分享:
分享到微信朋友圈
X
基础研究
DCE-MRI联合脂肪酸代谢组学评价兔糖尿病重症肢体缺血骨髓内皮祖细胞功能
费紫嫣 高宇凡 李亮 刘昌盛 查云飞

Cite this article as: FEI Z Y, GAO Y F, LI L, et al. Combing DCE-MRI and fatty acid metabolomics to evaluate the function of bone marrow endothelial progenitor cells in diabetic rabbits with critical limb ischemia.[J]. Chin J Magn Reson Imaging, 2024, 15(3): 143-150.本文引用格式费紫嫣, 高宇凡, 李亮, 等. DCE-MRI联合脂肪酸代谢组学评价兔糖尿病重症肢体缺血骨髓内皮祖细胞功能[J]. 磁共振成像, 2024, 15(3): 143-150. DOI:10.12015/issn.1674-8034.2024.03.023.


[摘要] 目的 探究动态对比增强磁共振成像(dynamic contrast enhanced magnetic resonance imaging, DCE-MRI)微血管渗透性参数和脂肪酸代谢组学评价糖尿病(diabetes mellitus, DM)重症肢体缺血(critical limb ischemia, CLI)兔股骨上段骨髓内皮祖细胞(bone marrow endothelial progenitor cells, BMEPCs)功能。材料与方法 36只雄性新西兰大白兔中随机选取18只兔静脉注射四氧嘧啶构建DM模型兔,其中造模成功的DM兔12只,6只DM造模失败兔处以安乐死。12只DM兔和12只非DM兔行右侧股动脉结扎术分别作为DM合并CLI(DM+CLI)组和单纯CLI组,术后两组各存活10只。6只非DM兔手术暴露右侧股动脉不结扎作为假手术对照(Control)组(n=6),全部存活。各组在术后第0、4周行右侧股骨上段DCE-MRI检查,于术后第4周检测外周血内皮祖细胞和右侧股骨上段BMEPCs数量、BMEPCs迁移和血管生成功能以及骨髓液相色谱-质谱脂肪酸代谢组学,并计算骨髓微血管密度(microvessel density, MVD)。结果 与CLI组和Control组相比较,DM+CLI组术后第4周股骨上段骨髓Ktrans、Kep、Ve值增加(P<0.05),骨髓MVD减少,骨髓棕榈油酸、单不饱和脂肪酸/多不饱和脂肪酸比值以及硬脂酰辅酶A去饱和酶1活性指数减少(P<0.05),延长酶活性指数增加(P<0.05)。DM+CLI组BMEPCs动员、迁移和血管生成能力受损(P<0.05)。术后第4周右侧股骨上段骨髓Ktrans、Kep、Ve值、骨髓脂肪酸合成代谢相关指标均与BMEPCs迁移和血管生成功能存在相关性(P<0.05),对DM+CLI组和CLI组相关参数进行相关性分析,BMEPCs动员能力与Ktrans、Kep、Ve值呈负相关(P<0.05)。结论 DCE-MRI联合脂肪酸代谢组学评价DM+CLI兔骨髓BMEPCs功能是可行的,可以为调脂改善BMEPCs功能和预防截肢的病理生理机制提供定量影像学证据。
[Abstract] Objective To evaluate bone marrow endothelial progenitor cells (BMEPCs) functions of proximal femur in diabetes mellitus (DM) combined with critical limb ischemia (CLI) rabbits via dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) microvascular permeabilities and fatty acid metabonomics.Materials and Methods Eighteen rabbits were randomly selected from 36 male New Zealand big ear white rabbits to build DM model rabbits by intravenous injection of alloxan. Among them, 12 DM rabbits were successfully modeled and 6 rabbits that failed to be modeled were euthanized. 12 DM rabbits and 12 non-DM rabbits underwent right femoral artery ligation as DM combined with CLI (DM+CLI) group and simple CLI group. In the two groups,10 rabbits in each group survived after surgery. Six non-DM rabbits underwent surgery to expose the right femoral artery without ligation as sham operation control (Control) group (n=6) and all survived. DCE-MRI examination of the right proximal femur was performed in each group at week 0 and 4 after operation. The number of peripheral blood endothelial progenitor cells and right proximal femur BMEPCs, migration and angiogenesis function of BMEPCs and bone marrow fatty acid liquid chromatography-mass spectrometry metabonomics were measured at week 4 after operation, as well as bone marrow microvessel density (MVD) calculated.Results Compared with CLI group and Control group, DM+CLI group presented higher Ktrans, Kep, Ve at week 4 after operation, while MVD of bone marrow decreased (P<0.05). In addition, the contents of palmitoleic acid, the ratio of monounsaturated fatty acid/polyunsaturated fatty acid and activity of stearoyl-CoA desaturase 1 index decreased (P<0.05) and elongase activity index increased (P<0.05). The abilities of mobilization, migration and angiogenesis of BMEPCs were impaired in DM+CLI group (P<0.05). At week 4 after operation, the Ktrans, Kep and Ve of right proximal femur bone marrow, the related indexes of bone marrow fatty acid anabolism were positively correlated with BMEPCs migration and angiogenesis functions (P<0.05). Correlation analysis of DM+CLI group and CLI group was performed, and the mobilization ability of BMEPCs was negatively correlated with Ktrans, Kep and Ve.Conclusions It is feasible to evaluate BMEPCs functions in DM+CLI rabbits combining DCE-MRI with fatty acid metabonomics, which can provide visual imaging evidence for the pathophysiological mechanism for lipid regulation therapy to improve functions of BMEPCs and prevent amputation.
[关键词] 糖尿病;重症肢体缺血;内皮祖细胞;动态对比增强磁共振成像;代谢组学;磁共振成像
[Keywords] diabetes mellitus;critical limb ischemia;endothelial progenitor cells;dynamic contrast enhanced magnetic resonance imaging;metabonomics;magnetic resonance imaging

费紫嫣    高宇凡    李亮    刘昌盛    查云飞 *  

武汉大学人民医院放射科,武汉 430060

通信作者:查云飞,E-mail:zhayunfei999@126.com

作者贡献声明:查云飞设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金和武汉大学人民医院交叉创新人才项目的资助;费紫嫣起草和撰写稿件,获取、分析和解释本研究的数据;高宇凡、李亮、刘昌盛获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82171895,81871332 武汉大学人民医院交叉创新人才项目 JCRCZN-2022-013
收稿日期:2023-10-06
接受日期:2024-02-18
中图分类号:R445.2  R-332 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.03.023
本文引用格式费紫嫣, 高宇凡, 李亮, 等. DCE-MRI联合脂肪酸代谢组学评价兔糖尿病重症肢体缺血骨髓内皮祖细胞功能[J]. 磁共振成像, 2024, 15(3): 143-150. DOI:10.12015/issn.1674-8034.2024.03.023.

