分享:
分享到微信朋友圈
X
临床研究
T1WI增强直方图分析鉴别血管瘤型脑膜瘤和非典型脑膜瘤
韩涛 刘显旺 蒋健 周凤瑜 董文洁 张斌 周俊林

Cite this article as: HAN T, LIU X W, JIANG J, et al. Differential diagnosis of angiomatous meningioma and atypical meningioma based on contrast enhanced T1-weighted images histogram analysis[J]. Chin J Magn Reson Imaging, 2024, 15(3): 37-42.本文引用格式韩涛, 刘显旺, 蒋健, 等. T1WI增强直方图分析鉴别血管瘤型脑膜瘤和非典型脑膜瘤[J]. 磁共振成像, 2024, 15(3): 37-42. DOI:10.12015/issn.1674-8034.2024.03.007.


[摘要] 目的 本研究拟探讨结构MRI特征及T1WI增强图像直方图分析在鉴别非典型脑膜瘤(atypical meningioma, AtM)和血管瘤型脑膜瘤(angiomatous meningioma, AnM)中的价值。材料与方法 回顾性分析经组织病理证实的AtM(n=40)和AnM(n=30)的临床、影像和病理资料。使用MaZda软件在轴位T1WI增强图像上对肿瘤进行逐层勾画并获得肿瘤强化区的直方图参数。结构MRI特征采用卡方检验或者Fisher's精确检验对比,采用独立样本t检验或Mann-Whitney U检验对两组间的直方图参数进行比较,两组间的诊断效能由受试者工作特征(receiver operating characteristic, ROC)曲线来评估。结果 AtM组中 肿瘤坏死的发生率(75.0%)明显高于AnM组(36.7%)(P=0.001)。AnM 组中T1WI增强图像的平均值(P=0.003)和第1(P<0.001)、第10(P=0.001)、第50百分位数(P=0.009)均大于AtM,差异有统计学意义。ROC曲线分析显示,肿瘤坏死+融合直方图参数对二者的鉴别诊断效能最优,其曲线下面积、敏感度、特异度、准确率、阳性预测值和阴性预测值分别为0.858(0.753~0.930)、95.00%、66.67%、82.86%、79.20%和90.90%。结论 常规MRI特征和T1WI增强直方图分析有助于术前无创鉴别AnM和AtM,其中以肿瘤坏死+融合直方图参数的诊断效能最高。
[Abstract] Objective To investigate the value of structural MRI features and enhanced T1-weighted images histogram analysis in the differential diagnosis of atypical meningioma (AtM) and angiomatous meningioma (AnM).Materials and Methods The clinical, imaging and pathological data of AtM (n=40) and AnM (n=30) were collected retrospectively. The tumor was delineated layer-by-layer on axial enhanced T1-weighted images by MaZda software and histogram parameters of tumor enhancement areas were obtained. Structural MRI characteristics were compared using the chi-square test or Fisher's exact test. Histogram parameters were compared between the two groups using independent samples t-tests or Mann-Whitney U-tests, and diagnostic efficacy between the two groups was assessed by receiver operating characteristic (ROC) curves.Results The incidence of tumor necrosis was significantly higher in the AtM group (75.0%) than in the AnM group (36.7%) (P=0.001). The mean (P=0.003), 1st percentile (P<0.001), 10th percentile (P=0.001), and 50th percentile (P=0.009) of the AnM were greater than those of the AtM. ROC curve analysis showed that tumor necrosis + combined histogram parameters had the optimal differential diagnostic efficacy between the two, with area under the curve, sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of 0.858 (0.753-0.930), 95.00%, 66.67%, 82.86%, 79.20%, and 90.90%.Conclusions The conventional MRI features and histogram analysis based on enhanced T1-weighted images is helpful in the preoperative non-invasive differentiation of AnM and AtM, of which the diagnostic efficacy is highest in the tumor necrosis + combined histogram parameters.
[关键词] 脑膜瘤;血管瘤型脑膜瘤;非典型脑膜瘤;磁共振成像;直方图分析
[Keywords] meningioma;angiomatous meningioma;atypical meningioma;magnetic resonance imaging;histogram analysis

