分享:
分享到微信朋友圈
X
综述
经前期焦虑障碍相关情感回路异常的脑功能成像研究进展
陈思睿 徐小雯 赵阳 肖磊 陈振宇 廖海

Cite this article as: CHEN S R, XU X W, ZHAO Y, et al. Advances in brain functional imaging of abnormal emotional circuits associated with premenstrual dysphoric disorder[J]. Chin J Magn Reson Imaging, 2024, 15(3): 196-199, 217.本文引用格式陈思睿, 徐小雯, 赵阳, 等. 经前期焦虑障碍相关情感回路异常的脑功能成像研究进展[J]. 磁共振成像, 2024, 15(3): 196-199, 217. DOI:10.12015/issn.1674-8034.2024.03.032.


[摘要] 经前期焦虑障碍(premenstrual dysphoric disorder, PMDD)是一种女性独特的情感障碍性疾病,严重影响着育龄期女性的生活健康,目前其发病机制尚不明确。近年研究表明,以“前额叶-前扣带回-杏仁核-海马-小脑”构成的情感回路功能异常可能与PMDD发病密切相关。本文通过综述该情感回路相关脑区及脑区间的脑功能研究,为寻找PMDD的神经病变机制提供参考依据。
[Abstract] Premenstrual dysphoric disorder (PMDD) is a unique emotional disease of women, which seriously affects the life and health of women of childbearing age. At present, its pathogenesis is still unclear. Recent studies have shown that the function of affective circuit composed of "prefrontal-anterior cingulate cortex-amygdala-hippocampus-cerebellum" may be closely related to the pathogenesis of PMDD. The paper reviews the brain function of the related brain regions and brain intervals of PMDD, and provide reference for finding the neuropathy mechanism of PMDD.
[关键词] 经前期焦虑障碍;情感障碍;脑功能成像;功能磁共振成像;磁共振成像;前额叶皮层;杏仁核;神经机制
[Keywords] premenstrual dysphoric disorder;emotional disorder;brain functional imaging;functional magnetic resonance imaging;magnetic resonance imaging;prefrontal cortex;amygdala;neural mechanism

陈思睿    徐小雯    赵阳    肖磊    陈振宇    廖海 *  

广西医科大学附属肿瘤医院放射科,南宁 530021

通信作者:廖海,E-mail:42442427@qq.com

作者贡献声明:廖海设计本综述的框架,对稿件重要内容进行了修改,获得了国家自然科学基金项目的资助;陈思睿起草和撰写稿件,获取、分析本研究的综述文献;徐小雯、赵阳、肖磊、陈振宇获取、分析本研究的数据,对稿件重要内容进行了修改;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 81960570
收稿日期:2023-07-03
接受日期:2024-02-23
中图分类号:R445.2  R749.72 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.03.032
本文引用格式陈思睿, 徐小雯, 赵阳, 等. 经前期焦虑障碍相关情感回路异常的脑功能成像研究进展[J]. 磁共振成像, 2024, 15(3): 196-199, 217. DOI:10.12015/issn.1674-8034.2024.03.032.

0 引言

       经前期焦虑障碍(premenstrual dysphoric disorder, PMDD)是女性独特的情感障碍性疾病,发病率约占育龄期女性的3%~8%,其特征是在黄体晚期出现周期性情感、行为及躯体功能障碍,其中以情感功能障碍为主,主要表现为情绪不稳定、易怒、抑郁和焦虑等症状,常伴有明显功能受损,其特征性表现为上述症状发生于月经周期的黄体晚期且月经出现后不久症状消失[1, 2]。PMDD在最新的美国精神障碍诊断统计手册第五版(Diagnostic and Statistical Manual of Mental Disorders-V, DSM-V)中被认为是一种与激素相关的抑郁症,该疾病严重影响女性的身心健康,重度患者被视为自杀的高危人群[3]。目前PMDD的病理生理机制尚不明确,现有研究认为PMDD的发病与卵巢激素水平的波动以及神经递质异常等有关,而卵巢激素对突触传递的调节作用主要影响涉及情感和认知功能的大脑回路[4, 5, 6]。众所周知,PMDD的主要症状为情感障碍,参与情感和认知功能相关脑区的异常是PMDD发生的关键因素,因而情感回路障碍可能是PMDD重要的神经病变机制[7, 8]。情感回路主要位于前额叶皮层-边缘系统-纹状体-丘脑-基底节等区域[9, 10],其中由“前额叶、杏仁核及边缘系统”构成的神经回路在PMDD情感调节和传导中发挥着重要作用。