0 引言

       重症肢体缺血(critical limb ischemia, CLI)是糖尿病(diabetes mellitus, DM)患者下肢外周动脉疾病的终末期[1, 2]。DM合并CLI是一个涉及大血管和微血管系统及其邻近组织的复杂慢性病变进程[3],其截肢率明显高于非DM合并CLI[4, 5]。DM合并CLI微血管病变可能与内皮祖细胞(endothelial progenitor cells, EPCs)功能有关[6, 7, 8],基于自体骨髓EPCs(bone marrow EPCs, BMEPCs)的细胞治疗有助于改善DM合并CLI缺血肢的血流灌注、临床症状并可降低截肢率[9, 10],但仍有部分研究表明该治疗方法未能降低患者截肢率[3, 11],这可能与DM合并CLI存在BMEPCs储备枯竭、动员能力不足以及功能障碍有关[12, 13, 14],评价并改善BMEPCs的功能以降低DM合并CLI截肢率可能是更重要的。DM脂质代谢紊乱会损害EPCs导致内皮细胞功能障碍从而影响下肢新生血管的生成[15, 16, 17],外源性补充多不饱和脂肪酸(polyunsaturated fatty acids, PUFA)可通过改善BMEPCs数量及功能来改善DM伴CLI的血管生成能力[18]

       基于笛卡尔采集的K空间共享三维容积(differential subsampling with cartesian ordering, DISCO)的快速动态对比增强磁共振成像(dynamic contrast enhanced magnetic resonance imaging, DCE-MRI)是一种扫描时间短并具备较高时间和空间分辨率的多相动态对比度增强成像技术[19],DCE-MRI已用于定量评估DM以及DM合并CLI动物模型骨髓微血管灌注和渗透性改变[20, 21]。代谢组学通过筛选具有重要生物学意义的差异代谢物,阐明生物体的代谢过程和变化机制,目前与DM以及CLI相关的代谢组学生物标记物的研究主要集中在氨基酸代谢和血清或肌肉组织的脂肪酸代谢上[22, 23, 24]。有研究联合DCE-MRI与代谢组学表明T1 DM兔腰椎早期微血管渗透性改变与亚油酸通路为主的脂肪酸代谢存在相关性[25],目前尚未见DCE-MRI微血管渗透性参数评价DM合并CLI的BMEPCs功能与相关脂肪酸代谢相关性的研究报道。

       本研究采用DCE-MRI联合脂肪酸代谢组学评价四氧嘧啶诱导DM合并CLI兔BMEPCs功能,旨在为未来改善DM合并CLI BMEPCs功能和预防截肢的病理生理机制提供定量影像学证据。

1 材料与方法

1.1 动物模型制备及分组

       本实验经武汉大学人民医院伦理委员会审查通过,批准文号为WDRM动(福)第20220801A号。由武汉大学动物实验中心提供健康成年雄性新西兰大耳白兔并单笼饲养,室温控制在25 ℃,所有动物处置均遵循实验动物伦理原则。36只2.5~3.0 kg雄性新西兰大耳白兔适应性喂养一周后,禁食不禁水12 h,用血糖仪(三诺安信血糖仪)测量空腹耳缘静脉外周血(peripheral blood, PB)血糖,血糖值均<6.0 mmol/L。随机选取18只兔,用0.9%的生理盐水将四氧嘧啶(Sigma公司)配制成5%的溶液,按照100 mg/kg的剂量经兔耳缘静脉注射,同期,余下兔注入同等剂量的生理盐水,后自由进食进水。48 h后测量兔PB血糖浓度,单次PB血糖测量值≥14 mmol/L或者两次测量值≥11 mmol/L被认定为DM造模成功,结果表明18只兔中DM兔造模成功12只,6只DM造模失败兔通过注射过量3%戊巴比妥钠溶液(4 mL/kg)处以安乐死。

       所有兔继续喂养4周后复测血糖,12只DM兔PB血糖值仍符合兔DM标准[19, 20, 25]。12只DM兔与12只非DM兔行右侧股动脉结扎术分别作为DM合并CLI(DM+CLI)组和单纯CLI组,余下6只非DM兔同期手术暴露右侧股动脉不结扎后并缝合皮肤作为假手术对照(Control)组。右侧股动脉结扎术构建CLI模型操作方法:经兔耳缘静脉注射3%戊巴比妥钠溶液(1 mL/kg)麻醉后,剔除右后肢毛,自右后肢腹股沟中部切开,暴露、分离股动脉,双线结扎并从中剪断,术毕逐层缝合。DM+CLI组因高血糖、股动脉结扎术后感染死亡2只,CLI组因术后感染死亡2只,DM+CLI组、CLI组各存活10只,Control组(n=6)全部存活。三组兔术后第0、4周,测量PB血糖并同期进行数字化X线透视摄影系统SONIALVISION G4(SHIMADZU, JAPAN)检查,参数为:68 kV,160 mA,8.1 ms。由一名具有5年以上工作经验的介入科主治医师经腹主动脉入路插入肝素浸泡的3 F微导管,头端置于腹腔干平面腹主动脉内手动匀速(流率约2~3 mL/s)注射碘佛醇(320 mg I/mL,江苏恒瑞医药股份有限公司,中国)20 mL。数字减影血管造影结果显示右侧股动脉结扎处未再通(图1)。

图1  DM+CLI组兔右侧股动脉结扎前(1A)和结扎后(1B)数字减影血管造影图,红色箭为右侧股动脉结扎处。DM+CLI:糖尿病合并重症肢体缺血。
Fig. 1  Digital subtraction angiography before (1A) and after (1B) the ligation of the right femoral artery in DM+CLI group rabbits. The red arrow refers to the ligation of the right femoral artery. DM+CLI: diabetes mellitus combined with critical limb ischemia.