韩涛 1, 2, 3, 4   刘显旺 1, 2, 3, 4   蒋健 1, 2, 3, 4   周凤瑜 1, 2, 3, 4   董文洁 1, 2, 3, 4   张斌 1, 2, 3, 4   周俊林 1, 3, 4*  

1 兰州大学第二医院放射科,兰州 730030

2 兰州大学第二临床医学院,兰州 730030

3 甘肃省医学影像重点实验室,兰州 730030

4 医学影像人工智能甘肃省国际科技合作基地,兰州 730030

通信作者:周俊林,E-mail:lzuzjl601@163.com

作者贡献声明:周俊林设计本研究的方案,对稿件重要的智力内容进行了修改,获得了国家自然科学基金面上项目、甘肃省科技计划项目和中华国际医学交流基金会-SKY影像科研基金的资助;韩涛起草和撰写稿件,获取、分析和解释本研究的数据;刘显旺、蒋健、周凤瑜、董文洁和张斌获取、分析或解释本研究的数据,对稿件重要的智力内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金面上项目 81772006,82071872 甘肃省科技计划项目 21YF5FA123 中华国际医学交流基金会-SKY影像科研基金项目 Z-2014-07-2101
收稿日期:2023-09-12
接受日期:2024-01-31
中图分类号:R445.2  R739.45 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.03.007
本文引用格式韩涛, 刘显旺, 蒋健, 等. T1WI增强直方图分析鉴别血管瘤型脑膜瘤和非典型脑膜瘤[J]. 磁共振成像, 2024, 15(3): 37-42. DOI:10.12015/issn.1674-8034.2024.03.007.

0 引言

       脑膜瘤是第二常见的原发性中枢神经系统肿瘤[1],发病率仅次于胶质瘤,占所有脑肿瘤的39%[2],占所有中枢神经系统良性肿瘤的53.4%[3]。脑膜瘤有15个组织学亚型,不同级别、不同亚型的脑膜瘤的治疗方式和预后存在很大差异[4]。非典型脑膜瘤(atypical meningioma, AtM)属于世界卫生组织(World Health Organization, WHO)2级脑膜瘤,其恶性程度较高,切除后放疗是主要的治疗方式[5, 6]。相比之下,血管瘤型脑膜瘤(angiomatous meningioma, AnM)是WHO 1级脑膜瘤,单纯手术切除后预后良好,10年总生存率>90%[7, 8]。此外,AnM血供极其丰富,术前栓塞可有效预防术中出血和降低术后复发率等并发症的发生,提高可切除性[9]。因此,术前准确区分AnM和AtM对于制订手术计划和改善患者的预后至关重要。然而,常规的结构MRI特征(肿瘤形状、位置、肿瘤强化模式、瘤周水肿等)对AtM与AnM的鉴别诊断不具有特异性。T1WI增强直方图分析是一种客观、定量的方法,可以提取肿瘤内部肉眼不可见的微观结构信息,能更好地反映肿瘤组织学特征的空间异质性。既往研究表明该方法在脑肿瘤鉴别诊断、分级预测和评估预后等方面具有良好的应用价值[10, 11, 12, 13, 14]。因此,本研究拟探讨基于T1WI增强的直方图分析在AnM和AtM鉴别诊断中的价值。

1 材料与方法

1.1 一般资料

       本研究回顾性分析2018年1月至2021年12月就诊于兰州大学第二医院的106例AnM和AtM患者的临床、影像及病理资料。本研究遵守《赫尔辛基宣言》,经兰州大学第二医院伦理审查委员会批准,免除受试者知情同意,批准文号:2023A-169。纳入标准:(1)手术切除后病理诊断为AtM或AnM,临床、影像和病理资料完整;(2)患者在脑膜瘤切除术前1周均接受了MRI检查。排除标准:(1)术前接受了放化疗、靶向治疗或者其他治疗的脑膜瘤患者;(2)MRI图像质量不佳或者序列不全。最终,本研究共纳入30例AnM[男7例,女23例,年龄(54.67±10.57)岁]和40例AtM患者[男16例,女24例,年龄(52.50±9.62)岁]。