       脑功能成像是研究脑回路的重要手段,其是一类非侵入性的神经功能活动测量-成像技术,主要包括功能磁共振成像(functional magnetic resonance imaging, fMRI)、正电子发射断层扫描(positron emission tomography, PET)和单光子发射计算机断层扫描(single-photon emission computed tomography, SPECT)以及功能性近红外光谱(functional near-infrared spectroscopy, fNIRS)等技术。近年来,随着医学影像技术的迅速发展,功能神经成像技术已成为研究PMDD中枢神经机制的重要手段,尤其是fMRI,已广泛应用于女性月经周期相关脑活动研究,在PMDD的研究中具有巨大应用前景。

       因此,本文旨在通过综述近年来PMDD相关情感脑网络功能成像的研究发展现状,加深对卵巢激素作用下神经功能异常改变的理解以及对未来研究方向进行展望,为寻找PMDD的病因机制提供科学依据和支持。本文拟基于脑功能成像技术对PMDD情感功能障碍所涉及的脑区及其功能连接进行系统阐述。

1 前额叶皮层

       前额叶皮层(prefrontal cortex, PFC)是额叶的联络皮质区,接收与之互相连接的丘脑背内侧核投射的皮层,位于额叶运动和前运动皮层的前面,主要分为眼眶、内侧和外侧三个区域,在计划和执行、情绪和行为方面发挥作用,是最早被发现与情感障碍激活的相关区域之一[11, 12, 13]

       研究发现,背外侧PFC对PMDD中受影响的情感功能最为重要[14, 15]。BALLER等[16]首先采用PET结合fMRI技术证实,PMDD患者背外侧PFC激活异常增加的程度与症状严重程度呈正相关,并提出背外侧PFC功能障碍为PMDD病理生理学的关键因素。GINGNELL等[17]研究发现PMDD患者与健康对照组相比,在黄体期面对负面情感刺激时PFC的反应性显著增强,且孕酮水平与背外侧PFC对积极情感刺激的诱导反应呈正相关关系。同样地,一项利用任务态fMRI对比分析44例PMDD患者和42例健康女性情感刺激前后脑部神经活动状况的研究结果提示,PMDD患者在诱导情感刺激任务下的PFC反应性显著增强[18]。目前,fNIRS作为脑成像方法应用于大脑活动状态的评估,有研究借助fNIRS通过测量PFC中氧合血红蛋白水平的变化,发现患有经前综合征(premenstrual syndrome, PMS)(一种比PMDD更温和的综合征)女性在黄体期负面情感的增加与负责情感认知功能的PFC的血流量减少有关[19]。这些研究证实了PFC功能异常与PMDD中情感认知功能的紊乱存在一定的相关性。另外,首次使用18F-2-氟-2脱氧-D-葡萄糖(fludeoxyglucose, FDG)-PET测量PMDD大脑葡萄糖代谢情况的研究发现,PFC和小脑区域共同参与情感的处理,从卵泡期到黄体晚期患者小脑活动升高,并且与情绪恶化呈正相关。此外,PMDD患者背外侧PFC与小脑小叶的活动增加,代表调节情感功能的大脑-小脑反馈回路共同激活,是影响PMDD严重程度的关键脑回路[20, 21]

