其进行mRS评分。

       根据mRS评分将入组患者分为不良预后组(mRS≥2)和良好预后组(mRS<2)。图1为入组患者的流程图。

图1  患者入组流程图。
Fig. 1  Patient inclusion flowchart.

1.2 临床特征

       收集患者的以下临床资料:年龄、性别、吸烟史、糖尿病、高血脂、高血压、入院和出院时的NIHSS评分以及卒中二级预防进行3个月时的mRS评分。

1.3 影像学检查和图像分析

       使用GE DISCOVER MR750 3.0 T磁共振仪,颈部线圈,头先进仰卧位,行三维时间飞跃法(3D time of flight, 3D-TOF)成像、双翻转脉冲(double inversion recovery, DIR)T1WI、快速自旋回波(fast spin echo, FSE)T2WI、FSE T1WI。3D TOF MRA序列参数:TR 23 ms,TE 3.5 ms,FA 25°;FSE T1WI序列参数:TR 800 ms,TE 7.5 ms,FA 90°;FSE T2WI序列参数:TR 3 000 ms,TE 57 ms,FA 90°。以上序列FOV均为160 mm×160 mm,层厚均为1 mm。MR扫描中心定位于症状侧颈动脉分叉处。

       由两名具有相关操作经验的高年资医师共同操作,使用MRI‐plaque View(VP Diagnostic, Seattle, WA, USA)软件对MR图像进行分析。采用4分量表对所有图像的图像质量(image quality, IQ)进行评估,分类如下:IQ=1,质量差(血管壁、管腔边缘和斑块成分无法识别);IQ=2,足够的质量(血管壁边界可以识别,但成分子结构不能确定);IQ=3,质量好;IQ=4,高质量图像。本研究中所有图像IQ≥3分。本研究中斑块成分(斑块内出血、钙化、钙化体积、脂质核体积、疏松基质体积)数据均由MRI‐plaque View软件测量[16]

1.4 统计学分析

       使用SPSS 25.0统计分析软件(IBM Corporation, New York, USA)对临床特征及影像学资料进行统计学分析。连续变量表示为均值±标准差,分类变量以数值或百分比表示,组间比较连续变量采用独立样本t检验;分类变量比较采用卡方检验。P<0.05表示差异有统计学意义。

2 结果

2.1 临床特征比较

       不良预后组和良好预后组临床特征比较无统计学意义(P<0.05)(表1)。

表1  不良预后组与良好预后组间临床特征比较
Tab. 1  Comparison of Clinical Features between Poor Prognosis Group and Good Prognosis Group

2.2 斑块成分比较

2.2.1 症状初期斑块成分比较

       不良预后组与良好预后组中存在斑块内出血的比例分别为38.5%和11.1%(P<0.05)。两组间斑块内钙化比例(43.6% vs. 77.8%)和钙化体积[(6.151±22.407)mm3 vs.(23.401±36.428)mm3]差异有统计学意义(P<0.05)。两组间脂质核体积[(174.539±157.752)mm3 vs.(200.755±205.151)mm3 ]、疏松基质体积[(210.998±163.014)mm3 vs.(214.230±192.579)mm3]差异无统计学意义(P>0.05)(图2表2)。

图2  男,63岁,因出现肢体麻木症状就诊。2A:磁共振血管成像显示左侧颈内动脉斑块;2B:T2WI显示颈内动脉斑块以轻度高信号为主,伴少量低信号影,斑块表面不规则;2C:使用MRI‐plaque View软件分析斑块成分。
图3  图2同一患者3个月后复查。3A:磁共振血管成像显示左侧颈内动脉斑块;3B:T2WI显示颈内动脉斑块以等高信号为主,伴少量低信号影,斑块表面大致规则;3C:使用MRI‐plaque View软件分析斑块成分。
Fig. 2  Male, 63 years old, presented with symptoms of numbness in the limbs. 2A: Magnetic resonance angiography shows plaques in the left internal carotid artery; 2B: T2WI shows that the carotid artery plaque is mainly mild high signal, accompanied by a small amount of low signal shadows, and the plaque surface is irregular; 2C: Use MRI plaque View software to analyze plaque components.
Fig. 3  Three months later, a follow-up examination in the same patient as Figure 2. 3A: Magnetic resonance angiography shows a plaque in the left internal carotid artery; 3B: T2WI shows that the carotid artery plaque is mainly of equal high signal intensity with a small amount of low signal shadow, and the surface of the plaque is roughly regular; 3C: Use MRI plaque View software to analyze plaque components.
表2  不良预后组与良好预后组间斑块成分比较
Tab. 2  Comparison of plaque composition between the poor prognosis group and the good prognosis group