1.2 MRI检查及定量参数评价

       术后第0、4周在3.0 T超导MR(Signa Architect, GE Healthcare)上进行MRI检查,所有兔于体外固定架固定后,经耳缘静脉注射3%戊巴比妥钠溶液(1 mL/kg)麻醉,再以仰卧位、足先进固定于8通道膝关节专用相控阵线圈,行股骨斜冠状位MRI平扫和DCE-MRI扫描。扫描序列及参数如下:快速自旋回波(fast spin echo, FSE)T1WI序列,TR 529 ms,TE Min Full,层厚1.50 mm,FOV 160 mm×160 mm,矩阵320×288;FSE-T2WI序列,TR 4 027 ms,TE 120 ms,层厚1.50 mm,FOV 160 mm×160 mm,矩阵320×320;DISCO序列DCE-MRI,TR 5.5 ms,TE Min ms,层厚1.50 mm,视野160 mm× 160 mm,矩阵192×192,翻转角15°,蒙片扫描12 s,随后进行48个时相序列扫描,每时相5 s,扫描时间4 min 12 s。蒙片扫描结束后,利用高压注射器经兔耳缘静脉团注欧乃影(钆双胺,GE Healthcare),注射剂量为0.2 mmol/kg,注射流率1.0 mL/s,随后以相同流率注射0.9%生理盐水5 mL冲管。

       采用PHI科研平台OK(Omni-Kinetics)软件(GE Healthcare),对48期动态增强图像进行3D非刚性运动校正,导入蒙片图像和校正后的增强图像,在兔左股动脉手动勾画感兴趣区,获得时间-浓度曲线,确定动脉输入函数,再选取兔右侧股骨上段中心层面手动勾画感兴趣区(图2),绘制时避开骨岛及血管,利用药代动力学Extended Tofts Linear双室模型得到右股骨上段骨髓血管容量转移常数(volume transport constant, Ktrans)、速率常数(rate constant, Kep)、对比剂血管外细胞外液间隙容积分数(extravascular-extracellular volume fraction, Ve),重复测量三次,取各参数平均值为最终结果。

图2  DM+CLI组(2A)和CLI组(2B)兔左侧股动脉DCE-MRI时间-浓度曲线、右侧股骨斜冠状位T1WI增强图像(slice)以及Ktrans、Kep、Ve伪彩图,红色区域为手动勾画的右侧股骨上段感兴趣区。DM+CLI:糖尿病合并重症肢体缺血;CLI:重症肢体缺血;DCE-MRI:动态对比增强磁共振成像;Ktrans:容量转移常数;Kep:速率常数;Ve:对比剂血管外细胞外液间隙容积分数。
Fig. 2  DCE-MRI time concentration curve of left femoral artery and oblique coronal T1WI enhanced image (slice) and pseudo-color maps of Ktrans, Kep, Ve of right femur in DM+CLI group (2A) and CLI group (2B) rabbits. The red area indicates regions of interest of right proximal femur sketched manually. DM+CLI: diabetes mellitus combined with critical limb ischemia; CLI: critical limb ischemia; DCE-MRI: dynamic contrast enhanced magnetic resonance imaging; Ktrans: volume transport constant; Kep: rate constant; Ve: extravascular-extracellular volume fraction.

1.3 样本采集

       所有兔于术后第4周DCE-MRI扫描后经耳缘静脉抗凝抽取PB 8 mL用于检测PBEPCs数量,后对所有兔通过注射过量3%戊巴比妥钠溶液(4 mL/kg)处以安乐死,并取右侧股骨上段骨髓(bone marrow, BM)700 mg,其中500 mg用于检测BMEPCs,200 mg液氮速冻并-80 ℃保存用于液相色谱-质谱联用代谢组学检测。同时取兔右侧股骨上段用4%多聚甲醛固定、脱钙、石蜡包埋用于组织病理学检查。

1.4 内皮祖细胞数量和功能测定

       PBEPCs、BMEPCs数量:利用Histopaque-1083密度梯度离心分别分离PB、BM样本中的单个核细胞制备细胞悬液,加入异硫氰酸荧光素标记的大鼠抗小鼠CD34单克隆抗体和藻红蛋白标记的大鼠抗小鼠CD133单克隆抗体(Ebioscience公司),采用FACS Calibur三色流式细胞仪(BD公司)检测细胞悬液中单个核细胞中CD34+/CD133+的EPCs数量,分别以P-PBEPCs、P-BMEPCs表示PBEPCs、BMEPCs数量占比,用PBEPCs/BMEPCs比值反映骨髓EPCs动员能力。

       BMEPCs血管形成实验:将流式细胞仪筛选出的CD34+/CD133+ BMEPCs接种在内皮祖细胞培养基中,将生长状态良好的BMEPCs用胰酶消化制成细胞悬液,吹打均匀后加至含基质胶的48孔板中,培养箱37 ℃静置2小时,在显微镜100倍视野下选取3个不相连区域拍摄管形态图像,使用Image J软件的Angiogenesis Analyze插件对图像进行定量分析,计算各组BMEPCs生成血管数量(Nb-peaches)和总血管长度(Tol-length),取平均值,以评估BMEPCs血管生成能力。

       BMEPCs Transwell迁移实验:以同样方法制成BMEPCs细胞悬液,吹打均匀后加入Transwell小室,Transwell板中加入500 μL含10%胎牛血清的完全培养基。将小室放入板中,培养箱中培养24 h后取出,磷酸盐缓冲溶液清洗并用0.1%的结晶紫染液结晶紫染色10 min,自来水洗净,用棉签将上室中的细胞擦除,于显微镜下选取3个100倍视野的非细胞接种侧区域计数迁移细胞数量(Nb-migration),取平均值,以评估BMEPCs迁移能力。

1.5 兔股骨上段BM液相色谱-质谱脂肪酸代谢组学

       使用超高效液相色谱ExionLCAD和串联质谱QTRAP®组成的液质联用系统进行检测。将-80 ℃保存的右侧股骨上段BM离心取上清液上样分析,色谱柱采用Thermo Accucore C30柱(2.1 mm×100.0 mm,2.6 μm,柱温45℃),在含0.1%甲酸、10 mmol/L甲酸胺的乙腈/水(3∶2)溶液和乙腈/异丙醇(1∶9)溶液的正离子模式流动相中以0.35 mL/min的恒定流速洗涤色谱柱。每个色谱峰的峰面积代表代谢物的相对含量,采用相对保留时间法鉴定脂质,利用三重四级杆质谱的多反应监测模式定量分析并进行色谱峰的积分和校正。通过主成分分析、正交偏最小二乘法判别分析(orthogonal partial least square-discriminant analysis, OPLS-DA)识别和分析各组间BM脂质代谢整体差异。采用R studio软件(版本4.0.3),计算各脂质的变量重要性投影值和P值(Student's t test),变量重要性投影值>1且P值<0.05的脂质代谢物被认为组间差异显著,进一步筛选检测到的脂肪酸差异代谢物以及反映脂肪酸代谢的相关指标。