2 前扣带回

       扣带回是边缘系统的重要组成部分,包含4个解剖区域:前扣带回(anterior cingulate cortex, ACC)、中扣带回、后扣带回、扣带回压部。不同解剖连接和功能的扣带回区域具有不同功能,胼胝体膝部腹侧的ACC皮层与情绪行为的调节有关,且ACC与杏仁核及其他PFC区域高度联通,构成ACC-杏仁核环路[22, 23, 24]。GINGNELL等[25]研究发现,与健康对照组相比,黄体期PMDD患者ACC对社会刺激的反应性减弱,且ACC反应性减弱和连通性受损与抑制情感反应相关。全脑分析发现,PMDD患者在黄体期具有较低的ACC激活,提示情感诱导的扣带皮层激活受损,并且证实脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)基因型参与了PMDD患者黄体期ACC的情感加工[26]。另外,基于15O-H2O-PET技术测量PMDD患者静息局部脑血流量(regional cerebral blood flow, rCBF)的研究发现,PMDD患者在暴露于雌二醇和孕酮条件下的膝下ACC静息rCBF降低,具有显著的激素相互作用,且单独使用亮丙瑞林和黄体酮条件下静息rCBF的变化与ESC/E (Z)基因表达具有相关性,ESC/E (Z)复合体是一种重要的卵巢类固醇激素调节基因沉默复合体,从而提示膝下ACC可能是参与PMDD情感调节的神经解剖学位点[27]

       以上研究发现表明,黄体期的PMDD患者出现了情感回路脑区网络的异常改变,其中背外侧PFC和ACC是PMDD患者情感功能障碍的重要神经位点,提示情感神经回路功能异常可能是PMDD患者情感症状或缺乏情感控制的重要病因机制。然而,目前尚不清楚这些脑区的功能改变是如何导致神经回路水平上的特定情感相关症状出现,其回路功能障碍的病理生理机制亟待进一步研究。

3 杏仁核

       杏仁核是大脑边缘系统结构的重要组成部分,其在情感产生和处理方面有着重要的价值[28]。杏仁核参与自下而上的情感刺激的检测、过滤、编码和检索,也参与情感刺激的感知、记忆、奖赏功能,并通过调节对外部情感刺激显著参与认知功能[29, 30, 31]。在健康女性中,负面情感状态与杏仁核和脑岛的反应性增强以及投射到杏仁核的ACC区域的反应性减弱有关[32, 33]。此外,有文献报道,杏仁核和脑桥与其之间连接的改变是焦虑和抑郁等负面情感状态的特征[34, 35]。有研究借助SPECT检测重度抑郁症(major depressive disorder, MDD)脑活动代谢,通过分析与汉密尔顿抑郁量表中症状严重程度评级之间的相关性,发现抑郁状态的严重程度与左侧杏仁核、豆状核和海马旁回的rCBF呈负相关,焦虑严重程度与右侧前外侧眶额皮质的rCBF呈正相关,并证实了MDD综合征中焦虑和抑郁负面症状与杏仁核等特定脑区的相关性[36]。尽管PMDD患者在黄体期存在严重焦虑、抑郁的精神状态以及对社会刺激的敏感性,但在PMDD中杏仁核反应性的研究结论并不尽相同。PROTOPOPESCU等[37]采用fMRI 研究PMDD患者在情感控制任务背景下的神经反应时发现,与对照组比较,PMDD患者在黄体期的杏仁核对情感诱导下的反应性增加。与先前的结果相似的是,有研究发现在具有高度焦虑倾向的PMDD个体中黄体期诱导下杏仁核对情感面孔的反应性增加,说明PMDD 患者的杏仁核更容易被激活;该研究团队还发现左侧杏仁核在黄体期比卵泡期表现出更高的反应活动,且此反应与孕酮水平变化有关,支持了PMDD中孕酮敏感性增强会影响社会情感的皮质边缘处理的假说[25, 38]。在最新一项对大脑情感刺激的反应相关研究中,PMDD受试者在月经周期黄体晚期的情感处理网络关键区域(即杏仁核、海马)与对照组相比观察到更明显的活动反应[39]