2.2.2 二级预防3个月斑块成分比较

       二级预防3个月,不良预后组与良好预后组中斑块内出血的比例为5.1%和0.0%(P>0.05)。两组的斑块内均存在钙化。两组间钙化体积[(24.603±23.018)mm3 vs.(48.376±40.726)mm3]差异具有统计学意义(P<0.05)。两组间脂质核体积[(57.083±33.261)mm3 vs.(51.871±32.569)mm3]、疏松基质体积[(32.743±23.420)mm3 vs.(36.916±23.269)mm3]差异无统计学意义(P>0.05)(图3表3)。

表3  不良预后组与良好预后组间斑块成分比较
Tab. 3  Comparison of plaque composition between the poor prognosis group and the good prognosis group

3 讨论

       目前各种评分系统已被用于评估脑卒中的预后[17],其中mRS评分最常用,其在临床治疗和研究中具有重要的作用[18, 19],根据相关共识,mRS评分等于2分的患者部分功能丧失但能独立生活1周以上[20],因此本研究将mRS评分等于2作为判断患者预后评分的分界。本研究采用HR-VWI分析缺血性卒中发生时的症状性颈动脉粥样硬化斑块构成与规律进行卒中二级预防3个月的mRS评分的相关性。研究结果表明部分斑块成分在症状出现时与卒中二级预防3个月后mRS评分均具有相关性。

3.1 斑块内出血与二级预防3个月后mRS评分的关系

       研究发现卒中二级预防3个月后mRS评分高(mRS≥2)的患者,症状初期存在斑块内出血的比例较高,考虑斑块内出血可能是影响短期脑卒中预后的因素,但3个月后的斑块构成中,仅不良预后组内存在斑块内出血。说明症状出现时的斑块内出血经过规律治疗后并不一定是影响患者短期脑卒中预后的因素。

       针对这一结果,研究者考虑如下可能:(1)症状初期有斑块内出血是间接影响脑卒中预后结果的因素。ZHAO等[21]的研究认为在持续治疗下,与不含斑块内出血的斑块相比,含有斑块内出血的斑块的脂质含量增加更大。这可能说明斑块内出血通过转化为其他斑块成分,比如脂质,从而间接影响脑卒中预后,但在本研究中脂质核体积和疏松基质体积均有减少,同时研究[22]发现他汀类药物通过增加血管成熟度从而减少斑块内出血,这可以解释3个月后的检查中斑块内出血明显减少,但是仍无法证实斑块内出血与脑卒中预后的相关性。(2)症状初期斑块内出血导致的炎症影响了脑卒中预后结果。根据既往研究[23, 24, 25]可知斑块内出血与新生血管通透性增加有关,通过红细胞膜和血红蛋白降解产物的积累,沉积游离胆固醇、浸润巨噬细胞和扩大坏死核心,导致炎症发生,影响斑块稳定性,导致神经系统症状。因此不良预后组症状初期有较高比例的斑块内出血,而3个月后两组间斑块内出血比例差异无统计学意义。

       目前很少有关于斑块内出血与神经功能损害之间关系的研究,一项研究[26]认为入院时的NHISS评分显示存在斑块内出血的患者的神经损伤可能比无斑块内出血的患者的神经损伤少。但是也没有阐明出现这一结果的机制。因此斑块内出血与脑卒中预后的关系仍将是一个有价值的研究方向。