1.2 检查方法

       术前头部MRI平扫和增强图像均由德国西门子Verio 3.0 T超导MRI扫描仪扫描获取,患者处于仰卧位。T1WI扫描参数:TR 550 ms,TE 11 ms,层厚5 mm,层间距1.5 mm,FOV 260 mm×260 mm,矩阵256×256;T2WI扫描参数:TR 2 200 ms,TE 96 ms,层厚5 mm,层间距1.5 mm,FOV 260 mm×260 mm,矩阵256×256,激励次数为2;增强扫描注射对比剂二乙基三氨基戊乙酸钆(Gd-DTPA 0.1 mmol/kg),注射对比剂后1分钟开始扫描,获得轴位、矢状位和冠状位增强T1WI。

1.3 常规MRI特征分析

       所有入组的脑膜瘤患者的常规MRI征象由2名放射科医生(医生A和B分别有8和10年的工作经验)采用双盲法独立评估以下常规MRI特征:(1)肿瘤位置(颅底、非颅底);(2)肿瘤坏死(有、无);(3)强化模式(均匀、不均匀);(4)肿瘤形状(类圆形、不规则形);(5)瘤周水肿(无或轻度、中或重度)。如有分歧经协商后达成一致。

1.4 图像分析

       将所有入组患者的MRI图像调整至相同的窗宽窗位后从PACS工作站上以DICOM格式导出,由两名经验丰富的放射科主治医生(分别具有8年和10年工作经验)分别使用MaZda软件(http://www.eletel.p.lodz.pl/mazda/)在轴位T1WI增强图像上采用双盲法沿着肿瘤强化区的边缘逐层勾画并进行直方图分析[6],最终结果为两位放射科医生测量的平均值。在勾画感兴趣体积(volume of interest, VOI)时,尽量避开肿瘤内肉眼可见的坏死囊变和出血区。手动勾画的VOI用红色填充,并生成以下直方图参数:平均值、变异度、偏度、峰度和第1、10、50、90、99百分位数。AnM和AtM组典型病例及其直方图如图1、2所示。

图1  男,46岁,左侧额颞部血管瘤型脑膜瘤。1A:轴位T1WI平扫图;1B:轴位T1WI增强图;1C:轴位T1WI增强上勾画的ROI以红色填充;1D:ROI的直方图分析;1E:梭形、胖梭形瘤细胞束状、旋涡状排列,胞核圆形、卵圆形,无明显异型性,核分裂象少见,偶见砂粒体,部分区域见增生小血管,肿瘤周围粘连少量脑组织(HE ×100)。
图2  女,49岁,右侧大脑镰旁非典型脑膜瘤。2A:轴位T1WI平扫图;2B:轴位T1WI增强图;2C:轴位T1WI增强上勾画的ROI以红色填充;2D:ROI的直方图分析;2E:肿瘤细胞呈束状、漩涡状排列紧密,核轻度异型(HE ×200)。ROI:感兴趣区。
Fig. 1  A 46-year-old male patient with angiomatous meningioma on the left frontotemporal region. 1A: Axial T1WI image; 1B: Axial T1WI - contrast enhanced image; 1C: ROI outlined on axial T1WI - contrast enhanced filled in red; 1D: Histogram analysis of ROIs; 1E: Spindle-shaped, fat spindle-shaped tumour cells arranged in bundles and whirlpools, with rounded or ovoid nuclei, no obvious heterogeneity, rare nuclear schizophrenia, occasional granulomas, hyperplasia of small blood vessels in some areas, and a small amount of brain tissue adhering to the periphery of the tumor (HE ×100).
Fig. 2  A 49-year-old female patient with atypical meningioma on the right side of the falx. 2A: Axial T1WI image; 2B: Axial T1WI-contrast enhanced image; 2C: ROI outlined on axial T1WI-contrast enhanced filled in red; 2D: Histogram analysis of ROIs; 2E: Tumor cells are tightly packed in fascicles and swirls, with mildly heterogeneous nuclei (HE ×200). ROI: region of interest.