       此外,情感调节的神经网络包括两方面,一方面是基底核-杏仁核等边缘系统,通过编码刺激的情感属性及对不同类型的情感进行评价加工,进而产生情感反应;另一方面是利用额叶功能来执行对情感刺激的识别、评估及监测的控制[40, 41]。PFC-杏仁核连接被认为是情感调节中重要的神经回路,是月经相关的情感障碍的神经特征[42],观察PMS患者与健康对照之间的功能连接(functional connectivity, FC)差异,发现PMS患者具有更强的杏仁核-PFC连接性,右侧杏仁核与右侧中央前回、左侧ACC和内侧PFC之间的连接性与患者的症状强度呈正相关。PETERSEN等[15, 43] 通过比较PMDD与健康对照组的执行控制网络(executive control network, ECN)、默认模式网络(default mode network, DMN)和杏仁核的内在连通性发现,与卵泡期相比,PMDD患者黄体晚期的双侧杏仁核与DMN的FC明显较弱,杏仁核与左侧ECN的FC明显增强,提示黄体晚期PMDD患者在经前期调节负面情感的能力下降。由此可知,杏仁核相关脑网络中的异常功能连接与PMDD的情感障碍之间具有一定的联系,但其脑区间对负性情感体验的互相作用机制尚未明确,仍需更进一步研究探索。

       由此可知,杏仁核是PMDD患者情感功能调节的关键脑区,且由PFC-杏仁核构成的情感回路功能受损可能是PMDD重要的发病机制。

4 海马

       海马体是边缘系统的重要组成部分,海马接收来自海马旁回、内嗅皮层和嗅周皮层的传出神经,是情感控制边缘回路的重要组成部分,其与杏仁核、PFC紧密的相互联系反映了其在情感过程中的重要性[29, 44]。杏仁核专门负责情感的输入和处理,而海马体对于情感记忆至关重要,在情感反应期间,这两大脑区相互作用,将情感转化为特定的结果[45, 46]。由杏仁核、海马、丘脑和腹侧纹状体组成的情感调控特定网络与PMDD负性情感的评价和表达密切相关[47]。PMDD与海马的脑结构和功能改变密切相关,通过对PMDD灰质结构进行分析,发现PMDD患者海马皮质中的灰质密度显著增加,这可能与PMDD患者在黄体期对负性刺激的敏感识别和过激的情感反应有关[48]。在基因转录水平上对白香丹胶囊和氟西汀治疗后及空白对照组的PMDD模型大鼠分析海马体中的基因表达谱,发现白香丹给药组与对照组间具有基因的差异表达,这提示了白香丹治疗PMDD的可能以及海马可能为PMDD的病变机制的重要靶点[49]。一项对共病双相情感障碍和PMDD(bipolar disorder with comorbid PMDD, BDPMDD)神经相关性的研究发现,BDPMDD组的女性在月经周期中表现出更大的生物节律紊乱和更严重的亚阈值抑郁和焦虑症状,并且左侧海马体和右额叶皮层之间的FC增加[50]

       海马是边缘系统中情感处理的重要脑区,目前对于PMDD与海马的相关研究相对较少且单一,但研究提示海马与皮层区域之间的功能相互作用与负面情绪调节障碍有关,由此进一步开展以“PFC-杏仁核-海马”为轴心的情感脑回路研究,将会为PMDD中枢病变机制研究提供潜在的神经病理学依据。

5 总结及展望

       大量研究证实,情感功能障碍是PMDD最主要症状表现,确定了其与PFC、ACC、杏仁核、海马等相关脑区的功能改变密切相关,涉及PMDD核心发病机制。目前PMDD在相关的脑功能网络研究取得了初步进展,尤其是fMRI作为重要的神经影像评估手段在其中发挥了重要作用,为PMDD的病理生理机制、诊断和治疗等研究提供了有效的影像学证据。在今后的研究中,以这些特定脑区为靶点,深入探索更细微的亚区结构的功能、连接关系与神经回路的综合作用对情感障碍的调控机制,并在基于回路的神经生理学基础上,为未来的治疗策略提供新证据。