1.6 组织病理学检查

       取各组石蜡包埋后的右侧股骨上段,沿股骨纵轴位切4 μm厚薄片,行CD31免疫组化染色。CD31表达于血管内皮细胞,以血管内皮细胞的胞质内出现棕黄色颗粒为阳性,在低倍镜(×100)下选取3个微血管最丰富的不相连区域,计数高倍镜(×400)下的微血管数,取其平均值为骨髓微血管密度(microvessel density, MVD)值。

1.7 统计学分析

       采用SPSS 26.0统计软件,对各参数行正态性检验(Shapiro-Wilk检验)及方差齐性分析,服从正态分布以平均数±标准差表示,不服从正态分布用中位数(四分位数)表示。对各组术后第0周与第4周间DCE-MRI定量渗透性参数的差异比较采用配对t检验(服从正态分布)或Wilcoxon符号秩检验(不服从正态分布)。采用独立样本t检验(服从正态分布)或Kruskal-Wallis检验(不服从正态分布)比较同一时间点三组间各参数的差异。采用Spearman相关分析评价术后第4周具有统计学差异的各参数间的相关性。所有结果以P<0.05为差异具有统计学意义。

2 结果

2.1 DCE-MRI定量参数分析

       DM+CLI组术后第4周Ktrans值、Kep值、Ve值高于术后第0周(P<0.05)(表1),且第4周各参数值高于CLI组和Control组(P<0.05,图3)。CLI组术后第4周Ktrans值、Ve值高于术后第0周(P<0.05),术后第0、4周Kep值差异无统计学意义(P>0.05);与Control组相比,第4周Ktrans值、Kep值、Ve值增高(P<0.05,图3)。Control组术后第0、4周各参数差异无统计学意义(P>0.05)。

图3  三组兔术后第4周右侧股骨上段Ktrans(3A)、Kep(3B)、Ve(3C)柱状图。*表示P<0.05,**表示P<0.01,***表示P<0.001,ns表示P>0.05。DM+CLI:糖尿病合并重症肢体缺血;CLI:重症肢体缺血;Control;假手术对照;Ktrans:容量转移常数;Kep:速率常数;Ve:对比剂血管外细胞外液间隙容积分数。
Fig. 3  Bar graphs of Ktrans (3A), Kep (3B), Ve (3C) of right proximal femur of three groups at week 4 after operation. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001, ns indicates P>0.05. DM+CLI: diabetes mellitus combined with critical limb ischemia; CLI: critical limb ischemia; Control: sham operation controls; Ktrans: volume transport constant; Kep: rate constant; Ve: extravascular-extracellular volume fraction.
表1  三组兔术后第0、4周右侧股骨上段Ktrans、Kep、Ve比较
Tab. 1  Comparison of Ktrans, Kep, Ve of right proximal femur of three groups at week 0 and 4 after operation

2.2 EPCs数量及功能

       比较各组第4周PBEPCs和BMEPCs数量、迁移能力及血管形成能力(图4)。DM+CLI组P-PBEPCs、PBEPCs/BMEPCs较CLI组减小(t=-9.536,Z=-2.720,P<0.05),但两组均高于Control组(DM+CLI组:t分别为14.529、17.012;CLI组:Z值分别为2.115、4.470;P<0.05)。三组间P-BMEPCs差异无统计学意义(P>0.05)。DM+CLI组BMEPCs Nb-migration低于CLI组和Control组(t值分别为-8.589、-14.999,P<0.05)。DM+CLI组BMEPCs管形成实验中Nb-peaches和Tol-length低于CLI组(t值分别为-2.966、-2.676,P<0.05)和Control组(t值分别为-7.349、-9.043,P<0.05)。

图4  三组兔术后第4周右侧股骨上段BMEPCs功能。BMEPCs Transwell试验图(×100)(4A)和迁移细胞数量柱状图(4B),红色箭所指为迁移的EPCs;4C为PBEPCs/BMEPCs柱状图;4D为BMEPCs管形成试验图;4E、4F为相应生成血管数量和总血管长度柱状图。BMEPCs:骨髓内皮祖细胞;EPCs:内皮祖细胞;PBEPCs/BMEPCs:骨髓内皮祖细胞数量/外周血内皮祖细胞数量;DM+CLI:糖尿病合并重症肢体缺血;CLI:重症肢体缺血;Control;假手术对照。
Fig. 4  Functions of EPCs in bone marrow of right proximal femur in the three groups of rabbits at week 4 after operation. Transwell tests (4A) and number of migrated cells (4B) of BMEPCs, red arrows indicate migrated EPCs; bar graphs of PBEPCs/BMEPCs (4C); tube formation tests (4D) of BMEPCs and bar graphs of number of peaches (4E) and total length of tube (4F). EPCs: endothelial progenitor cells; BMEPCs: bone marrow endothelial progenitor cells; PBEPCs/BMEPCs: peripheral blood endothelial progenitor cells number/bone marrow endothelial progenitor cells number; DM+CLI: diabetes mellitus combined with critical limb ischemia; CLI: critical limb ischemia; Control: sham operation control.

2.3 股骨上段骨髓代谢组学分析

       本研究基于变量重要性投影值和P值在DM+CLI组与CLI组、DM+CLI组与Control组、DM+CLI组与Control组间分别筛选出279、202、200种骨髓脂质差异代谢物,其中DM+CLI组和CLI组OPLS-DA图表明两组脂质组学具有分离趋势(图5)。对骨髓脂肪酸代谢物成分进行分析,与CLI组和Control组相比较,DM+CLI组棕榈油酸(C16:1)含量减低(Z值分别为-2.324、-3.114,P<0.05),单不饱和脂肪酸(monounsaturated fatty acid, MUFA)占比较低(Z值分别为-2.631、-2.236,P<0.05),MUFA/PUFA比值减少(Z值分别为-2.485、-2.447,P<0.05),硬脂酰辅酶A去饱和酶1活性指数(C16:1/C16:0)减低(Z值分别为-2.427、-2.258,P<0.05),延长酶活性指数(C18:1/C16:1)升高(Z值分别为2.495、2.051,P<0.05)。