3.2 斑块内钙化与二级预防3个月后mRS评分的关系

       本研究发现,卒中二级预防3个月后mRS评分低(mRS<2)的患者,症状初期斑块内存在钙化比例较高,且钙化体积更大;二级预防3个月后的HR-VWI显示所有患者斑块内均可见钙化,良好预后组中钙化体积更大。说明斑块内存在钙化并钙化体积越大,短期治疗后的mRS评分越低,脑卒中预后越好。颈动脉斑块中大钙化和微钙化形成可能存在不同机制,大钙化被认为是大量微钙化堆积形成。通过SHI等[28]和LEE等[29]的研究,斑块内微钙化是斑块不稳定的潜在来源,其病理过程为血管内膜内皮功能障碍导致低密度脂蛋白颗粒沉积在动脉内膜层。同时低密度脂蛋白可导致动脉壁内的炎症反应,如果急性炎症持续下去,可能会对脑组织造成损害,导致神经功能和脑水肿的恶化[30],并会产生不稳定斑块[29, 31]。如果炎症最终消退,会形成一个大钙化和稳定的斑块。这与本研究中良好预后组患者拥有更大的钙化体积的结果相符。同时一项临床研究[27]也表明,他汀类药物会增加动脉粥样硬化斑块的钙化体积。但斑块内钙化的作用也存在争议[32],关于钙化在脑血管事件之间的作用存在矛盾结论,一些研究[33]认为钙化与脑血管事件之间存在正相关,也有研究[34]表明钙化在无症状斑块中的存在率更高;并且认为这与炎症刺激具有相关性。本研究考虑以上结论争议是由于斑块内钙化形态差异导致斑块中生物应力分布不均匀所致,特别是突入血管腔内的钙化结节可能导致内皮细胞受损并发生急性血栓[28];这说明未来进一步研究斑块构成与脑卒中预后相关性时需要将斑块内钙化形态纳入考虑。但目前本研究仍可得出结论,即斑块内钙化和钙化体积与脑卒中预后具有相关性。

3.3 优势与不足

       本研究的优势在于,它是一项前瞻性队列研究,证实了症状初期颈动脉斑块部分成分与进行卒中二级预防患者的mRS评分具有相关性,从而通过早期的HR-VWI检查分析斑块成分,有助于临床判断脑卒中预后。然而,这项研究也有一些局限性。首先,它是一项单中心研究,样本纳入数量相对较少,需要进一步进行多中心、大样本研究;其次,随访时间较短,继续随访将更有助于判断斑块构成在脑卒中预后中的作用。

4 结论

       综上所述,症状性颈动脉粥样硬化斑块中的钙化及钙化体积与缺血性卒中患者短期mRS评分具有相关性;症状初期行HR-VWI检查可对因颈动脉粥样硬化斑块发生缺血性卒中患者的评估及预后评价提供理论依据。