       综上所述,PMDD的中枢机制尚未有明确定论,而本文仅对情感调节障碍的相关脑网络功能进行分析,但PMDD的病变机制不仅涉及中枢神经系统功能方面,还与其结构、激素、递质以及基因等异常相关。因此在未来的研究中还须充分利用多种神经功能成像学技术、多模态影像等技术,对大脑分区进行更详细的分析研究,建立更强大的神经功能模型,进而在PMDD发病机制、精准诊断、治疗和随访观察等方面发挥更重要的作用。通过整合大规模脑网络结构、功能和分子神经影像学以及治疗数据的研究,明确其神经调节机制,为临床诊治提供更精确有效的依据基础,提高PMDD患者的生活质量。

[1]
LANZA S T, PAERLSTEIN T. Premenstrual dysphoric disorder[J]. Med Clin North Am, 2019, 103(4): 613-628. DOI: 10.1016/j.mcna.2019.02.007.
[2]
KOVACS Z, HEGYI G, SZOKE H. Premenstruális szindróma és premenstruális dysphoriás zavar Premenstrual syndrome and premenstrual dysphoric disorder[J]. Orv Hetil, 2022, 163(26): 1023-1031. DOI: 10.1556/650.2022.32496.
[3]
OSBORN E, BROOKS J, O'BRIEN P M S, et al. Suicidality in women with Premenstrual Dysphoric Disorder: a systematic literature review[J]. Arch Womens Ment Health, 2021, 4(2): 173-184. DOI: 10.1007/s00737-020-01054-8.
[4]
LIPAROTI M, TROISI L E, SARNO L, et al. Functional brain network topology across the menstrual cycle is estradiol dependent and correlates with individual well-being[J]. J Neurosci Res, 2021, 99(9): 2271-2286. DOI: 10.1002/jnr.24898.
[5]
CARLINI S V, DELIGIANNIDIS K M. Evidence-based treatment of premenstrual dysphoric disorder: A concise review[J/OL]. J Clin Psychiatry, 2020, 81(2): 19ac13071 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716347/. DOI: 10.4088/JCP.19ac13071.
[6]
ITRIYEVA K. Premenstrual syndrome and premenstrual dysphoric disorder in adolescents[J/OL]. Curr Probl Pediatr Adolesc Health Care, 2022, 52(5): 101187 [2023-07-03]. https://doi.org/10.1016/j.cppeds.2022.101187. DOI: 10.1016/j.cppeds.2022.101187.
[7]
DAN R, REUVENI I, CANETTI L, et al. Trait-related changes in brain network topology in premenstrual dysphoric disorder[J/OL]. Horm Behav, 2020, 124: 104782 [2023-07-03]. https://doi.org/10.1016/j.yhbeh.2020.104782. DOI: 10.1016/j.yhbeh.2020.104782.
[8]
DUBOL M, EPPERSON C N, LANZENBERGER R, et al. Neuroimaging premenstrual dysphoric disorder: A systematic and critical review[J/OL]. Front Neuroendocrinol, 2020, 57: 100838 [2023-07-03]. https://pubmed.ncbi.nlm.nih.gov/32268180/. DOI: 10.1016/j.yfrne.2020.100838.
[9]
GUO B, ZHANG M, HAO W, et al. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression[J/OL]. Transl Psychiatry, 2023, 13(1): 5 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829236/. DOI: 10.1038/s41398-022-02297-y.
[10]
FULTON S, DECARIE S L, FIORAMONTI X, et al. The menace of obesity to depression and anxiety prevalence[J]. Trends Endocrinol Metab, 2022, 33(1): 18-35. DOI: 10.1016/j.tem.2021.10.005.
[11]
ARNSTEN A F T, JOYCE M K P, ROBERTS A C. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion[J/OL]. Neurosci Biobehav Rev, 2023, 145: 105000 [2023-07-03]. https://doi.org/10.1016/j.neubiorev.2022.105000. DOI: 10.1016/j.neubiorev.2022.105000.
[12]
SUZUKI Y, TANAKA S C. Functions of the ventromedial prefrontal cortex in emotion regulation under stress[J/OL]. Sci Rep, 2021, 11(1): 18225 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440524/. DOI: 10.1038/s41598-021-97751-0.
[13]
NEJATI V, MAJIDINEZHAD M, NITSCHE M. The role of the dorsolateral and ventromedial prefrontal cortex in emotion regulation in females with major depressive disorder (MDD): A tDCS study[J]. J Psychiatr Res, 2022, 148: 149-158. DOI: 10.1016/j.jpsychires.2022.01.030.