图5  三组右侧股骨上段骨髓代谢组学。5A:DM+CLI组(1:绿色圆形和绿色椭圆)和CLI组(2:红色正方形和红色椭圆)间OPLS-DA图表明脂质代谢谱具有分开趋势;5B:火山图显示DM+CLI组和CLI组间所有代谢物和差异代谢物(虚线上方)的分布,每一个点代表一个代谢物,红色和绿色分别代表DM+CLI组较CLI组增加和减少;5C:三组兔棕榈油酸相对含量柱状图;5D:骨髓MUFA/PUFA柱状图;5E:骨髓硬脂酰辅酶A去饱和酶1活性指数和延长酶活性指数柱状图。DM+CLI:糖尿病合并重症肢体缺血;CLI:重症肢体缺血;OPLS-DA:正交偏最小二乘法判别分析;Control;假手术对照;MUFA/PUFA:单不饱和脂肪酸/多不饱和脂肪酸。
Fig. 5  Bone marrow metabonomics of right proximal femur of three groups. 5A: The OPLS-DA diagram of DM+ CLI group (1: green circle and green oval) and CLI group (2: red square and red oval) show that the lipid metabolic spectra tended to be separated; 5B: The volcano map show the distribution of all metabolites and differential metabolites (above the dotted line) between DM+CLI group and CLI group, each point represents a metabolite, comparing with the CLI group, red and green represent the increase and decrease of metabolites in the DM+CLI group; 5C: Bar chart of the content of palmitoleic acid. 5D: Bar chart of MUFA/PUFA; 5E: Bar charts of activity of stearoyl-CoA desaturase 1 index and elongase index. DM+CLI: diabetes mellitus combined with critical limb ischemia; CLI: critical limb ischemia; OPLS-DA: orthogonal partial least square-discriminant analysis; Control: sham operation control; MUFA/PUFA: monounsaturated fatty acid/polyunsaturated fatty acids.

2.4 股骨组织病理学

       CD31免疫组化显示DM+CLI组第4周右侧股骨上段骨髓MVD较CLI组和Control组减少(t值分别为-6.403、-9.197,P<0.05)(图6)。CLI组与Control组骨髓MVD差异无统计学意义(t=-1.972,P>0.05)。

图6  第4周DM+CLI组(6A)、CLI组(6B)和Control组(6C)右侧股骨上段骨髓CD31免疫组化(×400)图,红色箭所指为微血管。DM+CLI:糖尿病合并重症肢体缺血;CLI:重症肢体缺血;Control;假手术对照。
Fig. 6  CD31 immunohistochemistry staining (×400) of bone marrow in the right proximal femur in DM+CLI group (6A), CLI group (6B) and Control group (6C) at week 4, the red arrows refers to microvessels. DM+CLI: diabetes mellitus combined with critical limb ischemia; CLI: critical limb ischemia; Control: sham operation control.

2.5 DCE-MRI骨髓微血管渗透性、脂肪酸代谢组学以及BMEPCs相关性分析

       术后第4周各参数相关性分析结果显示,右侧股骨上段Ktrans、Kep、Ve值与骨髓MVD以及BMEPCs Nb-migration、BMEPCs管形成实验Nb-peaches和Tol-length呈负相关关系(P<0.05)(图7)。BMEPCs Nb-migration与MUFA/PUFA、硬脂酰辅酶A去饱和酶1活性指数(C16:1/C16:0)呈正相关关系(P<0.05)。BMEPCs管形成实验Nb-peaches与MUFA/PUFA正相关关系(P<0.05)。BMEPCs管形成实验Tol-length与棕榈油酸、MUFA/PUFA、C16:1/C16:0呈正相关关系(P<0.05),与延长酶活性指数(C18:1/C16:1)呈负相关关系(P<0.05)。尚未发现PBEPCs/BMEPCs与其他指标间的相关性。但对DM+CLI组和CLI组第4周各参数相关性分析结果显示,PBEPCs/BMEPCs与右侧股骨上段Ktrans、Kep、Ve值呈负相关关系(r值分别为-0.692、-0.684、-0.626,P<0.05),与骨髓MVD、MUFA/PUFA、骨髓延长酶活性指数呈正相关关系(r值分别为0.742、0.511、0.462,P<0.05)。

图7  术后第4周所有兔右侧股骨上段DCE-MRI定量参数、BMEPCs数量和功能指标以及骨髓脂肪酸代谢组学相关指标间的相关性热图。图中数字为r值,*表示P<0.05,**表示P<0.01。DCE-MRI:动态对比增强磁共振成像;Ktrans:容量转移常数;Kep:速率常数;Ve:对比剂血管外细胞外液间隙容积分数;Nb-migraition:骨髓内皮祖细胞Transwell迁移试验中迁移细胞数量;Nb-peaches:骨髓内皮祖细胞管形成试验中生成血管数量;Tol-length:骨髓内皮祖细胞管形成试验中总生成血管长度;MVD:骨髓微血管密度;PBEPCs/BMEPCs:骨髓内皮祖细胞数量/外周血内皮祖细胞数量;MUFA:单不饱和脂肪酸占比;MUFA/PUFA:单不饱和脂肪酸/多不饱和脂肪酸;C16:1:棕榈油酸相对含量;C16:1/C16:0:硬脂酰辅酶A去饱和酶1活性指数;C18:1/C16:1:延长酶活性指数。
Fig. 7  The correlation heat map of the quantitative parameters of DCE-MRI of the right proximal femur, the quantity and function indexes of BMEPCs in peripheral blood and bone marrow, indexes of bone marrow fatty acid metabolism of all rabbits at week 4 after operation. The numbers in the figure refer to r value, * represents P<0.05, ** represents P<0.01. DCE-MRI: dynamic contrast enhanced magnetic resonance imaging; Ktrans: volume transport constant; Kep: rate constant; Ve: extravascular-extracellular volume fraction; Nb-migraition: number of migrated cells of bone marrow endothelial progenitor cells in Transwell tests; Nb-peaches: number of peaches of bone marrow endothelial progenitor cells in tube formation tests; Tol-length: total length of tube of bone marrow endothelial progenitor cells in tube formation test; MVD: microvessel density of bone marrow; PBEPCs/BMEPCs: peripheral blood endothelial progenitor cells number/bone marrow endothelial progenitor cells number; MUFA: percent of monounsaturated fatty acid; MUFA/PUFA: monounsaturated fatty acid/polyunsaturated fatty acids; C16:1: relative content of palmitoleic acid; C16:1/C16:0: activity of stearoyl-CoA desaturase 1 index; C18:1/C16:1: elongase index.