[1]
BONATI L H, JANSEN O, DE BORST G J, et al. Management of atherosclerotic extracranial carotid artery stenosis[J]. Lancet Neurol, 2022, 21(3): 273-283. DOI: 10.1016/S1474-4422(21)00359-8.
[2]
SCHMID S, TSANTILAS P, KNAPPICH C, et al. Age but not sex is associated with higher risk of in-hospital stroke or death after carotid artery stenting in symptomatic and asymptomatic carotid stenosis[J]. J Vasc Surg, 2019, 69(4): 1090-1101. DOI: 10.1016/j.jvs.2018.03.439.
[3]
DESAI S M, JHA R M, LINFANTE I. Collateral circulation augmentation and neuroprotection as adjuvant to mechanical thrombectomy in acute ischemic stroke[J]. Neurology, 2021, 97(20Suppl 2): S178-S184. DOI: 10.1212/WNL.0000000000012809.
[4]
QIAO C, LIU Z, QIE S. The implications of microglial regulation in neuroplasticity-dependent stroke recovery[J/OL]. Biomolecules, 2023, 13(3): 571 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/36979506/. DOI: 10.3390/biom13030571.
[5]
BIR S C, KELLEY R E. Carotid atherosclerotic disease: A systematic review of pathogenesis and management[J]. Brain Circ, 2022, 8(3): 127-136. DOI: 10.4103/bc.bc_36_22.
[6]
WENG S T, LAI Q L, CAI M T, et al. Detecting vulnerable carotid plaque and its component characteristics: Progress in related imaging techniques[J/OL]. Front Neurol, 2022, 13: 982147 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/36188371/. DOI: 10.3389/fneur.2022.982147.
[7]
FERNANDEZ-ALVAREZ V, LINARES-SANCHEZ M, SUAREZ C, et al. Novel imaging-based biomarkers for identifying carotid plaque vulnerability[J/OL]. Biomolecules, 2023, 13(8): 1236 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/37627301/. DOI: 10.3390/biom13081236.
[8]
PORAMBO M E, DEMARCO J K. MR imaging of vulnerable carotid plaque[J]. Cardiovasc Diagn Ther, 2020, 10(4): 1019-1031. DOI: 10.21037/cdt.2020.03.12.
[9]
GEIGER M A, FLUMIGNAN R, SOBREIRA M L, et al. Carotid Plaque Composition and the Importance of Non-Invasive in Imaging Stroke Prevention[J/OL]. Front Cardiovasc Med, 2022, 9: 885483 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/35651908/. DOI: 10.3389/fcvm.2022.885483.
[10]
TAPIS P, EL-KOUSSY M, HEWER E, et al. Plaque vulnerability in patients with high- and moderate-grade carotid stenosis - comparison of plaque features on MRI with histopathological findings[J/OL]. Swiss Med Wkly, 2020, 150: w20174 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/32065837/. DOI: 10.4414/smw.2020.20174.
[11]
FABIANO S, MANCINO S, STEFANINI M, et al. High-resolution multicontrast-weighted MR imaging from human carotid endarterectomy specimens to assess carotid plaque components[J]. Eur Radiol, 2008, 18(12): 2912-2921. DOI: 10.1007/s00330-008-1091-x.
[12]
JIANG P, CHEN Z, HIPPE D S, et al. Association between carotid bifurcation geometry and atherosclerotic plaque vulnerability: A Chinese atherosclerosis risk evaluation study[J]. Arterioscler Thromb Vasc Biol, 2020, 40(5): 1383-1391. DOI: 10.1161/ATVBAHA.119.313830.
[13]
SABA L, SAAM T, JAGER H R, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurol, 2019, 18(6): 559-572. DOI: 10.1016/S1474-4422(19)30035-3.
[14]
DENG F, MU C, YANG L, et al. Carotid plaque magnetic resonance imaging and recurrent stroke risk: A systematic review and meta-analysis[J/OL]. Medicine (Baltimore), 2020, 99(13): e19377 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/32221065/. DOI: 10.1097/MD.0000000000019377.
[15]
GLYMOUR M M, BERKMAN L F, ERTEL K A, et al. Lesion characteristics, NIH stroke scale, and functional recovery after stroke[J]. Am J Phys Med Rehabil, 2007, 86(9): 725-733. DOI: 10.1097/PHM.0b013e31813e0a32.
[16]
CHEN Y F, CHEN Z J, LIN Y Y, et al. Stroke risk study based on deep learning-based magnetic resonance imaging carotid plaque automatic segmentation algorithm[J/OL]. Front Cardiovasc Med, 2023, 10: 1101765 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/36910524/. DOI: 10.3389/fcvm.2023.1101765.
[17]
LI X D, LI M M. A novel nomogram to predict mortality in patients with stroke: a survival analysis based on the MIMIC-Ⅲ clinical database[J/OL]. BMC Med Inform Decis Mak, 2022, 22(1): 92 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/35387672/. DOI: 10.1186/s12911-022-01836-3.
[18]