[14]
KENWOOD M M, KALIN N H, BARBAS H. The prefrontal cortex, pathological anxiety, and anxiety disorders[J]. Neuropsychopharmacology, 2022, 47(1): 260-275. DOI: 10.1038/s41386-021-01109-z.
[15]
PETERSEN N, GHAHREMANI D G, RAPKIN A J, et al. Brain activation during emotion regulation in women with premenstrual dysphoric disorder[J]. Psychol Med, 2018, 48(11): 1795-1802. DOI: 10.1017/S0033291717003270.
[16]
BALLER E B, WEI S M, KOHN P D, et al. Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a multimodal neuroimaging study[J]. Am J Psychiatry, 2013, 170(3): 305-314. DOI: 10.1176/appi.ajp.2012.12030385.
[17]
GINGNELL M, BANNBERS E, WIKSTROM J, et al. Premenstrual dysphoric disorder and prefrontal reactivity during anticipation of emotional stimuli[J]. Eur Neuropsychopharmacol, 2013, 23(11): 1474-1483. DOI: 10.1016/j.euroneuro.2013.08.002.
[18]
GAO M, QIAO M, AN L, et al. Brain reactivity to emotional stimuli in women with premenstrual dysphoric disorder and related personality characteristics[J]. Aging (Albany NY), 2021, 13(15): 19529-19541. DOI: 10.18632/aging.203363.
[19]
AOKI M, SUZUKI M, SUZUKI S, et al. Cognitive function evaluation in premenstrual syndrome during the follicular and luteal phases using near-infrared spectroscopy[J/OL]. Compr Psychoneuroendocrinol, 2022, 10: 100117 [2023-07-03].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216448/. DOI: 10.1016/j.cpnec.2022.100117.
[20]
RAPKIN A J, BERMAN S M, MANDELKERN M A, et al. Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder[J]. Biol Psychiatry, 2011, 69(4): 374-380. DOI: 10.1016/j.biopsych.2010.09.029.
[21]
RAPKIN A J, BERMAN S M, LONDON E D. The cerebellum and premenstrual dysphoric disorder[J]. AIMS Neurosci, 2014, 1(2): 120-141. DOI: 10.3934/Neuroscience.2014.2.120.
[22]
ROLLS E T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala[J]. Brain Struct Funct, 2023, 228(5): 1201-1257. DOI: 10.1007/s00429-023-02644-9.
[23]
IBRAHM H M, KULIKOVA A, LY H, et al. Anterior cingulate cortex in individuals with depressive symptoms: A structural MRI study[J/OL]. Psychiatry Res Neuroimaging, 2022, 319: 111420 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724389/. DOI: 10.1016/j.pscychresns.2021.111420.
[24]
ROLLS E T, DECO G, HUANG C C, et al. The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action[J]. Cereb Cortex, 2022, 33(2): 330-356. DOI: 10.1093/cercor/bhac070.
[25]
GINGNELL M, AHLSTEDT V, BANNBERS E, et al. Social stimulation and corticolimbic reactivity in premenstrual dysphoric disorder: a preliminary study[J/OL]. Biol Mood Anxiety Disord, 2014, 4(1): 3 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015856/. DOI: 10.1186/2045-5380-4-3.
[26]
COMASCO E, HAHN A, GANGER S, et al. Emotional fronto-cingulate cortex activation and brain derived neurotrophic factor polymorphism in premenstrual dysphoric disorder[J]. Hum Brain Mapp, 2014, 35(9): 4450-4458. DOI: 10.1002/hbm.22486.
[27]