3 讨论

       本研究首次将DCE-MRI骨髓微血管渗透性与脂肪酸代谢组学共同用于评价DM合并CLI兔BMEPCs功能,证实DM+CLI组术后第4周股骨上段骨髓Ktrans、Kep、Ve值升高,并与BMEPCSs动员、迁移和血管生成能力相关。DM+CLI组骨髓棕榈油酸含量、MUFA/PUFA比值以及硬脂酰辅酶A去饱和酶1活性指数、延长酶活性指数与BMEPCSs迁移和血管生成能力存在相关性。利用DCE-MRI定量渗透性参数与脂肪酸代谢组学棕榈油酸和脂肪酸合成代谢指数等指标,有助于评估BMEPCs动员、迁移和血管生成功能。

3.1 DM+CLI兔BMEPCs功能变化

       本研究发现,DM+CLI组BMEPCs迁移能力和血管形成能力较CLI组和Control组减低,并与骨髓MVD呈正相关,与此前DAI等[26]研究一致,表明DM合并CLI微血管病变可能与BMEPCs功能障碍有关。与WANG等[6]研究不一致的是,本研究暂未发现DM+CLI组BMEPCs数量较CLI组、Control组减低,可能与本研究实验周期较短且未连续评估BMEPCs数量有关。本研究还发现DM+CLI组PBEPCs/BMEPCs数量比值较CLI组减少,但高于Control组。EPCs作为一类主要存在于骨髓中的可被动员、迁移至外周血并归巢至缺血部位以促进血管生成的成人干细胞[6],缺血缺氧会诱导BMEPCs动员至循环,而DM会导致下肢缺血缺氧诱导的BMEPCs动员能力受损缺[27, 28, 29],本研究三组PBEPCs/BMEPCs数量比值差异表明DM合并CLI存在BMEPCs动员能力不足。

3.2 DCE-MRI骨髓微血管渗透性与BMEPCs功能相关性

       与YANG等[30]研究股外侧肌Ktrans与PBEPCs迁移能力相关性不同,本研究首次发现DM合并CLI骨髓Ktrans、Kep、Ve值与BMEPCs迁移和血管形成功能呈负相关,表明DCE-MRI定量微血管渗透性参数可用于评估DM+CLI BMEPCs的迁移和血管形成功能。本研究在分析相关性时发现,DM持续高血糖损伤微血管内皮和持续炎症导致微血管通透性增加,Ktrans值受单位体积内的血流量、毛细血管渗透性及表面积等因素的影响,Kep与微血管渗透性有关,Ve反映组织内炎症程度[20],使得DM+CLI组Ktrans、Kep、Ve值高于CLI组,但DM+CLI组BMEPCs动员水平较CLI组减低,因此本研究在对DM+CLI组和CLI组术后第4周各参数行相关性分析发现骨髓DCE-MRI微血管渗透性参数与PBEPCs/BMEPCs呈负相关。然而Conrol组尚未发生骨髓EPCs动员,且微血管渗透性尚未发生明显变化,其PBEPCs/BMEPCs和Ktrans、Kep、Ve值均低于DM+CLI组和CLI组,因而在分析三组各参数相关性时,Ktrans等微血管渗透性参数与PBEPCs/BMEPCs并不存在相关性。综合考虑,本研究认为,DCE-MRI定量微血管渗透性参数仍可在一定程度上反映DM合并CLI BMEPCs动员水平,并有助于评估骨髓微血管病变BMEPCs迁移和血管生成能力。

3.3 骨髓脂肪酸代谢组学与BMEPCs功能相关性

       脂肪酸成分变化可能在微血管病变BMEPCs动员和功能改变中具有重要作用[31, 32, 33]。本研究将DM合并CLI脂肪酸代谢改变与BMEPCs功能相关联,发现DM+CLI组BMEPCs迁移和血管生成功能与MUFA/PUFA存在正相关,这与CHIU等[18]通过外源性补充PUFA改善DM+CLI小鼠BMEPCs数量和迁移功能不同,可能与本研究利用代谢组学直接分析DM合并CLI骨髓MUFA/PUFA比例有关。同时与CLI组和Control组相比,DM+CLI组BMEPCs迁移和血管生成能力与减低的硬脂酰辅酶A去饱和酶1活性指数呈正相关,BMEPCs血管生成能力与升高的延长酶活性指数呈负相关。延长酶是软脂酸延长碳链生成其他脂肪酸过程的重要酶,并和硬脂酰辅酶A去饱和酶1共同参与MUFA终产物的修饰以及PUFA的释放,延长酶和硬脂酰辅酶A去饱和酶1活性指数反映脂肪酸合成代谢[22, 34, 35],并可能参与DM发病机制[36, 37]。本研究结果表明DM合并CLI骨髓微血管病变中BMEPCs动员、迁移和血管生成功能可能与脂肪酸合成代谢改变有关,为以后调脂干预DM合并CLI脂肪酸代谢以改善BMEPCs动员和成血管功能进而改善微血管病变预防截肢提供研究基础。

3.4 局限性

       本研究存在一些局限性:第一,本研究DM+CLI模型为四氧嘧啶诱导兔1型DM后行股动脉结扎,与临床最常合并下肢CLI的2型DM患者的发生机制及病程演变存在一定差异;第二,本研究仅在DM+CLI组术后第4周评估了BMEPCs功能以及骨髓脂肪酸代谢改变,未来有待延长随访时间并连续评估以探讨DM合并CLI脂肪酸成分改变与BMEPCs动员不足的时序关系;第三,本研究尚未建立基于DCE-MRI微血管渗透性参数与脂肪酸代谢组学相关指标的整合模型用于预测BMEPCs功能,有待进一步分析研究,但目前DCE-MRI微血管渗透性参数、脂肪酸合成代谢组学相关指标各自与BMEPCs功能的相关性,仍能说明DCE-MRI联合脂肪酸代谢组学评价BMEPCs功能的可行性;第四,本研究尚未对DM合并CLI兔进行调脂干预研究其干预后成像及脂肪酸代谢对BMEPCs功能的影响,未来有待进一步深入探索。

4 结论

       综上所述,DCE-MRI联合脂肪酸代谢组学评价DM合并CLI兔骨髓微血管渗透性、脂肪酸合成代谢与BMEPCs功能的相关性是可行的,可以为调脂改善BMEPCs功能和预防截肢的病理生理机制提供定量影像学证据。

