分享:
分享到微信朋友圈
X
经验交流
磁共振药代动力灌注扫描在鉴别段样强化肉芽肿性乳腺炎与浸润性导管癌中的价值研究
陈艳 吴晓燕 张敏 黄学菁 成建明 郑李韵

Cite this article as: CHEN Y, WU X Y, ZHANG M, et al. Value of MR pharmacokinetic perfusion scan in differential diagnosis between idiopathic granulomatous mastitis and invasive ductal carcinoma appearing as segmental distribution enhancement[J]. Chin J Magn Reson Imaging, 2024, 15(3): 177-182.本文引用格式陈艳, 吴晓燕, 张敏, 等. 磁共振药代动力灌注扫描在鉴别段样强化肉芽肿性乳腺炎与浸润性导管癌中的价值研究[J]. 磁共振成像, 2024, 15(3): 177-182. DOI:10.12015/issn.1674-8034.2024.03.028.


[摘要] 目的 探讨基于压缩感知技术的磁共振药代动力灌注扫描对段样强化的特发性肉芽肿性乳腺炎(idiopathic granulomatous mastitis, IGM)与浸润性导管癌(invasive ductal carcinoma, IDC)的鉴别诊断价值。材料与方法 回顾性分析27例段样强化、无脓肿型IGM和15例IDC患者的临床及影像资料,均行磁共振药代动力灌注扫描。采用Fisher精确检验、t检验、χ 2检验比较两组月经状态、年龄、内部强化方式的差异,采用t检验、Mann Whitney U检验筛选出两组容积转运常数(volume transport constant, Ktrans)、速率常数(rate constant, Kep)、血管外细胞外间隙容积分数(extravascular extracellular volume fraction, Ve)值中的差异项,用二元logistic线性回归分析其与IDC的危险系数,并绘制受试者工作特征(receiver operating characteristic, ROC)曲线。结果 两组年龄、月经状态差异均有统计学意义(P=0.001、0.003),而内部强化方式差异无统计学意义(P=0.883)。磁共振药代动力灌注扫描:IGM组Ktrans值[(0.274±0.163)min-1]低于IDC组[(0.451±0.257)min-1],IGM组Kep值[(0.618±0.245)min-1]低于IDC组[(0.856±0.420)min-1],且两组间Ktrans及Kep值的差异有统计学意义(P=0.013,0.012)。两组Ve值为IGM组(0.531±0.320)min-1、IDC组(0.629±0.323)min-1,差异无统计学意义(P=0.182)。二元logistic线性回归:Ktrans值的优势比(odds ratios, OR)=2.243 [95% 置信区间(confidence interval, CI):0.652~6.294](P=0.021),绘制ROC曲线显示,约登指数、敏感度、特异度分别为0.585、73.3%、85.2%,曲线下面积(area under the curve, AUC)=0.778(95% CI:0.623~0.891)(P=0.001)。结论 基于压缩感知技术的磁共振药代动力灌注扫描所得Ktrans值对以段样强化为表现的IGM、IDC有鉴别诊断价值。
[Abstract] Objective To evaluate the differential diagnosis value of MR pharmacokinetic perfusion scan using compressed sense technique between idiopathic granulomatous mastitis (IGM) and invasive ductal carcinoma (IDC) appearing as non-mass enhancement with segmental distribution on MR.Material and Methods: A total of 42 non-mass enhanced breast lesions with segmental distribution on MR (IGM 27 cases, IDC 15 cases) were retrospectively analyzed. All cases were pathologically proved. Comparison of menstrual state, age, inner enhancement pattern, between two groups were made with Fisher's exact test, t test and Chi-square test. The t test and Mann Whitney U test were used to screen out the difference terms in the volume transfer constant (Ktrans), rate constant (Kep), extravascular space volume fraction and extracellular space volume fraction (Ve) between the two groups. Binary logistic linear regression was used to obtain the odds ratios (OR) of the parameter with significant difference and its receiver operating characteristic (ROC) curve was generated to evaluate the diagnostic value.Results There were significant differences in age and menstrual state between two groups (P=0.001, 0.003), while the difference in inner enhancement pattern was of no significant difference (P=0.883). MR pharmacokinetic perfusion scan: Ktrans(IGM) was (0.274±0.163) min-1, which was lower than Ktrans(IDC) (0.451±0.257) min-1. While Kep(IGM) (0.618±0.245) min-1 was higher than Kep(IDC) (0.856±0.420) min-1. Both differences of Ktrans and Kep between two groups were significant (P=0.013, 0.012). The Ve for two groups were Ve (IGM) (0.531±0.320) min-1 and Ve (IDC) (0.629±0.323) min-1. There was no significant difference in Ve between them (P=0.182). The OR value for Ktrans was 2.243 [95% confidence interval (CI): 0.652-6.294)] in logistic linear regression (P=0.021). The Jordan index (0.585), sensitivity (73.3%), specificity (85.2%) and area under the curve (AUC) (0.778, 95% CI: 0.623-0.891) were obtained from the ROC for Ktrans (P=0.001).Conclusions The parameter Ktrans derived from MR pharmacokinetic perfusion scan using compressed sense technique can be used to distinguish IGM from IDC, which appeare as non-mass enhancement with segmental distribution on MR.
[关键词] 特发性肉芽肿性乳腺炎;浸润性导管癌;磁共振药代动力灌注扫描;压缩感知;磁共振成像
[Keywords] idiopathic granulomatous mastitis;invasive ductal carcinoma;MR pharmacokinetic perfusion scan;compressed sense technique;magnetic resonance imaging

