分享:
分享到微信朋友圈
X
临床研究
静息态全脑体素水平功能连接分析对脑小血管病相关轻度认知障碍患者认知水平的预测作用
梁秀琴 刘擘 吴江 李璇

Cite this article as: LIANG X Q, LIU B, WU J, et al. Predictive effect of resting state whole brain voxel level functional connectivity analysis on cognitive level of patients with mild cognitive impairment associated with cerebral small vessel disease[J]. Chin J Magn Reson Imaging, 2024, 15(4): 25-31.本文引用格式:梁秀琴, 刘擘, 吴江, 等. 静息态全脑体素水平功能连接分析对脑小血管病相关轻度认知障碍患者认知水平的预测作用[J]. 磁共振成像, 2024, 15(4): 25-31. DOI:10.12015/issn.1674-8034.2024.04.005.


[摘要] 目的 通过体素水平静息态功能MRI(resting state functional MRI, rs-fMRI)序列探索脑小血管病相关轻度认知障碍(mild cognitive impairment associated with cerebral small vessel disease, CSVD-MCI)患者早期认知障碍的机制,并分析其与临床神经心理学指标的相关性。材料与方法 筛选临床及常规MRI检查符合CSVD-MCI诊断标准的受试者21例,并挑选与其年龄、性别及受教育年限相匹配的健康对照(health control, HC)20例,所有被试都接受rs-fMRI检查,计算全脑度中心度(degree centrality, DC)值,将两组DC值差异显著团块的峰值蒙特利尔神经病学研究所(Montreal Neurological Institute, MNI)坐标作为种子点,与全脑其他体素进行功能连接(functional connection, FC)分析,两组脑功能存在差异脑区的DC及FC值与蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)评分进行相关性分析,并进一步分析CSVD总负荷评分与MoCA评分,以及CSVD总负荷评分与各认知域评分的相关性。结果 与HC组相比,CSVD-MCI组左侧内侧额上回/左侧前扣带回、左侧角回/左侧缘上回、右侧内侧额上回/右侧额中回、左侧小脑及右侧小脑DC值减低,左侧前扣带回与左侧颞中下回、双侧楔前叶、双侧中扣带回FC值减低。白质高信号评分、CSVD总负荷评分与MoCA评分呈显著负相关(rs=-0.461,P=0.036;rs=-0.458,P=0.037);CSVD总负荷评分与视空间和执行功能评分呈负相关(rs=-0.473,P=0.030),与其他认知域评分无显著相关性。CSVD-MCI组左侧前扣带回-右侧楔前叶FC值与MoCA评分呈显著正相关(r=0.565,P=0.018)。结论 常规MRI可以显示CSVD特征性影像学病灶,rs-fMRI序列可以早期发现DC及FC减低脑区,CSVD评分及DC、FC值与临床神经心理学评分呈明显相关,可作为CSVD-MCI患者的潜在影像学标志物,揭示其认知功能减退的潜在机制。
[Abstract] Objective The resting state functional MRI (rs-fMRI) sequence at the voxel level was used to explore the mechanism of early cognitive impairment in patients with mild cognitive impairment associated with cerebral small vessel disease (CSVD-MCI) and analyze its correlation with clinical neuropsychology indicators.Materials and Methods Twenty-one subjects who met the diagnostic criteria of CSVD-MCI by routine MRI were screened, and 20 healthy control (HC) subjects matched with their age, gender and years of education were selected. All subjects received rs-fMRI, and calculated the value of degree centrality (DC), the peak Montreal Neurological Institute (MNI) coordinates of the two groups with significantly different DC values were used as seed points for functional connectivity (FC) analysis with other voxels in the whole brain, correlation analysis was performed between DC and FC values and Montreal Cognitive Assessment (MoCA) scores in brain regions with differences in brain function between the two groups, to further analyze the correlation between CSVD total load score and MoCA score, and CSVD total load score and each cognitive domain score.Results Compared with the HC group, the left medial superior frontal gyrus/left anterior cingulate gyrus, left angular gyrus/left supramarginal gyrus, right medial superior frontal gyrus/right middle frontal gyrus, left cerebellum and right cerebellum DC values of the CSVD-MCI group were reduced, and the FC values of the left anterior cingulate gyrus, left middle inferior temporal gyrus, bilateral precuneus, and bilateral middle cingulate gyrus were reduced. There was a significant negative correlation between white matter high signal score, CSVD total load score, and MoCA score (rs=-0.461, P=0.036; rs=-0.458, P=0.037); the total load score of CSVD was negatively correlated with visual space and executive function scores (rs=-0.473, P=0.030), but not significantly correlated with other cognitive domain scores. In the CSVD-MCI group, the FC value of left anterior cingulate cortex and right precuneus was significantly positively correlated with MoCA score (r=0.565, P=0.018).Conclusions Conventional MRI can display characteristic imaging lesions of CSVD, while rs-fMRI sequence can early detect reduced DC and FC in brain regions. The CSVD score and DC, FC are significantly correlated with clinical neuropsychological scores, and can serve as potential imaging markers for CSVD-MCI patients, revealing the potential mechanism of cognitive decline.
[关键词] 脑小血管病相关轻度认知障碍;静息态功能磁共振成像;磁共振成像;度中心度;功能连接
[Keywords] mild cognitive impairment associated with cerebral small vessel disease;resting state functional magnetic resonance imaging;magnetic resonance imaging;degree centrality;functional connectivity