[1]
ABOYANS V, RICCO J B, BARTELINK M L E L, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)[J]. Eur Heart J, 2018, 39(9): 763-816. DOI: 10.1093/eurheartj/ehx095.
[2]
CREAGER M A, MATSUSHITA K, ARYA S, et al. Reducing nontraumatic lower-extremity amputations by 20% by 2030: time to get to our feet: a policy statement from the American heart association[J/OL]. Circulation, 2021, 143(17): e875-e891 [2023-10-11]. https://pubmed.ncbi.nlm.nih.gov/33761757/. DOI: 10.1161/CIR.0000000000000967.
[3]
GU Y, RAMPIN A, ALVINO V V, et al. Cell therapy for critical limb ischemia: advantages, limitations, and new perspectives for treatment of patients with critical diabetic vasculopathy[J/OL]. Curr Diab Rep, 2021, 21(3): 11 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925447/. DOI: 10.1007/s11892-021-01378-4.
[4]
YING A F, TANG T Y, JIN A Z, et al. Diabetes and other vascular risk factors in association with the risk of lower extremity amputation in chronic limb-threatening ischemia: a prospective cohort study[J/OL]. Cardiovasc Diabetol, 2022, 21(1): 7 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742323/. DOI: 10.1186/s12933-021-01441-0.
[5]
石鸿雁, 王爱红, 许樟荣. 糖尿病足合并慢性严重肢体缺血的评估与管理[J]. 中华糖尿病杂志, 2020, 12(12): 954-957. DOI: 10.3760/cma.j.cn115791-20200507-00277.
SHI H Y, WANG A H, XU Z R. Evaluation and management of diabetic foot with chronic limb-threatening ischaemia[J]. Chin J Diabetes Mellit, 2020, 12(12): 954-957. DOI: 10.3760/cma.j.cn115791-20200507-00277.
[6]
WANG K, SUN S Y, ZHANG G G, et al. CXCR7 agonist TC14012 improves angiogenic function of endothelial progenitor cells via activating akt/eNOS pathway and promotes ischemic angiogenesis in diabetic limb ischemia[J]. Cardiovasc Drugs Ther, 2023, 37(5): 849-863. DOI: 10.1007/s10557-022-07337-9.
[7]
KUO C S, CHEN C Y, HUANG H L, et al. Melatonin improves ischemia-induced circulation recovery impairment in mice with streptozotocin-induced diabetes by improving the endothelial progenitor cells functioning[J/OL]. Int J Mol Sci, 2022, 23(17): 9839 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456213/. DOI: 10.3390/ijms23179839.
[8]
SANTILLÁN-CORTEZ D, VERA-GÓMEZ E, HERNÁNDEZ-PATRICIO A, et al. Endothelial progenitor cells may be related to major amputation after angioplasty in patients with critical limb ischemia[J/OL]. Cells, 2023, 12(4): 584 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954311/. DOI: 10.3390/cells12040584.
[9]
BARĆ P, ANTKIEWICZ M, ŚLIWA B, et al. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus[J]. J Cardiovasc Transl Res, 2021, 14(3): 409-415. DOI: 10.1007/s12265-020-10066-9.
[10]
YAN X Q, SU Y, FAN X, et al. Liraglutide improves the angiogenic capability of EPC and promotes ischemic angiogenesis in mice under diabetic conditions through an Nrf2-dependent mechanism[J/OL]. Cells, 2022, 11(23): 3821 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736458/. DOI: 10.3390/cells11233821.
[11]
DUBSKÝ M, HUSÁKOVÁ J, BEM R, et al. Comparison of the impact of autologous cell therapy and conservative standard treatment on tissue oxygen supply and course of the diabetic foot in patients with chronic limb-threatening ischemia: a randomized controlled trial[J/OL]. Front Endocrinol, 2022, 13: 888809 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464922/. DOI: 10.3389/fendo.2022.888809.
[12]
GREMMELS H, VAN RHIJN-BROUWER F C C, PAPAZOVA D A, et al. Exhaustion of the bone marrow progenitor cell reserve is associated with major events in severe limb ischemia[J]. Angiogenesis, 2019, 22(3): 411-420. DOI: 10.1007/s10456-019-09666-0.
[13]
XU Y S, MURPHY A J, FLEETWOOD A J. Hematopoietic progenitors and the bone marrow niche shape the inflammatory response and contribute to chronic disease[J/OL]. Int J Mol Sci, 2022, 23(4): 2234 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879433/. DOI: 10.3390/ijms23042234.
[14]
ZHU Q, LIU X Y, ZHU Q Y, et al. N-acetylcysteine enhances the recovery of ischemic limb in type-2 diabetic mice[J/OL]. Antioxidants, 2022, 11(6): 1097 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219773/. DOI: 10.3390/antiox11061097.
[15]
AZCONA J A, TANG S, BERRY E, et al. Neutrophil-derived myeloperoxidase and hypochlorous acid critically contribute to 20-hydroxyeicosatetraenoic acid increases that drive postischemic angiogenesis[J]. J Pharmacol Exp Ther, 2022, 381(3): 204-216. DOI: 10.1124/jpet.121.001036.
[16]
MALLICK R, DUTTAROY A K. Modulation of endothelium function by fatty acids[J]. Mol Cell Biochem, 2022, 477(1): 15-38. DOI: 10.1007/s11010-021-04260-9.
[17]
ONTORIA-OVIEDO I, AMARO-PRELLEZO E, CASTELLANO D, et al. Topical administration of a marine oil rich in pro-resolving lipid mediators accelerates wound healing in diabetic db/db mice through angiogenesis and macrophage polarization[J/OL]. Int J Mol Sci, 2022, 23(17): 9918 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456080/. DOI: 10.3390/ijms23179918.
[18]
CHIU S C, CHAO C Y, CHIANG E P I, et al. N-3 polyunsaturated fatty acids alleviate high glucose-mediated dysfunction of endothelial progenitor cells and prevent ischemic injuries both in vitro and in vivo[J]. J Nutr Biochem, 2017, 42: 172-181. DOI: 10.1016/j.jnutbio.2017.01.009.
[19]
HE H, SONG M N, TIAN Z R, et al. Multiparametric MRI model with synthetic MRI, DWI multi-quantitative parameters, and differential sub-sampling with Cartesian ordering enables BI-RADS 4 lesions diagnosis with high accuracy[J]. Front Oncol, 2023, 13: 1180131 [2024-01-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797086/. DOI: 10.3389/fonc.2023.1180131.