1.5 统计学方法

       SPSS 25.0和MedCalc 19.1统计软件用于本研究数据分析。分类变量用卡方检验比较;所有直方图参数均用均数±标准差或中位数(下、上四分位数)的形式表示,符合正态分布者组间差异以独立样本t检验比较,非正态分布组间差异以Mann-Whitney U检验比较。通过绘制受试者工作特征曲线(receiver operating characteristic, ROC)评估平均值、第1百分位数、第10百分位数、第50百分位数、肿瘤坏死以及肿瘤坏死+融合直方图参数在术前鉴别AnM和ATM的价值。P<0.05表示差异有统计学意义。

2 结果

2.1 AnM和AtM组间一般资料和常规MRI特征的比较

       AnM和AtM组间一般资料和常规MRI特征的比较如表1所示。性别及年龄在两组间差异无统计学意义(P=0.142、P=0.375)。肿瘤坏死(P=0.001)在两组间差异具有统计学意义,而位置、形状、强化模式和瘤周水肿在两组间差异不具有统计学意义(P>0.05)。

表1  AnM和AtM组间一般资料和常规MRI特征的比较
Tab. 1  Comparison of general data and conventional MRI features between AnM and AtM groups

2.2 AnM和AtM组间直方图参数的比较

       AnM和AtM各直方图参数的值如表2所示。AnM组直方图参数中的平均值(P=0.003)和第1(P<0.001)、第10(P=0.001)、第50百分位数(P=0.009)均大于AtM组,且各参数间差异均具有统计学意义;而AnM和AtM组间变异度、偏度、峰度和第90、99百分位数的差异均不具有统计学意义(P>0.05)。

表2  AnM和AtM组间直方图参数的比较
Tab. 2  Comparison of histogram parameters between AnM and AtM groups

2.3 常规MRI特征和直方图参数的ROC曲线分析

       AnM和AtM组间差异具有统计学意义的常规MRI特征和直方图参数的比较如表3图3所示。ROC分析结果表明,肿瘤坏死以及直方图参数中的平均值和第1、10、50百分位数在术前鉴别AnM和AtM中均显示出较高的诊断效能,其中肿瘤坏死+融合直方图参数对二者的鉴别诊断效能最优,其曲线下面积(area under the curve, AUC)、敏感度、特异度、准确率、阳性预测值和阴性预测值分别为0.858(95%置信区间:0.753~0.930)、95.00%、66.67%、82.86%、79.20%和90.90%。

图3  肿瘤坏死和T1WI增强直方图参数术前鉴别诊断AnM和AtM的ROC曲线,肿瘤坏死+融合直方图参数鉴别诊断效能最佳,AUC值为0.858。AnM:血管瘤型脑膜瘤;AtM:非典型脑膜瘤;ROC:受试者工作特征;AUC:曲线下面积。
Fig. 3  ROC curve for preoperative discrimination AnM from AtM with enhanced T1-weighted histogram parameters and tumor necrosis, and the tumor necrosis + combined histogram parameters showed the best diagnostic performance with an AUC of 0.858. AtM: atypical meningioma; AnM: angiomatous meningioma; ROC: receiver operating characteristic; AUC: area under the curve.
表3  常规MRI特征和直方图参数区分AnM和AtM的ROC曲线分析
Tab. 3  ROC curve analysis of conventional MRI features and histogram parameters distinguishing AnM from AtM

3 讨论

       本研究基于结构MRI特征及T1WI增强图像直方图分析术前鉴别AnM和AtM,结果表明肿瘤坏死、平均值和第1、10、50百分位数在两组间差异具有统计学意义,当联合肿瘤坏死和融合直方图参数时对二者的鉴别诊断效能最优,为脑膜瘤患者治疗方案的选择和术后管理提供了指导依据。目前,据我们所知,本研究是首次利用T1WI增强的直方图分析术前鉴别AnM和AtM的研究。