梁秀琴 1   刘擘 2#   吴江 1*   李璇 1  

1 山西省心血管病医院磁共振室,太原 030024

2 山西医科大学医学影像学院,太原 030001

通信作者:吴江,E-mail:wujiang1024@sina.com

作者贡献声明:吴江设计了本研究的方案,提出论文思路,对论文重要内容进行了修改;梁秀琴、刘擘起草和撰写论文,获取、分析或解释本研究数据;李璇获取、分析和解释本研究的数据,对论文重要内容进行修改;全体作者同意最后的修改稿发表,同意对研究工作各方面的诚信问题负责。


收稿日期:2023-07-11
接受日期:2024-03-04
中图分类号:R445.2  R743  R749.13 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.04.005
本文引用格式:梁秀琴, 刘擘, 吴江, 等. 静息态全脑体素水平功能连接分析对脑小血管病相关轻度认知障碍患者认知水平的预测作用[J]. 磁共振成像, 2024, 15(4): 25-31. DOI:10.12015/issn.1674-8034.2024.04.005.

0 引言

       血管性轻度认知障碍是血管性痴呆的早期阶段,而后者被认为是继阿尔茨海默病之后引起痴呆的第二大常见原因[1]。在血管性认知障碍涉及的多种机制中,脑小血管病(cerebral small vessel disease, CSVD)可能是最常见的一种[2, 3]。CSVD指各种病因引起脑小动脉、微动脉、毛细血管、小静脉及微静脉损伤,进而导致一系列病理、影像及临床综合征[4]。CSVD相关轻度认知障碍(mild cognitive impairment associated with CSVD, CSVD-MCI)约占血管性认知障碍的50%~70%,导致了25%的卒中、36%~67%的痴呆,严重影响患者的生活质量[5, 6]。随着疾病进展,CSVD对认知的损伤加重,然而,目前尚无特异性治疗方法,因此CSVD-MCI的早期诊断和预防至关重要。本研究主要探讨CSVD-MCI的神经影像学机制,为临床早期诊断提供精准的影像学依据。

       目前,越来越多的影像学技术应用于CSVD-MCI的研究。一项基于ALE的Meta分析[7]显示,岛叶/颞上回/屏状核灰质体积减小、尾状核头和前扣带回神经元功能活动下降,与CSVD-MCI有关。一项三维动脉自旋标记评估脑血流量(cerebral blood flow, CBF)改变的研究表明[8],额颞叶、海马、丘脑和岛叶脑灌注缺损与CSVD-MCI相关。