WEI S M, BALLER E B, MARTINEZ P E, et al. Subgenual cingulate resting regional cerebral blood flow in premenstrual dysphoric disorder: differential regulation by ovarian steroids and preliminary evidence for an association with expression of ESC/E(Z) complex genes[J/OL]. Transl Psychiatry, 2021, 11(1): 206 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032707/. DOI: 10.1038/s41398-021-01328-4.
[28]
SIMIC G, TKALCIC M, VUKIC V, et al. Understanding emotions: Origins and roles of the amygdala[J/OL]. Biomolecules, 2021, 11(6): 823 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228195/. DOI: 10.3390/biom11060823.
[29]
ROLLS E T, DECO G, HUANG C C, et al. Human amygdala compared to orbitofrontal cortex connectivity, and emotion[J/OL]. Prog Neurobiol, 2023, 220: 102385 [2023-07-03]. https://doi.org/10.1016/j.pneurobio.2022.102385. DOI: 10.1016/j.pneurobio.2022.102385.
[30]
HUA J P Y, TRULL T J, MERRILL A M, et al. Functional connectivity between the ventral anterior cingulate and amygdala during implicit emotional conflict regulation and daily-life emotion dysregulation[J/OL]. Neuropsychologia, 2021, 158: 107905 [2023-07-03]. https://doi.org/10.1016/j.neuropsychologia.2021.107905. DOI: 10.1016/j.neuropsychologia.2021.107905.
[31]
ASEDE D, DODDAPANENI D, BOLTON M M. Amygdala intercalated cells: Gate keepers and conveyors of internal state to the circuits of emotion[J]. J Neurosci, 2022, 42(49): 9098-9109. DOI: 10.1523/JNEUROSCI.1176-22.2022.
[32]
YANG L, DUN W, LI K, et al. Altered amygdalar volume and functional connectivity in primary dysmenorrhoea during the menstrual cycle[J]. Eur J Pain, 2019, 23(5): 994-1005. DOI: 10.1002/ejp.1368.
[33]
ZHANG Y, ZHOU W, HUANG J, et al. Neural correlates of perceived emotions in human insula and amygdala for auditory emotion recognition[J/OL]. Neuroimage, 2022, 260: 119502 [2023-07-03]. https://doi.org/10.1016/j.neuroimage.2022.119502. DOI: 10.1016/j.neuroimage.2022.119502.
[34]
WONG J J, WONG N M L, CHANG D H F, et al. Amygdala-pons connectivity is hyperactive and associated with symptom severity in depression[J/OL]. Commun Biol, 2022, 5(1): 574 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187701/. DOI: 10.1038/s42003-022-03463-0.
[35]
YU H, CHEN L, LEI H, et al. Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours[J/OL]. Nat Commun, 2022, 13(1): 5462 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482654/. DOI: 10.1038/s41467-022-33139-6.
[36]
PERICO C A, SKAF C R, YAMADA A, et al. Relationship between regional cerebral blood flow and separate symptom clusters of major depression: a single photon emission computed tomography study using statistical parametric mapping[J]. Neurosci Lett, 2005, 384(3): 265-270. DOI: 10.1016/j.neulet.2005.04.088.
[37]
PROTOPOPESCU X, TUECSHER O, PAN H, et al. Toward a functional neuroanatomy of premenstrual dysphoric disorder[J]. J Affect Disord, 2008, 108(1-2): 87-94. DOI: 10.1016/j.jad.2007.09.015.
[38]
GINGNELL M, MORELL A, BANNBERS E, et al. Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder[J]. Horm Behav, 2012, 62(4): 400-406. DOI: 10.1016/j.yhbeh.2012.07.005.
[39]