3.1 MRI结构特征鉴别AnM和AtM的价值

       本研究结果表明,肿瘤坏死是唯一可以鉴别AnM和AtM的结构MRI特征,这与既往研究结果[15]不相符,一种可能的解释是相比于AnM,AtM是最常见的WHO 2级脑膜瘤,肿瘤细胞增殖更加活跃,容易导致肿瘤生长缺血缺氧,发生坏死的概率明显增加。与既往研究[16]结果不同的是瘤周水肿在两组间差异不具有统计学意义,这可能与血供丰富的AnM易导致血管内皮生长因子过表达,刺激瘤周脑水肿的发生有关,最终导致AnM表现出与AtM相似的瘤周水肿[15]。此外,强化模式和形状等基本特征在两组间也是重叠的,这可能与本研究相对较小的样本量有关。

3.2 T1C直方图参数鉴别AnM和AtM的价值

       MRI检查是术前诊断和术后积极监测期间成像的金标准,并提供了肿瘤大小,位置和邻近软组织结构的侵犯等必要信息[17]。相比扩散加权成像、动态磁敏感对比增强、扩散张量成像等先进且复杂的功能性MRI方法,T1WI增强扫描是脑肿瘤MR检查的常规序列,操作简单、扫描时间短,不仅能够清晰显示解剖结构和病灶内部特征,并在一定程度上还可以反映病灶的血供和血脑屏障破坏情况[18, 19]。全体积直方图分析是纹理分析最常用的一种方法,消除了放置不同的ROI导致的采样偏倚,可以自动、无创地从勾画的整个VOI中提取与肿瘤组织特征相关的定量信息,为脑肿瘤的诊断提供更为丰富、深层次的信息[20, 21, 22, 23]。我们的研究表明,AnM组直方图参数的平均值、第1百分位数、第10百分位数、第50百分位数均显著高于AtM组,这主要与AnM的组织成分有关,AnM最大的特征是血管占肿瘤体积的50%以上,其血供丰富可能是产生上述结果的主要原因。AnM属于WHO 1级,AtM为WHO 2级脑膜瘤,本研究结果发现AnM的平均和第1、10、50、90、99百分位数均高于AtM,与LI等[24]的研究结果相似。刘显旺等[25]发现T1WI增强直方图分析在预测脑膜瘤脑侵犯方面具有重要价值,脑侵犯组的直方图参数大于非脑侵犯组,且以第1百分位数的预测性能最佳。王宝龙等[26]基于2D T1增强直方图纹理分析对17例孤立性纤维性肿瘤/血管周细胞瘤(solitary fibrous tumors/hemangiopericytoma, SFT/HPC)与29例AnM进行鉴别诊断,结果发现标准差对二者的鉴别效能最优,其AUC、敏感度和特异度分别为0.816、58.1%和100%,经多参数联合分析发现,标准差和平均值结合的诊断效能进一步提高。张蕊等[27]对33例脑室内脑膜瘤和24例脉络丛乳头状瘤进行T1加权增强成像全域直方图分析,9个提取的直方图参数中,第10百分位数和峰度具有较高诊断效能,二者联合的AUC可提高至0.88,敏感度和特异度为87.50%和81.80%。

       直方图参数中的变异度反映数据的离散程度[28, 29, 30],偏度和峰度描述了直方图曲线的形状分布,主要反映肿瘤的异质性[31]。此外,这几个参数往往与肿瘤的恶性程度相关,因此可作为评价预后的独立因素。先前的研究显示[24],与典型脑膜瘤相比,非典型或恶性脑膜瘤的峰度和偏度更高。GIHR等[10]研究发现,偏度与脑膜瘤Ki-67的表达呈显著相关,并已被证明是鉴别低级别和高级别脑膜瘤和评估肿瘤复发风险的一个有价值的分子标志物。在本研究中,我们发现变异度、偏度和峰度在两组间差异不具有统计学意义,这可能与AnM具有一定潜在的侵袭性有关,也有可能与本研究的样本量相对不足相关。