       CSVD典型的影像学特征包括白质高信号(white matter hyperintensity, WMH)、腔隙、脑微出血(cerebral microbleed, CMB)、扩大的血管周围间隙(enlarged perivascular space, EPVS)、新发小的皮质下梗死和脑萎缩。这些影像学标志有叠加效应,量化CSVD总负荷比单一影像学标志能更敏感、高效地评估CSVD患者认知改变,提高诊断特异性[9]。相比于常规MRI序列,静息态功能MRI(resting state functional MRI, rs-fMRI)不仅可以反映局部脑区的自发神经活动,而且可以对相聚较远的脑功能区进行功能连接(functional connection, FC)分析,因此,在CSVD-MCI患者研究领域中的应用越来越广。度中心度(degree centrality, DC)是一种基于图论的方法,能够在体素水平上计算某个体素与全脑其他体素之间脑FC数量,反映某个节点在全脑网络节点中的重要性[10, 11]。FC是在空间上相互分离脑区之间的时间序列相关性,反映不同感兴趣区间结构和功能上的联系和相互协调作用[12, 13]

       目前已经有很多CSVD和血管性认知障碍相关的研究,探讨脑小血管结构损伤和FC如何相互作用影响认知,但是CSVD-MCI的神经病理学机制至今尚未明确。本文旨在分析大脑不同区域间的脑网络联系,探讨DC和FC联合应用对CSVD-MCI患者认知水平的预测作用。本研究采用常规MRI序列联合蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)评分筛选CSVD-MCI患者,探究其CSVD评分及DC、FC值与临床神经心理学评分的相关性。

1 材料与方法

1.1 研究对象

       本研究招募了2021年8月至2022年8月就诊于山西省心血管病医院的CSVD-MCI患者21例(男9例,女12例)和年龄、性别及受教育年限相匹配的健康对照20例(男9例,女11例)。本研究遵循《脑小血管病相关认知功能障碍中国诊疗指南(2019)》和《中国脑小血管病诊治专家共识2021》。所有被试都接受了标准的神经心理学评估,包括MoCA、日常生活能力(Activity Of Daily Living, ADL)、临床痴呆量表(Clinical Dementia Rating, CDR)评分,评分由2名受过认知培训且有3年以上工作经验的神经内科主治医师完成。2名有5年以上工作经验的MRI主治医师根据MRI检查结果进行筛选。该研究遵守《赫尔辛基宣言》,经山西省心血管病医院伦理委员会批准(批准文号:2021613)。所有受试者都签署了知情同意书。

       CSVD-MCI组纳入标准:(1)入组年龄≥50岁,且为右利手;(2)至少存在一个认知域的认知功能减退,且ADL评分≤16分,认知障碍尚未影响日常生活能力,CDR评分=0.5;(3)有CSVD的标志性MRI影像表现,包括血管源性脑白质高信号、腔隙、微出血灶、扩大的血管周围间隙、新发小的皮质下梗死和脑萎缩,且确定CSVD为引起认知功能障碍的主要因素;(4)MoCA量表(北京版)得分<26分。

       健康对照组纳入标准:(1)神经系统查体无认知功能障碍,MoCA评分≥26分,ADL评分≤16分;(2)无精神障碍史;(3)常规MRI检查无脑血管疾病相关证据。

       所有受试者排除标准:(1)影响认知的神经或精神疾病病史;(2)严重听力、视力及身体运动障碍,不能很好地配合认知测试;(3)植入心脏起搏器及幽闭恐惧症等MRI检查禁忌证。

1.2 MRI扫描参数

       所有MRI数据通过德国SIEMENS Skyra 3.0 T超导型磁共振仪获取,扫描采用8通道头颅线圈。为减少头动,用海绵垫固定被试头部,嘱患者扫描过程中保持不动、闭眼、保持清醒,且避免做主动思维活动。各扫描序列参数见表1