STIERNMN L, DUBOL M, COMASCO E, et al. Emotion-induced brain activation across the menstrual cycle in individuals with premenstrual dysphoric disorder and associations to serum levels of progesterone-derived neurosteroids[J/OL]. Transl Psychiatry, 2023, 13(1): 124 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101953/. DOI: 10.1038/s41398-023-02424-3.
[40]
ZANELLA F, MONACHESI B, GRECUCCI A. Resting-state BOLD temporal variability in sensorimotor and salience networks underlies trait emotional intelligence and explains differences in emotion regulation strategies[J/OL]. Sci Rep, 2022, 12(1): 15163 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452559/. DOI: 10.1038/s41598-022-19477-x.
[41]
PAN D N, JENTSCH V L, LANGER K, et al. What a difference timing makes: Cortisol effects on neural underpinnings of emotion regulation[J/OL]. Neurobiol Stress, 2023, 25: 100544 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239016/. DOI: 10.1016/j.ynstr.2023.100544.
[42]
DENG D, PANG Y, DUAN G, et al. Larger volume and different functional connectivity of the amygdala in women with premenstrual syndrome[J]. Eur Radiol, 2018, 28(5): 1900-1908. DOI: 10.1007/s00330-017-5206-0.
[43]
PETERSEN N, GHAHREMANI D G, RAPKIN A J, et al. Resting-state functional connectivity in women with PMDD[J/OL]. Transl Psychiatry, 2019, 9(1): 339 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906514/. DOI: 10.1038/s41398-019-0670-8.
[44]
MATEUS-PINHEIRO A, PATRICIO P, ALVES N D, et al. Hippocampal cytogenesis abrogation impairs inter-regional communication between the hippocampus and prefrontal cortex and promotes the time-dependent manifestation of emotional and cognitive deficits[J]. Mol Psychiatry, 2021, 26(12): 7154-7166. DOI: 10.1038/s41380-021-01287-8.
[45]
GOTHARD K M, FUGLEVAND A J. The role of the amygdala in processing social and affective touch[J]. Curr Opin Behav Sci, 2022, 43: 46-53. DOI: 10.1016/j.cobeha.2021.08.004.
[46]
LI Y D, LUO Y J, CHEN Z K, et al. Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior[J]. Nat Neurosci, 2022, 25(5): 630-645. DOI: 10.1038/s41593-022-01065-x.
[47]
LONG J, WANG Y, LIU L, et al. The prominent role of the temporal lobe in premenstrual syndrome and premenstrual dysphoric disorder: Evidence from multimodal neuroimaging[J/OL]. Front Psychiatry, 2022, 13: 954211 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274249/. DOI: 10.3389/fpsyt.2022.954211.
[48]
JEONG H G, HAM B J, YEO H B, et al. Gray matter abnormalities in patients with premenstrual dysphoric disorder: an optimized voxel-based morphometry[J]. J Affect Disord, 2012, 140(3): 260-267. DOI: 10.1016/j.jad.2012.02.010.
[49]
WEI S, SUN P, GUO Y, et al. Gene expression in the hippocampus in a rat model of premenstrual dysphoric disorder after treatment with baixiangdan capsules[J/OL]. Front Psychol, 2018, 9: 2065 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242977/. DOI: 10.3389/fpsyg.2018.02065.
[50]
SYAN S K, MINUZZI L, SMITH M, et al. Brain structure and function in women with comorbid bipolar and premenstrual dysphoric disorder[J/OL]. Front Psychiatry, 2018, 8: 301 [2023-07-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768056/. DOI: 10.3389/fpsyt.2017.00301.

上一篇 昼夜节律在脑的多模态MRI中的研究进展
下一篇 多模态磁共振成像技术在深部脑刺激治疗帕金森病中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2