3.3 本研究的局限性

       首先,本研究为样本量相对较少的回顾性研究,多中心、前瞻性的数据有待于进一步验证。此外,本研究受软件所限,研究的直方图参数单一,缺乏对熵和能量值等参数的研究,在今后的研究中,应借助人工智能的方法结合多序列MRI图像进行进一步的研究。

4 结论

       综上所述,本研究结果表明,常规MRI特征和T1WI增强直方图分析能在术前无创鉴别AnM和AtM,其中肿瘤坏死+直方图参数对二者的鉴别效能最高,对手术方案的选择和治疗策略的制订具有重要临床价值。

[1]
ZHANG J, YAO K, LIU P, et al. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study[J/OL]. EBioMedicine, 2020, 58: 102933 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/32739863/. DOI: 10.1016/j.ebiom.2020.102933.
[2]
OSTROM Q T, CIOFFI G, GITTLEMAN H, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016[J/OL]. Neuro Oncol, 2019, 21(Suppl 5): v1-v100 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/31675094/. DOI: 10.1093/neuonc/noz150.
[3]
RAMAN S G, PRAKASH P, SUMIT J, et al. Clinical outcome and recurrence after meningioma surgery: An experience from a developing country, Nepal[J/OL]. World Neurosurg, 2021, 148: e138-e144 [2023-09-12].https://pubmed.ncbi.nlm.nih.gov/33359878/. DOI: 10.1016/j.wneu.2020.12.079.
[4]
HORTOBÁGYI T, BENCZE J, VARKOLY G, et al. Meningioma recurrence[J]. Open Med (Wars), 2016, 11(1): 168-173. DOI: 10.1515/med-2016-0032.
[5]
HAN T, ZHANG J, LIU X, et al. Differentiating atypical meningioma from anaplastic meningioma using diffusion weighted imaging[J/OL]. Clin Imaging, 2022, 82: 237-243 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/32739863/. DOI: 10.1016/j.clinimag.2021.12.004.
[6]
OGASAWARA C, PHILBRICK B D, ADAMSON D C. Meningioma: A review of epidemiology, pathology, diagnosis, treatment, and future directions[J/OL]. Biomedicines, 2021, 9(3): 319 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/33801089/. DOI: 10.3390/biomedicines9030319.
[7]
KIM L. A narrative review of targeted therapies in meningioma[J/OL]. Chin Clin Oncol, 2020, 9(6): 76 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/33353364/. DOI: 10.21037/cco-2020-mbt-01.
[8]
PELLERINO A, BRUNO F, PALMIERO R, et al. Clinical significance of molecular alterations and systemic therapy for meningiomas: Where do we stand?[J/OL]. Cancers, 2022, 14(9): 2256. [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/35565385/. DOI: 10.3390/cancers14092256.
[9]
HE W, XIAO X, LI X, et al. Whole-tumor histogram analysis of apparent diffusion coefficient in differentiating intracranial solitary fibrous tumor/hemangiopericytoma from angiomatous meningioma[J/OL]. Eur J Radiol, 2019, 112: 186-191 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/30777209/. DOI: 10.1016/j.ejrad.2019.01.023.
[10]
GIHR G A, HORVATH D, KOHLHLF P, et al. Histogram profiling of postcontrast T1-weighted MRI gives valuable insights into tumor biology and enables prediction of growth kinetics and prognosis in meningiomas[J]. Transl Oncol, 2018, 11(4): 957-961. DOI: 10.1016/j.tranon.2018.05.009.
[11]
陈鑫, 张国琴, 阮秀杭等. 基于对比增强T1WI直方图分析预测多形性胶质母细胞瘤IDH1突变状态[J].放射学实践, 2020, 35(4):452-455. DOI: 10.13609/j.cnki.1000-0313.2020.04.011.
CHEN X, ZHANG G Q, RUAN X H, et al. Post-contrast enhanced T1WI histogram analysis in prediction the status of glioblastoma multiforme[J/OL]. Radiology Practice, 2020, 35(4):452-455. DOI: 10.13609/j.cnki.1000-0313.2020.04.011.
[12]