陈艳 1   吴晓燕 2*   张敏 2   黄学菁 2   成建明 2   郑李韵 3  

1 上海市宝山区中西医结合医院放射科,上海 201900

2 上海中医药大学附属曙光医院放射科,上海 201203

3 上海联影医疗科技股份有限公司,上海 201807

通信作者:吴晓燕,E-mail:karin114@126.com

作者贡献声明:吴晓燕设计本研究的方案,对稿件重要内容进行了修改;陈艳起草和撰写稿件,获取、分析和解释本研究的数据;张敏、黄学菁、成建明、郑李韵获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2023-08-02
接受日期:2024-02-26
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.03.028
本文引用格式陈艳, 吴晓燕, 张敏, 等. 磁共振药代动力灌注扫描在鉴别段样强化肉芽肿性乳腺炎与浸润性导管癌中的价值研究[J]. 磁共振成像, 2024, 15(3): 177-182. DOI:10.12015/issn.1674-8034.2024.03.028.

0 引言

       特发性肉芽肿性乳腺炎(idiopathic granulomatous mastitis, IGM)是一种较为少见的乳腺感染性疾病,由KESSLER及WOLLOCH于1972年首次报道,多见于妊娠、哺乳期后[1, 2, 3],特征病理改变为终末小叶中心性非干酪样肉芽肿及微小脓肿形成[4, 5, 6],发病早期其在临床表现、影像特征上与乳腺癌存在较多重叠之处[7, 8, 9],当表现为段样强化且无代表脓肿形成的环形强化时尤其难以诊断。此时X线上通常仅表现为非对称性密度增高[10],缺乏特异性,甚至可表现为不规则肿块、结构扭曲伴导管扩张等类似乳腺癌的征象[8, 11],故X线辅助诊断价值有限。虽然MRI对乳腺病变敏感度较高,但以段样强化为表现的IGM与部分浸润性导管癌(invasive ductal cancer, IDC)在MRI图像上表现相似,两者鉴别是诊断难点。MARINO等[12]认为无法通过常规MRI对两者进行鉴别,而QU等[13]认为段样强化的IGM当脓肿形成而出现直径大于7 mm的环形强化时才能将两者鉴别,故脓肿形成前两者影像诊断困难,常需穿刺确诊[14],而非适当时机的活检、手术会加重炎症甚至导致迁延不愈[5, 15]

       磁共振药代动力灌注扫描是一项新型定量参数测量技术,通过连续数据采集记录对比剂在组织中吸收、分布动态过程而引起的信号变化,再将其转换为对比剂浓度曲线,并与药代动力学模型拟合生成定量参数。目前其针对乳腺的研究主要集中在良恶性肿瘤鉴别、乳腺癌新辅助化疗疗效评估中[16, 17, 18],对于以段样强化为表现的无脓肿型IGM与IDC的鉴别诊断并未涉及,而在疾病早期以此为表现的IGM占30%~80%[9],且这一特征对于乳腺癌的阳性预测值亦达到70%左右[19, 20],尤其是浸润性管癌及导管原位癌[19, 21]。本研究拟通过比较两者在磁共振药代动力灌注扫描定量参数上的差异,实现无脓肿型IGM与IDC的早期无创影像鉴别,对避免不必要的活检,减少由此导致的炎症进展、延迟愈合意义较大。

1 材料与方法

       本研究遵守《赫尔辛基宣言》,经上海中医药大学附属曙光医院伦理委员会批准,免除受试者知情同意,批准文号:2019-767-122-01。

1.1 研究对象

       回顾性分析上海中医药大学附属曙光医院2019年7月至2020年2月符合以下标准的患者。纳入标准:(1)乳腺病变由临床触诊或超声、乳腺X线摄影发现且经穿刺活检或手术病理证实;(2)均行磁共振药代动力灌注扫描,以段样非肿块样强化(不伴环形强化,即无脓肿形成)为表现(根据ACR 2013版BI-RADS分类)。排除标准:(1)乳腺X线摄影有可疑恶性钙化的IDC;(2)经新辅助化疗或内分泌治疗的IDC;(3)有明显运动伪影的病例。