[20]
HU L, ZHA Y F, WANG L, et al. Quantitative evaluation of vertebral microvascular permeability and fat fraction in alloxan-induced diabetic rabbits[J]. Radiology, 2018, 287(1): 128-136. DOI: 10.1148/radiol.2017170760.
[21]
杨柳, 查云飞, 陈翩翩, 等. 糖尿病合并严重肢体缺血动物模型的骨髓微血管改变: DCE-MRI及基于Ktrans图的纹理分析[J]. 放射学实践, 2020, 35(8): 978-984. DOI: 10.13609/j.cnki.1000-0313.2020.08.006.
YANG L, ZHA Y F, CHEN P P, et al. DCE-MRI and texture analysis based on the Ktrans map to evaluate the microvascular changes in the bone marrow of diabetic rabbit models with severe limb ischemia[J]. Radiol Pract, 2020, 35(8): 978-984. DOI: 10.13609/j.cnki.1000-0313.2020.08.006.
[22]
KHATTRI R B, KIM K, THOME T, et al. Unique metabolomic profile of skeletal muscle in chronic limb threatening ischemia[J/OL]. J Clin Med, 2021, 10(3): 548 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867254/. DOI: 10.3390/jcm10030548.
[23]
SOBCZAK A I S, PITT S J, SMITH T K, et al. Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism[J/OL]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(1): 158823 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867254/. DOI: 10.1016/j.bbalip.2020.158823.
[24]
CHEN L, TANG S, ZHANG F F, et al. CYP4A/20-HETE regulates ischemia-induced neovascularization via its actions on endothelial progenitor and preexisting endothelial cells[J]. Am J Physiol Heart Circ Physiol, 2019, 316(6): H1468-H1479. DOI: 10.1152/ajpheart.00690.2018.
[25]
王焰, 胡磊, 闫玉辰, 等. DCE-MRI Ktrans图纹理分析与代谢组学评价糖尿病兔早期骨髓微血管病变[J]. 放射学实践, 2022, 37(11): 1337-1342. DOI: 10.13609/j.cnki.1000-0313.2022.11.001.
WANG Y, HU L, YAN Y C, et al. Integration of metabolomics with texture analysis based on DCE-MRI Ktrans map of early bone marrow mi-crovascular changes in alloxan-induced diabetic rabbits[J]. Radiol Pract, 2022, 37(11): 1337-1342. DOI: 10.13609/j.cnki.1000-0313.2022.11.001.
[26]
DAI Q X, FAN X, MENG X, et al. FGF21 promotes ischaemic angiogenesis and endothelial progenitor cells function under diabetic conditions in an AMPK/NAD+-dependent manner[J]. J Cell Mol Med, 2021, 25(6): 3091-3102. DOI: 10.1111/jcmm.16369.
[27]
CAI Y, ZANG G Y, HUANG Y, et al. Advances in neovascularization after diabetic ischemia[J]. World J Diabetes, 2022, 13(11): 926-939. DOI: 10.4239/wjd.v13.i11.926.
[28]
WANG K, DAI X Z, HE J H, et al. Endothelial overexpression of metallothionein prevents diabetes-induced impairment in ischemia angiogenesis through preservation of HIF-1α/SDF-1/VEGF signaling in endothelial progenitor cells[J]. Diabetes, 2020, 69(8): 1779-1792. DOI: 10.2337/db19-0829.
[29]
WU Z H, ZHENG X T, MENG L Y, et al. α-Tocopherol, especially α-tocopherol phosphate, exerts antiapoptotic and angiogenic effects on rat bone marrow-derived endothelial progenitor cells under high-glucose and hypoxia conditions[J]. J Vasc Surg, 2018, 67(4): 1263-1273. DOI: 10.1016/j.jvs.2017.02.051.
[30]
YANG Q, LI L, ZHA Y F, et al. Microvascular permeability and texture analysis of the skeletal muscle of diabetic rabbits with critical limb ischaemia based on DCE-MRI[J/OL]. Front Endocrinol, 2022, 13: 783163 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894257/. DOI: 10.3389/fendo.2022.783163.
[31]
SYU J N, LIN H Y, HUANG T Y, et al. Docosahexaenoic acid alleviates trimethylamine-N-oxide-mediated impairment of neovascularization in human endothelial progenitor cells[J/OL]. Nutrients, 2023, 15(9): 2190 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180856/. DOI: 10.3390/nu15092190.
[32]
HAN Y, YAN J, LI Z Y, et al. Cyclic stretch promotes vascular homing of endothelial progenitor cells via Acsl1 regulation of mitochondrial fatty acid oxidation[J/OL]. Proc Natl Acad Sci U S A, 2023, 120(6): e2219630120 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963562/. DOI: 10.1073/pnas.2219630120.
[33]
WEECH M, ALTOWAIJRI H, MAYNERIS-PERXACHS J, et al. Replacement of dietary saturated fat with unsaturated fats increases numbers of circulating endothelial progenitor cells and decreases numbers of microparticles: findings from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study[J]. Am J Clin Nutr, 2018, 107(6): 876-882. DOI: 10.1093/ajcn/nqy018.
[34]
CASAS F, FOURET G, LECOMTE J, et al. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism[J]. J Bioenerg Biomembr, 2018, 50(1): 71-79. DOI: 10.1007/s10863-018-9743-2.
[35]
DAS U N. "cell membrane theory of senescence" and the role of bioactive lipids in aging, and aging associated diseases and their therapeutic implications[J/OL]. Biomolecules, 2021, 11(2): 241 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914625/. DOI: 10.3390/biom11020241.
[36]
DOBOSZ A M, JANIKIEWICZ J, KROGULEC E, et al. Inhibition of stearoyl-CoA desaturase 1 in the mouse impairs pancreatic islet morphogenesis and promotes loss of β-cell identity and α-cell expansion in the mature pancreas[J/OL]. Mol Metab, 2023, 67: 101659 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801219/. DOI: 10.1016/j.molmet.2022.101659.
[37]
SAMOVSKI D, JACOME-SOSA M, ABUMRAD N A. Fatty acid transport and signaling: mechanisms and physiological implications[J]. Annu Rev Physiol, 2023, 85: 317-337. DOI: 10.1146/annurev-physiol-032122-030352.

上一篇 肾脏3.0 T多频磁共振弹性成像:解剖区域、生理因素与正常肾脏硬度的关系
下一篇 内耳钆增强磁共振3D CUBE FLAIR序列PPI及HYDROPS图像在诊断内淋巴积水中的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2