张胜, 李玉林, 黄送. 增强T1WI直方图在胶质母细胞瘤和脑单发转移瘤鉴别诊断中的应用[J]. 中国医学影像学杂志, 2017, 25(2): 89-92. DOI: 10.3969/j.issn.1005-5185.2017.02.003.
ZHANG S, LI Y L, HUANG S. Post contrast-enhanced T1WI histogram analysis for differentiating glioblastom from solitary brain metastasis[J]. Chin J Med Imaging, 2017, 25(2): 89-92. DOI: 10.3969/j.issn.1005-5185.2017.02.003.
[13]
MEYER H J, WIENKE A, SUROV A. ADC values of benign and high grade meningiomas and associations with tumor cellularity and proliferation - A systematic review and meta-analysis[J/OL]. J Neurol Sci, 2020, 415: 116975 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/32535250/. DOI: 10.1016/j.jns.2020.116975.
[14]
WANG G, ZHOU J. The value of whole-volume apparent diffusion coefficient histogram analysis in preoperatively distinguishing intracranial solitary fibrous tumor and transitional meningioma[J/OL]. Front Oncol, 2023, 13: 1155162 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/37260978/. DOI: 10.3389/fonc.2023.1155162.
[15]
LIU X, HAN T, WANG Y, et al. Differentiating angiomatous meningioma from atypical meningioma using histogram analysis of apparent diffusion coefficient maps[J]. Quant Imaging Med Surg, 2023, 13(7): 4160-4170. DOI: 10.21037/qims-22-1224.
[16]
张学凌, 刘显旺, 魏晋艳, 等. MRI扩散加权成像对血管瘤型脑膜瘤与非典型脑膜瘤的鉴别诊断价值[J]. 中国临床医学影像杂志, 2023, 34(9): 615-619. DOI: 10.12117/jccmi.2023.09.002.
ZHANG X L, LIU X W, WEI J Y, et al. The value of MRI diffusion-weighted imaging for differential diagnosis of angiomatous meningioma and atypical meningioma[J]. J Chin Clin Med Imag, 2023, 34(9): 615-619. DOI: 10.12117/jccmi.2023.09.002.
[17]
GOLDBRUNNER R, MINNITI G, PREUSSER M, et al. EANO guidelines for the diagnosis and treatment of meningiomas[J/OL]. Lancet Oncol, 2016, 17(9): e383-e391 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/27599143/. DOI: 10.1016/S1470-2045(16)30321-7.
[18]
LIU X, DENG J, SUN Q, et al. Differentiation of intracranial solitary fibrous tumor/hemangiopericytoma from atypical meningioma using apparent diffusion coefficient histogram analysis[J]. Neurosurg Rev, 2022, 45(3): 2449-2456. DOI: 10.1007/s10143-022-01771-x.
[19]
XUE C, ZHOU Q, ZHANG P, et al. MRI histogram analysis of tumor-infiltrating CD8+ T cell levels in patients with glioblastoma[J/OL]. Neuroimage Clin, 2023, 37: 103353 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/9958466/. DOI: 10.1016/j.nicl.2023.103353.
[20]
SUROV A, HAMERLA G, MEYER H J, et al. Whole lesion histogram analysis of meningiomas derived from ADC values. Correlation with several cellularity parameters, proliferation indexKI 67, nucleic content, and membrane permeability[J/OL]. Magn Reson Imaging. 2018, 51: 158-162 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/29782920/. DOI: 10.1016/j.mri.2018.05.009.
[21]
NAGANO H, SAKAI K, TAZOE J, et al. Whole-tumor histogram analysis of DWI and QSI for differentiating between meningioma and schwannoma: a pilot study[J]. Jpn J Radiol, 2019, 37(10): 694-700. DOI: 10.1007/s11604-019-00862-y.
[22]