1.2 MRI扫描序列及参数

       所有患者除常规平扫T1WI、短时反转恢复(short time of inversion recovery, STIR)、扩散加权成像(diffusion weighted imaging, DWI)序列外,均行磁共振药代动力学灌注扫描(具体扫描参数详见表1)。采用联影3.0 T MRI设备(u780,联影,上海,中国),4通道乳腺专用相控线圈。患者取俯卧位,双侧乳房自然悬垂于线圈内。通过高压注射器按0.1 mmol/kg、2 mL/s速度注入对比剂钆喷酸葡胺10 mL(拜耳,柏林,德国)。

表1  各MRI序列成像参数
Tab. 1  Scan parameters of different MRI sequences

1.3 图像分析与数据处理

1.3.1 乳腺MRI图像阅读

       由2名分别具有3年、10年乳腺MRI阅片经验的放射科副主任医师在病理结果未知情况下,根据2013版ACR BI-RADS报告系统,判断病变是否为非肿块强化且内部有无环形强化,并按此为标准将非肿块病变的内部强化方式分为均匀、不均匀、集群样、簇状小环样4种形式,实际观察中如有交叉情况出现,酌情添加组合强化方式,意见不一致时则通过协商统一。

1.3.2 磁共振药代动力灌注扫描数据处理与分析

       将T1 mapping序列及不同时间分辨率动态序列图像上传至u780 MR设备的联影工作站(uWS-MR,联影,上海,中国),并采用定量分析后处理软件。由2名具有5年以上MRI诊断经验且经标准分析步骤培训的医师(主治医师及副主任医师各一名),在知晓病灶位置但病理结果未知情况下共同完成数据定量分析,如有意见冲突,保持各自观点,后续进行观察者间一致性评估。具体步骤包括:运动校正、图像配准、感兴趣区(region of interest, ROI)选取[面积5 mm2,避开血管、正常腺体及脂肪组织,于表观扩散系数(apparent diffusion coefficient, ADC)值最低区选取]、生成时间-信号曲线、预估、模型拟合及参数计算[定量参数容量转移常数(volume transport constant, Ktrans)、速率常数(rate constant, Kep)、血管外细胞外间隙容积分数(extravascular extracellular volume fraction, Ve)]。一例IDC病例磁共振药代动力灌注扫描参数测量图及增强早期图像(图1)显示,在增强早期呈段样分布集群样强化(图1A),选取ADC值最低处为ROI1,同侧正常乳腺实质为ROI2,测量其Ktrans、Kep、Ve值的示意图(1B~1D)。测量结束后按病理结果将测得数据分为IGM及IDC两组,分析组间定量参数的差异。

图1  女,46岁,发现左乳肿痛、发热伴质硬肿块1月,病理示左乳浸润性导管癌Ⅱ级。行磁共振药代动力灌注扫描,动态对比增强早期发现左乳外上象限段样分布集群样异常强化(1A),选取ADC值最低区为ROI1(橙色圈),同侧正常乳腺实质为ROI2(绿色圈),生成基于Ktrans(1B)、Kep(1C)及Ve(1D)值的测量示意图。ROI:感兴趣区;ADC:表观弥散系数;Ktrans:容量转移常数;Kep:速率常数;Ve:血管外细胞外间隙容积分数。
Fig. 1  A 46-year-old female presented with a painful, febrile, hard mass in the left breast for one month. Pathology shows grade Ⅱ invasive ductal carcinoma of the left breast. In the early stage of dynamic contrast-enhanced MRI, a cluster of abnormal enhancement (1A) is found in the upper outer quadrant of the left breast. The area with the lowest ADC value is selected as ROI1 (orange circle), and the ipsilateral normal breast parenchyma is selected as ROI2 (green circle). The measurement schemas based on Ktrans (1B), Kep (1C) and Ve (1D) values are generated. ROI: region of interest; ADC: apparent diffusion coefficient; Ktrans: volume transport constant; Kep: rate constant; Ve: extravascular extracellular volume fraction.