JAHAN R, SAVER J L, SCHWAMM L H, et al. Association between time to treatment with endovascular reperfusion therapy and outcomes in patients with acute ischemic stroke treated in clinical practice[J]. JAMA, 2019, 322(3): 252-263. DOI: 10.1001/jama.2019.8286.
[19]
KESELMAN B, GDOVINOVA Z, JATUZIS D, et al. Safety and outcomes of intravenous thrombolysis in posterior versus anterior circulation stroke: Results from the safe implementation of treatments in stroke registry and Meta-analysis[J]. Stroke, 2020, 51(3): 876-882. DOI: 10.1161/STROKEAHA.119.027071.
[20]
SAVER J L, CHAISINANUNKUL N, CAMPBELL B, et al. Standardized nomenclature for modified rankin scale global disability outcomes: Consensus recommendations from stroke therapy academic industry roundtable XI[J]. Stroke, 2021, 52(9): 3054-3062. DOI: 10.1161/STROKEAHA.121.034480.
[21]
ZHAO X Q, SUN J, HIPPE D S, et al. Magnetic resonance imaging of intraplaque hemorrhage and plaque lipid content with continued lipid-lowering therapy: Results of a magnetic resonance imaging substudy in AIM-HIGH[J/OL]. Circ Cardiovasc Imaging, 2022, 15(11): e14229 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/36378778/. DOI: 10.1161/CIRCIMAGING.122.014229.
[22]
BAGANHA F, DE JONG R, PETERS E A, et al. Atorvastatin pleiotropically decreases intraplaque angiogenesis and intraplaque haemorrhage by inhibiting ANGPT2 release and VE-Cadherin internalization[J]. Angiogenesis, 2021, 24(3): 567-581. DOI: 10.1007/s10456-021-09767-9.
[23]
ZHANG X G, XUE J, YANG W H, et al. Inflammatory markers as independent predictors for stroke outcomes[J/OL]. Brain Behav, 2021, 11(1): e1922 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/33314753/. DOI: 10.1002/brb3.1922.
[24]
BOULLIER A, BIRD D A, CHANG M K, et al. Scavenger receptors, oxidized LDL, and atherosclerosis[J]. Ann N Y Acad Sci, 2001, 947(1): 214-223. DOI: 10.1111/j.1749-6632.2001.tb03943.x.
[25]
PARMA L, BAGANHA F, QUAX P, et al. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis[J]. Eur J Pharmacol, 2017, 816: 107-115. DOI: 10.1016/j.ejphar.2017.04.028.
[26]
CHE F, MI D, WANG A, et al. Extracranial carotid plaque hemorrhage predicts ipsilateral stroke recurrence in patients with carotid atherosclerosis - a study based on high-resolution vessel wall imaging MRI[J/OL]. BMC Neurol, 2022, 22(1): 237 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/35764942/. DOI: 10.1186/s12883-022-02758-3.
[27]
JINNOUCHI H, SATO Y, SAKAMOTO A, et al. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability[J]. Atherosclerosis, 2020, 306: 85-95. DOI: 10.1016/j.atherosclerosis.2020.05.017.
[28]
SHI X, GAO J, LV Q, et al. Calcification in atherosclerotic plaque vulnerability: Friend or foe?[J/OL]. Front Physiol, 2020, 11: 56 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/32116766/. DOI: 10.3389/fphys.2020.00056.
[29]
LEE S J, LEE I K, JEON J H. Vascular calcification-new insights into its mechanism[J/OL]. Int J Mol Sci, 2020, 21(8): 2685 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/32294899/. DOI: 10.3390/ijms21082685.
[30]
LIU D D, CHU S F, CHEN C, et al. Research progress in stroke-induced immunodepression syndrome (SIDS) and stroke-associated pneumonia (SAP)[J]. Neurochem Int, 2018, 114: 42-54. DOI: 10.1016/j.neuint.2018.01.002.
[31]
NAKAHARA T, DWECK M R, NARULA N, et al. Coronary artery calcification: From mechanism to molecular imaging[J]. JACC Cardiovasc Imaging, 2017, 10(5): 582-593. DOI: 10.1016/j.jcmg.2017.03.005.
[32]
SABA L, NARDI V, CAU R, et al. Carotid artery plaque calcifications: Lessons from histopathology to diagnostic imaging[J]. Stroke, 2022, 53(1): 290-297. DOI: 10.1161/STROKEAHA.121.035692.
[33]
MORI H, TORII S, KUTYNA M, et al. Coronary artery calcification and its progression: What does it really mean?[J]. JACC Cardiovasc Imaging, 2018, 11(1): 127-142. DOI: 10.1016/j.jcmg.2017.10.012.
[34]
DABRAVOLSKI S A, MARKIN A M, ANDREEVA E R, et al. Molecular mechanisms underlying pathological and therapeutic roles of pericytes in atherosclerosis[J/OL]. Int J Mol Sci, 2022, 23(19): 11663 [2023-09-09]. https://pubmed.ncbi.nlm.nih.gov/36232962/. DOI: 10.3390/ijms231911663.

上一篇 多延迟动脉自旋标记技术在动脉重度狭窄或闭塞患者脑灌注评估中的价值
下一篇 基于多序列MRI影像组学的胶质母细胞瘤风险分层预测研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2