表1  MR扫描序列参数
Tab. 1  MR scanning sequence parameters

1.3 数据处理与分析

       本研究CSVD病灶包括WMH、CMB、EPVS3个MRI标志物。WMH严重程度根据Fazekas评分,范围从0~3,皮层下深部WMH评分为2或3,或脑室周围WMH评分为3分,计1分;腔隙≥1个计1分;基底节区EPVS>10个计1分。CSVD总负荷评分共3分,分值越高,病变越严重。CSVD评分由2名有5年以上工作经验的MRI主治医师完成。

       使用基于MATLAB 2013b平台的SPM12及RESTplus1.2工具包对rs-fMRI和高分辨T1加权结构像的原始数据进行预处理。流程如下:(1)将DICOM数据格式转换为NIFTI格式;(2)剔除前10个时间点;(3)时间层校正;(4)头动校正(排除头动平移>2 mm,旋转>2°的受试者);(5)空间标准化(重采样体素大小为3 mm×3 mm×3 mm);(6)平滑(平滑核的半高宽为6 mm,DC分析前不进行平滑);(7)去线性漂移;(8)去除协变量(头动、脑脊液及脑白质信号);(9)使用0.01~0.08 Hz的频段进行滤波从而减少低频和高频噪声对图像的干扰。

       滤波之后,计算全脑DC值,然后进行平滑处理。本研究DC值计算采用二值化的度中心度方法,在体素水平上计算体素与mask内所有其他体素之间的时间相关性,将Pearson相关系数矩阵设置为阈值r>0.25。

       FC分析以两组DC值有显著差异团块的峰值MNI坐标作为种子点,本研究仅以左侧前扣带回所在团块的峰值MNI坐标为种子点,与全脑其他体素进行FC分析,获得的FC值在两组之间差异有统计学意义。以左侧前扣带回所在团块的峰值MNI坐标(-27,18,42)为球心,半径6 mm,以此为感兴趣区,将该区域体素与全脑其他体素逐个进行分析,获得全脑FC值,即Pearson相关系数r,然后经过Fisher's Z转化,将r值转换为z值,最后进行统计分析。

1.4 统计学分析

       采用SPSS 22.0软件对两组被试的一般资料及相关临床量表进行统计学分析。定量资料采用正态性检验(Shapiro-Wilktest检验),符合正态分布的定量资料采用(x¯±s)表示,组间差异比较采用两独立样本t检验,相关性分析采用Pearson相关。计数资料用例数或百分比表示,组间比较采用卡方检验。两组被试的性别、吸烟史、饮酒史、高血压、糖尿病采用卡方检验,年龄、受教育年限、MoCA评分采用两独立样本t检验。吸烟史定义为每日吸烟≥10支,持续5年以上;饮酒史定义为每日摄入酒精≥20克,饮酒时间超过5年。不符合正态分布的相关性分析采用Spearman相关分析。采用组内相关系数(intraclass correlation coefficient, ICC)来衡量2名医师评分一致性,大于0.75表示信度良好。

       采用SPM 12工具包对两组DC值差异显著团块与全脑FC值进行两独立样本t检验,以年龄、性别及受教育年限作为协变量,得到两组间的DC值及FC值差异脑区。为了控制Ⅰ类错误,同时尽可能地保留更多的阳性结果,提高试验的发现率,执行团簇水平的错误发现率(false discovery rate, FDR)校正进行多重比较校正,团簇水平阈限设定为P<0.05,此时满足体素水平P<0.005且团块大小>100个体素。通过Xjview软件参照自动解剖图谱分区来记录相关差异脑区及对应的MNI坐标、体素大小及t值,使用BrainNet Viewer软件呈现MNI坐标上差异有统计学意义的脑区,并将差异脑区DC值及FC值分别与MoCA评分进行Pearson相关分析。采用Spearman相关分析分析各项CSVD评分与MoCA评分、CSVD总负荷评分与MoCA各认知域评分的相关性,差异显著的用热图呈现。P<0.05认为差异有统计学意义。