1.4 组织病理学分析

       收集经空心针穿刺或手术证实的IGM 27例,IDC 15例,均通过HE染色及相关免疫组化染色确诊。病理诊断由2位分别具有5年、10年乳腺病理学诊断经验的主治医师、副主任医师共同完成,意见不一致时,两人协商统一诊断。IGM诊断标准如下:HE染色光镜下均可见非干酪样肉芽肿形成,周围见多核巨细胞、单核细胞、淋巴细胞、浆细胞聚集,同时通过革兰氏染色、抗酸荧光、真菌荧光分别排除细菌性、结核菌、真菌感染,排除IgG相关性疾病所致肉芽肿(IGg4/IGg<40%,且IgG4<100个/HPF),同时排除脉管炎、结核及结节病等其他可形成肉芽肿的疾病。一例IGM病例见图2,ADC图、STIR序列及药代动力灌注扫描增强早期图像显示病变位于左乳外份,增强后呈段样分布的簇状小环样、集群样异常强化。

图2  女,49岁,发现左乳外份肿块2周,经穿刺活检证实为特发性肉芽肿性乳腺炎。2A:ADC图,左乳外份段样ADC值减低区(黄箭);2B:STIR示左乳外份腺体实质水肿伴导管扩张,周围等信号影(黄箭);2C:磁共振药代动力扫描增强早期,左乳外份水肿区域周围段样分布簇状小环及集群样异常强化(黄箭);2D:镜下示肉芽肿性乳腺炎(无脓肿形成)视野中央见非干酪样肉芽肿形成(红箭)(HE ×40),周围见多核巨细胞、单核细胞、淋巴细胞、浆细胞聚集。ADC:表观弥散系数;STIR:短时反转恢复序列。
Fig. 2  A 49-year-old female patient presented with a lump in outer part of left breast two weeks ago. Idiopathic granulomatous mastitis without abscess is diagnosed by needle biopsy. 2A: ADC map, area of decreased ADC value in the outer part of the left breast; 2B: STIR shows parenchymal edema with duct dilatation in the outer part of the left breast, and the surrounding isointense shadow; 2C: Cluster small ring and clumped enhanced lesion is found in MR pharmacokinetic perfusion scan at early enhanced phase at the same region as 2A and 2B (yellow arrow); 2D: Presentation under the microscope, which is confirmed as idiopathic granulomatous mastitis. A non-caseous granuloma is found in the middle of the field (red arrow) with multinucleated giant cell, monocyte, lymphocyte and plasma cell surrounding around it (HE ×40). ADC: apparent diffusion coefficient; STIR: short time of inversion recovery.

1.5 统计学分析

       采用SPSS 22.0软件(22.0版,IBM,Armonk,NY,USA)、Medcalc软件进行统计学分析,以P<0.05认为差异有统计学意义,检验效能定义为0.8,并以此通过SPSS 22.0对各项参数及对应统计方法的样本量进行估算,证实本研究样本量的可适用性。

       两组患者的月经状态、年龄分别通过Fisher's确切检验法、t检验进行比较。卡方检验比较两组段样分布非肿块样强化病变在内部强化方式上的差异。针对磁共振药代动力灌注扫描所得定量参数(Ktrans、Kep、Ve)值,若数据符合正态分布,则通过独立样本t检验比较两组间差异,若数据不符合正态分布,则采用Mann-Whitney U检验进行两者间比较。筛选出差异有统计学意义的定量参数后,通过线性logistics回归判断其与IDC间的危险度关系,并绘制受试者工作特征(receiver operating characteristic, ROC)曲线,计算约登指数、敏感度、特异度及曲线下面积(area under the curve, AUC)。

       对所测磁共振药代动力灌注扫描参数进行观察者间一致性检查,以组内相关系数(inter-class correlation coefficient, ICC)进行评估,当ICC值≤0.45时代表一致性较低,当ICC值≥0.75时代表一致性较高。

2 结果

2.1 样本量估算

       通过分别计算Ktrans、Kep、Ve的标准差,设定IGM及IDC为分类变量,且α=0.05(双侧)时,需要样本量分别为40、42、39时可实现80%的功效,以及检测斜率从零假设下的0到备则假设下的0.05的变化。本研究为回顾性分析,故无需考虑考虑脱落/失访率,说明本研究42例的样本量符合要求。

2.2 一般资料

       患者均为女性,年龄25~76(41.25±11.61)岁,共42例,均为单侧乳腺单一病灶,两组纳入排除标准统一,其中IGM 27例,IDC 15例(4例伴导管原位癌Ⅱ级,5例伴导管原位癌Ⅲ级);26例经穿刺活检证实,16例经手术病理证实。

       两组病例的年龄、月经状态差异具有统计学意义(P=0.001、0.003)。两组均以段样非肿块强化为表现的病变在内部强化特征上的差异无统计学意义(P=0.883)。结果详见表2

表2  两组在年龄、月经状态、内部强化方式的比较
Tab. 2  Comparison in age, menstrual status and inner enhancement pattern between two groups