OZTURK M, POLAT A V, SELCUK M B. Whole-lesion ADC histogram analysis versus single-slice ADC measurement for the differentiation of benign and malignant soft tissue tumors[J/OL]. Eur J Radiol, 2021, 143: 109934 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/34500411/. DOI: 10.1016/j.ejrad.2021.109934.
[23]
PAYABVASH S, TIHAN T, CHA S. Volumetric voxelwise apparent diffusion coefficient histogram analysis for differentiation of the fourth ventricular tumors[J]. Neuroradiol J, 2018, 31(6): 554-564. DOI: 10.1177/1971400918800803.
[24]
LI X, MIAO Y, HAN L, et al. Meningioma grading using conventional MRI histogram analysis based on 3D tumor measurement[J/OL]. Eur J Radiol, 2019, 110: 45-53 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/30599872/. DOI: 10.1016/j.ejrad.2018.11.016.
[25]
刘显旺, 谢一婧, 韩涛, 等. 基于T1WI增强全域直方图分析术前预测脑膜瘤脑侵犯的价值[J]. 中国临床医学影像杂志, 2022, 33(10): 691-695. DOI: 10.12117/jccmi.2022.10.002.
LIU X W, XIE Y J, HAN T, et al. Value of preoperative prediction of meningioma brain invasion with whole-tumor histogram analysis based on enhanced T1WI[J]. J Chin Clin Med Imaging, 2022, 33(10): 691-695. DOI: 10.12117/jccmi.2022.10.002.
[26]
王宝龙, 赵伟, 丁爽, 等. MRI纹理分析技术在孤立性纤维瘤(SFT)和血管瘤型脑膜瘤(AM)鉴别中的应用价值研究[J]. 中国CT和MRI杂志, 2022, 20(3): 14-17, 20. DOI: 10.3969/j.issn.1672-5131.2022.03.005.
WANG B L, ZHAO W, DING S, et al. Study on the value of MRI texture analysis in the differential diagnosis of solitary fibroma (SFT) and hemangiomatous meningioma (AM)[J]. Chin J CT & MRI, 2022, 20(3): 14-17, 20. DOI: 10.3969/j.issn.1672-5131.2022.03.005.
[27]
张蕊, 白岩, 魏巍, 等. T1加权增强成像全域直方图分析鉴别诊断脑室内脑膜瘤与脉络丛乳头状瘤[J]. 磁共振成像, 2020, 11(3): 171-176. DOI: 10.12015/issn.1674-8034.2020.03.003.
ZHANG R, BAI Y, WEI W, et al. Whole-tumor histogram analysis of enhanced T1-weighted images for differentiating diagnosis meningioma from choroid plexus papilloma in ventricle[J]. Chin J Magn Reson Imaging, 2020, 11(3): 171-176. DOI: 10.12015/issn.1674-8034.2020.03.003.
[28]
HAN L, WANG S, MIAO Y, et al. MRI texture analysis based on 3D tumor measurement reflects the IDH1 mutations in gliomas - A preliminary study[J/OL]. Eur J Radiol, 2019, 112: 169-179 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/30777207/. DOI: 10.1016/j.ejrad.2019.01.025.
[29]
XUE C, LIU S, DENG J, et al. Apparent diffusion coefficient histogram analysis for the preoperative evaluation of Ki-67 expression in pituitary macroadenoma[J]. Clin Neuroradiol, 2022, 32(1): 269-276. DOI: 10.1007/s00062-021-01134-x.
[30]
YANG H, LIU X, JIANG J, et al. Apparent diffusion coefficient histogram analysis to preoperative evaluate intracranial solitary fibrous tumor: Relationship to Ki-67 proliferation index[J/OL]. Clin Neurol Neurosurg, 2022, 220: 107364 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/35872434/. DOI: 10.1016/j.clineuro.2022.107364.
[31]
SCHOB S, MEYER H J, DIECKOW J, et al. Histogram analysis of diffusion weighted imaging at 3T is useful for prediction of lymphatic metastatic spread, proliferative activity, and cellularity in thyroid cancer[J/OL]. Int J Mol Sci, 2017, 18(4): 821 [2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/28417929/. DOI: 10.3390/ijms18040821.

上一篇 基于多序列MRI影像组学的胶质母细胞瘤风险分层预测研究
下一篇 急性轻度创伤性脑损伤患者静息态功能MRI多模式研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2