2.3 磁共振药代动力灌注扫描

       两组磁共振药代动力灌注扫描各项参数比较及logistic线性回归结果总结见表3。IGM组与IDC组Ktrans差异具有统计学意义(Z=2.461,P=0.013);IGM组的Kep值低于IDC组,且差异具有统计学意义(t=3.107,P=0.012);而两组的Ve值差异不具有统计学意义(t=1.370,P=0.182)。以病理结果作为因变量,Ktrans值及Kep值作为自变量行二元logistic线性回归分析,两组Ktrans、Kep的OR为2.243、2.978(P=0.021、P=0.073)。

       以病理结果为金标准,绘制基于Ktrans的ROC曲线(图3),AUC为0.778(95% CI:0.623~0.891),P=0.001,约登指数为0.585,敏感度为73.3%,特异度为85.2%。

图3  基于Ktrans值的受试者工作特征曲线。Ktrans:容量转移常数;AUC:曲线下面积。
Fig. 3  Receiver operating characteristic curve based on Ktrans values. Ktrans: volume transport constant; AUC: area under the curve.
表3  两组磁共振药代动力灌注扫描各项参数比较及logistic线性回归结果
Tab. 3  Comparison in parameters derived from MR pharmacokinetic perfusion scan and logistic linear regression results between two groups

2.4 观察者间一致性评估

       运用ICC对两位观察者间Ktrans、Kep、Ve值的测量结果进行一致性评估,各项ICC的值分别为0.816、0.842、0.801,均≥0.75,说明观察者间一致性较高。

3 讨论

       以段样强化为表现的无脓肿型IGM与乳腺癌在常规MRI上鉴别诊断困难,通常需要活检明确。本文是为数不多探讨磁共振药代动力灌注扫描定量参数在两者中差异的研究,并发现两组病变的Ktrans值具备较高的诊断效能,可作为MRI鉴别诊断依据,可避免不必要的活检,为治疗提供依据并可改善预后。

3.1 压缩感知技术在磁共振药代动力灌注扫描中的应用

       磁共振药代动力灌注扫描与传统乳腺动态增强相比,因需构建药代动力学模型以计算定量参数,故需采集大量原始数据,即要求在常规增强扫描时长内进行约40~50次多期扫描,且单期增强扫描的时间需从传统的60 s左右缩短至8~10 s,而常规并行采集成像的乳腺扫描方法在速度上无法达到这一要求。压缩感知技术是一种基于图像在特定域上的稀疏性或可压缩性的新型信号采集、获取理论,通过减少测量、重建所需原始数据以缩短扫描时间。该方法需满足三个基本条件:(1)信号的稀疏性;(2)不相干欠采样;(3)非线性重建[21]。压缩感知技术在实现加速扫描同时,可保证图像质量,仅需Nyquist采样定理所要求数据量的30%甚至更少的K空间数据即可有效重建图像,同时符合诊断所需空间分辨率要求[22]。本研究应用该技术,将乳腺单期动态扫描时间从常规50~60 s降至10.4 s,并连续扫描40个时相,空间分辨率为1.01 mm×1.01 mm×1.00 mm,符合欧洲乳腺扫描指南对于乳腺MRI空间分辨率要求[23],在完成药代动力学模型所需数据采集量的同时保证了图像质量,可满足诊断要求,证实了该技术在乳腺MRI应用中的可行性。

3.2 两组病变患者概况及强化方式的比较

       本研究发现,两组段样强化的IGM及IDC组,其内部强化方式间的差异不具有统计学意义,而年龄差异具有统计学意义。IDC组平均年龄大于IGM组,与既往研究[4, 24]认为IGM好发于怀孕后5年内或停止哺乳后6个月~2年内的育龄期妇女,IDC发生率随年龄增大而升高相符。在内部强化方式上,本研究中的IGM组主要表现为集群样、簇状小环样及集群样+簇状小环样强化,与既往研究[9]认为的IGM主要以不均质强化伴环形强化为表现不相符。笔者认为既往影像表现的病理基础是终末小叶内特征性非干酪样肉芽肿及微小脓肿形成,同时在急慢性炎症背景下,大量淋巴细胞及浆细胞将多核巨细胞包绕[4, 25, 26],故血供丰富的肉芽肿表现为不均质强化,而微小脓肿则表现为环形强化。而本文选择的是炎症早期无脓肿形成的IGM病例,故血供丰富的肉芽肿初步形成,且以围绕终末小叶中央为分布特征,与近侧肉芽肿有融合趋势而与远侧病变间尚存距离,故呈集群样强化。本组病例中还出现了另一种与经典表现不同的强化方式,即簇状小环样强化,这一特征在既往部分文献中亦有报道[27],可能与IGM是由发生在乳腺导管壁上皮的过激免疫反应相关导致,即扩张导管内容物作为抗原对导管上皮进行刺激,在免疫失衡状态下诱发针对导管壁上皮细胞的过激免疫反应,导致大量白细胞被活化进而产生蛋白酶、炎性介质、活性氧及溶菌酶,在清除抗原的同时对导管壁造成不可逆性损伤[1],但此时为炎症早期,尚无脓肿形成,故只呈现代表管壁受损的簇状小环样强化,而无代表脓肿形成的环形强化,而此类强化方式与仅局限于乳腺导管基底膜内的导管原位癌及伴周围微浸润的IDC尤为相似[28]

3.3 两组病变磁共振药代动力灌注扫描参数比较

       乳腺磁共振药代动力灌注扫描是一项新型磁共振定量参数扫描技术,其在乳腺良恶性病变鉴别诊断、新辅助化疗疗效评估中的价值已有所报道[16, 17, 18],但在段样强化的IGM及IDC鉴别诊断中应用较少。本研究发现两组病变磁共振药代动力灌注扫描参数Ktrans、Kep差异有统计学意义,而Ve差异不具备统计学意义。Ktrans主要反映对比剂从毛细血管网外渗的情况,故血管基底膜是否完整性是其主要影响因素,Kep则反映对比剂返回至血管内廓清的过程,除了微血管密度,同样也受血管通透性影响,对存在大量不具备完整基底膜新生血管的IDC而言,局部微血管密度增高,血管通透性增加,单位体积组织的血浆流量明显上升,故在IDC组中Ktrans值及Kep值均较IGM组高。文献报道的IGM发病机制多样,如哺乳、吸烟、肥胖、口服避孕药、T细胞功能缺陷等[29, 30, 31],但自身免疫失衡而引发的炎性过程是受到最广泛认可的病因学理论[32, 33, 34]。本研究中以段样分布伴簇状小环样、集群样强化为表现的IGM多为炎症早期或肉芽肿初步形成期的表现。炎症早期组织水肿较显著,随后则出现多核巨细胞形成,急慢性炎性细胞、浆细胞浸润伴间质增生等肉芽肿形成的病理改变,但其在微血管数量、密度、渗透性等方面的改变均不及IDC显著,故IDC的Ktrans值及Kep值均高于IGM,且反映组织微循环状态的直接指标Ktrans则具备更高的诊断效能。Ve反映细胞外、血管外组织间隙所占容积的情况,其测量易受水肿等因素影响[35],本研究所入组的IGM以处于炎症早期水肿阶段病例为主,对Ve的测量存在干扰,这可能是导致两者差异不具有统计学意义的原因。

3.4 局限性

       本研究尚存在几项不足之处:首先,以段样分布为强化特征的IDC例数偏少,可能导致结果缺乏广泛代表性;其次,在15例IDC患者中,有9例含有导管原位癌成分,虽然在选择ROI时已尽量避开影像提示的可疑原位癌区域,但仍有可能将其选入导致测量结果的准确性受影响,故将此类病变与单纯IDC分组研究或严格对照病理结果精确选择IDC区域,再分别探讨磁共振药代动力学灌注扫描各项参数的差异,是下一步应探讨的问题。

4 结论

       综上所述,本研究发现在以段样强化为特征的无脓肿型IGM及IDC中,Ktrans值能在一定程度上反映血管基底膜的完整性,可成为两者在MRI鉴别诊断中的新依据,以避免不必要的有创活检,指导临床治疗方案制订并改善预后,也为压缩感知技术在乳腺磁共振药代动力灌注扫描的应用提供了依据。

[1]
SAYDAM M, YILMAZ K B, SAHIN M, et al. New findings on autoimmune etiology of idiopathic granulomatous mastitis: serum IL-17, IL-22 and IL-23 levels of patients[J]. J Invest Surg, 2021, 34(9): 993-997. DOI: 10.1080/08941939.2020.1725190.
[2]
ZHAO Q F, XIE T W, FU C X, et al. Differentiation between idiopathic granulomatous mastitis and invasive breast carcinoma, both presenting with non-mass enhancement without rim-enhanced masses: the value of whole-lesion histogram and texture analysis using apparent diffusion coefficient[J/OL]. Eur J Radiol, 2020, 123: 108782 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/31864142/. DOI: 10.1016/j.ejrad.2019.108782.
[3]
AZZAM M I, ALNAIMAT F, AL-NAZER M W, et al. Idiopathic granulomatous mastitis: clinical, histopathological, and radiological characteristics and management approaches[J]. Rheumatol Int, 2023, 43(10): 1859-1869. DOI: 10.1007/s00296-023-05375-6.
[4]
BARRETO D S, SEDGWICK E L, NAGI C S, et al. Granulomatous mastitis: etiology, imaging, pathology, treatment, and clinical findings[J]. Breast Cancer Res Treat, 2018, 171(3): 527-534. DOI: 10.1007/s10549-018-4870-3.
[5]
NGUYEN M H, MOLLAND J G, KENNEDY S, et al. Idiopathic granulomatous mastitis: case series and clinical review[J]. Intern Med J, 2021, 51(11): 1791-1797. DOI: 10.1111/imj.15112.
[6]
VELIDEDEOGLU M, KUNDAKTEPE B P, AKSAN H, et al. Preoperative fibrinogen and hematological indexes in the differential diagnosis of idiopathic granulomatous mastitis and breast cancer[J/OL]. Medicina, 2021, 57(7): 698 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/34356979/. DOI: 10.3390/medicina57070698.
[7]
SRIPATHI S, AYACHIT A, BALA A, et al. Idiopathic granulomatous mastitis: a diagnostic dilemma for the breast radiologist[J]. Insights Imaging, 2016, 7(4): 523-529. DOI: 10.1007/s13244-016-0497-2.
[8]
DURUR-SUBASI I. Diagnostic and interventional radiology in idiopathic granulomatous mastitis[J]. Eurasian J Med, 2019, 51(3): 293-297. DOI: 10.5152/eurasianjmed.2019.19211.
[9]
PLUGUEZ-TURULL C W, NANYES J E, QUINTERO C J, et al. Idiopathic granulomatous mastitis: manifestations at multimodality imaging and pitfalls[J]. Radiographics, 2018, 38(2): 330-356. DOI: 10.1148/rg.2018170095.
[10]
ILLMAN J E, TERRA S B, CLAPP A J, et al. Granulomatous diseases of the breast and axilla: radiological findings with pathological correlation[J]. Insights Imaging, 2018, 9(1): 59-71. DOI: 10.1007/s13244-017-0587-9.
[11]
MOHINDRA N, JAIN N, SABARETNAM M, et al. Mammography and digital breast tomosynthesis in granulomatous and nongranulomatous mastitis[J/OL]. J Surg Res, 2023, 281: 13-21 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/36108534/. DOI: 10.1016/j.jss.2022.08.009.
[12]
MARINO M A, AVENDANO D, SEVILIMEDU V, et al. Limited value of multiparametric MRI with dynamic contrast-enhanced and diffusion-weighted imaging in non-mass enhancing breast tumors[J/OL]. Eur J Radiol, 2022, 156: 110523 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/36122521/. DOI: 10.1016/j.ejrad.2022.110523.
[13]
QU N, LUO Y H, YU T. Differentiation between Clinically Noninflammatory Granulomatous Lobular Mastitis and Noncalcified Ductal Carcinoma in situ Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging[J]. Breast Care, 2020, 15(6): 619-627. DOI: 10.1159/000506068.
[14]
HASBAHCECI M, KADIOGLU H. Use of imaging for the diagnosis of idiopathic granulomatous mastitis: a clinician's perspective[J]. J Coll Physicians Surg Pak, 2018, 28(11): 862-867. DOI: 10.29271/jcpsp.2018.11.862.
[15]
VELIDEDEOGLU M, UMMAN V, KILIC F, et al. Idiopathic granulomatous mastitis: introducing a diagnostic algorithm based on 5years of follow-up of 152 cases from Turkey and a review of the literature[J]. Surg Today, 2022, 52(4): 668-680. DOI: 10.1007/s00595-021-02367-6.
[16]
LI T, YU T, LI L, et al. Use of diffusion kurtosis imaging and quantitative dynamic contrast-enhanced MRI for the differentiation of breast tumors[J]. J Magn Reson Imaging, 2018, 48(5): 1358-1366. DOI: 10.1002/jmri.26059.
[17]
TUDORICA A, OH K Y, CHUI S Y, et al. Early prediction and evaluation of breast cancer response to neoadjuvant chemotherapy using quantitative DCE-MRI[J]. Transl Oncol, 2016, 9(1): 8-17. DOI: 10.1016/j.tranon.2015.11.016.
[18]
CHANG L F, LAN H L. Effect of neoadjuvant chemotherapy on angiogenesis and cell proliferation of breast cancer evaluated by dynamic enhanced magnetic resonance imaging[J/OL]. Biomed Res Int, 2022, 2022: 3156093 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/35915805/. DOI: 10.1155/2022/3156093.
[19]
AYDIN H. The MRI characteristics of non-mass enhancement lesions of the breast: associations with malignancy[J/OL]. Br J Radiol, 2019, 92(1096): 20180464 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/30673299/. DOI: 10.1259/bjr.20180464.
[20]
DE FARIA CASTRO FLEURY E, CASTRO C, AMARAL M S C DO, et al. Management of non-mass enhancement at breast magnetic resonance in screening settings referred for magnetic resonance-guided biopsy[J/OL]. Breast Cancer, 2022, 16: 11782234221095897 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/35602239/. DOI: 10.1177/11782234221095897.
[21]
FENG L, BENKERT T, BLOCK K T, et al. Compressed sensing for body MRI[J]. J Magn Reson Imaging, 2017, 45(4): 966-987. DOI: 10.1002/jmri.25547.
[22]
柴青焕, 苏冠群, 聂生东. 磁共振部分K空间重建算法[J]. 中国医学物理学杂志, 2018, 35(5): 537-542. DOI: 10.3969/j.issn.1005-202X.2018.05.008.
CHAI Q H, SU G Q, NIE S D. Magnetic resonance partial K-space reconstruction algorithm[J]. Chin J Med Phys, 2018, 35(5): 537-542. DOI: 10.3969/j.issn.1005-202X.2018.05.008.
[23]
YUEN S, UEMATSU T, MASAKO K, et al. Segmental enhancement on breast MR images: differential diagnosis and diagnostic strategy[J]. Eur Radiol, 2008, 18(10): 2067-2075. DOI: 10.1007/s00330-008-0980-3.
[24]
GROVER H, GROVER S B, GOYAL P, et al. Clinical and imaging features of idiopathic granulomatous mastitis - The diagnostic challenges and a brief review[J/OL]. Clin Imaging, 2021, 69: 126-132 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/32717540/. DOI: 10.1016/j.clinimag.2020.06.022.
[25]
GOULABCHAND R, HAFIDI A, VAN DE PERRE P, et al. Mastitis in autoimmune diseases: review of the literature, diagnostic pathway, and pathophysiological key players[J/OL]. J Clin Med, 2020, 9(4): 958 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/32235676/. DOI: 10.3390/jcm9040958.
[26]
ALJAWDER A A A, LI J J X, NG J K M, et al. Idiopathic granulomatous mastitis and cystic neutrophilic granulomatous mastitis: two sides of the same coin or distinct entities?[J]. Pathology, 2023, 55(3): 335-341. DOI: 10.1016/j.pathol.2022.09.005.
[27]
MATICH A, SUD S, BUXI T B S, et al. Idiopathic granulomatous mastitis and its mimics on magnetic resonance imaging: a pictorial review of cases from India[J/OL]. J Clin Imaging Sci, 2020, 10: 53 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/33024608/. DOI: 10.25259/JCIS_112_2019.
[28]
ALAREF A, HASSAN A, SHARMA KANDEL R, et al. Magnetic resonance imaging features in different types of invasive breast cancer: a systematic review of the literature[J/OL]. Cureus, 2021, 13(3): e13854 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/33859904/. DOI: 10.7759/cureus.13854.
[29]
RAMADAN R, KORYEM I M, FAYED H. Idiopathic granulomatous mastitis: risk factors and management[J]. Breast Dis, 2022, 41(1): 413-420. DOI: 10.3233/BD-220047.
[30]
UCARYILMAZ H, KOKSAL H, EMSEN A, et al. The role of regulatory T and B cells in the etiopathogenesis of idiopathic granulomatous mastitis[J]. Immunol Invest, 2022, 51(2): 357-367. DOI: 10.1080/08820139.2020.1832114.
[31]
ALBAYRAK M G B, SIMSEK T, KASAP M, et al. Tissue proteome analysis revealed an association between cancer, immune system response, and the idiopathic granulomatous mastitis[J/OL]. Med Oncol, 2022, 39(12): 238 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/36175807/. DOI: 10.1007/s12032-022-01845-2.
[32]
AITKEN S L, CORL C M, SORDILLO L M. Immunopathology of mastitis: insights into disease recognition and resolution[J]. J Mammary Gland Biol Neoplasia, 2011, 16(4): 291-304. DOI: 10.1007/s10911-011-9230-4.
[33]
DOGAN S, DAL F, GULER M, et al. Is peripheral blood immunophenotyping useful to understand the etiology of Idiopathic Granulomatous?[J]. Hum Immunol, 2023, 84(5/6/7): 315-319. DOI: 10.1016/j.humimm.2023.05.001.
[34]
HUANG Y M, LO C, CHENG C F, et al. Serum C-reactive protein and interleukin-6 levels as biomarkers for disease severity and clinical outcomes in patients with idiopathic granulomatous mastitis[J/OL]. J Clin Med, 2021, 10(10): 2077 [2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/34066203/. DOI: 10.3390/jcm10102077.
[35]
KIM Y, KIM S H, SONG B J, et al. Early prediction of response to neoadjuvant chemotherapy using dynamic contrast-enhanced MRI and ultrasound in breast cancer[J]. Korean J Radiol, 2018, 19(4): 682-691. DOI: 10.3348/kjr.2018.19.4.682.

上一篇 颈部影像报告和数据系统在MRI诊断早期单纯黏膜型鼻咽癌局部复发中的应用
下一篇 基于临床及磁共振图像特征的髋关节撞击综合征独立危险因素分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2