2 结果

2.1 评分结果一致性分析

       分别由2名神经内科主治医师和2名MRI主治医师评估的MoCA、ADL和CSVD总负荷评分ICC值分别为0.805、0.853、0.837,说明结果一致性良好。

2.2 人口学和神经心理学结果

       所有被试的人口统计学特征和神经心理测试分数详见表2。两组在年龄、性别及受教育年限方面没有显著差异;两组饮酒史、高血压、糖尿病差异有统计学意义(P<0.05),CSVD-MCI组MoCA评分显著低于HC组(P<0.001),其他资料差异无统计学意义。

表2  CSVD-MCI组与HC组临床资料比较
Tab. 2  Comparison of clinical data between CSVD-MCI group and HC group

2.3 DC值结果

       与HC组相比,CSVD-MCI组左侧内侧额上回/左侧前扣带回、左侧角回/左侧缘上回、右侧内侧额上回/右侧额中回、左侧小脑及右侧小脑DC值减低(表3图1A)。

图1  CSVD-MCI组与HC组DC及FC值差异显著脑区。1A:与HC组相比,CSVD-MCI组左侧内侧额上回/左侧前扣带回、左侧角回/左侧缘上回、右侧内侧额上回/右侧额中回、左侧小脑及右侧小脑DC值减低;1B:与HC组相比,CSVD-MCI组左侧前扣带回与左侧颞中下回、双侧楔前叶、双侧中扣带回FC值减低。CSVD-MCI:脑小血管病相关轻度认知障碍;HC:健康对照;DC:度中心度;FC:功能连接。
Fig. 1  Significant differences of brain regions in degree centrality (DC) and functional connection (FC) values between the mild cognitive impairment associated with cerebral small vessel disease (CSVD-MCI) group and healthy control (HC) group. 1A: Compared with the HC group, the DC value of the left medial superior frontal gyrus/left anterior cingulate gyrus, left angular gyrus/left supramarginal gyrus, right medial superior frontal gyrus/right middle frontal gyrus, left cerebellum and right cerebellum DC values in the CSVD-MCI group decreas. 1B: Compared with HC group, FC values of left anterior cingulate gyrus, left middle inferior temporal gyrus, bilateral precuneus and bilateral middle cingulate gyrus in CSVD-MCI group decreas.
表3  CSVD-MCI组与HC组相比DC值有显著减低的脑区
Tab. 3  Brain areas with significantly lower DC values in the CSVD-MCI group compared with HC group

2.4 FC值结果

       与HC组相比,CSVD-MCI组仅左侧前扣带回与左侧颞中下回、双侧楔前叶、双侧中扣带回FC值减低(表4图1B)。

表4  CSVD-MCI组与HC组相比FC值有显著减低的脑区
Tab. 4  Brain areas with significantly reduced functional connectivity values in the CSVD-MCI group compared with HC group

2.5 相关性分析

       提取两组差异显著脑区所在团块的DC及FC值。结果显示,CSVD-MCI患者左侧前扣带回-右侧楔前叶FC值与MoCA评分呈显著正相关(r=0.565,P=0.018)(图2A)。

       CSVD总负荷评分、脑白质高信号评分与MoCA评分呈显著负相关(rs=-0.458,P=0.037;rs=-0.461,P=0.036);腔隙、扩大的血管周围间隙及脑萎缩与MoCA评分无显著相关性(rs=0.087;rs=0.211;rs=-0.046;P>0.05)(表5图2B2C图3)。

       CSVD总负荷评分与视空间和执行功能认知域评分呈负相关(rs=-0.473,P=0.030),与其他认知域评分无显著相关性(表6图2D图3)。

图2  CSVD-MCI组,左侧前扣带回与右侧楔前叶FC值、CSVD总负荷评分及白质高信号评分与MoCA评分的相关性散点图。2A:左侧前扣带回与右侧楔前叶FC值与MoCA评分呈显著正相关;2B、2C:CSVD总负荷评分、白质高信号评分与MoCA评分呈显著负相关;2D:CSVD总负荷评分与视空间和执行功能认知域评分呈负相关。CSVD-MCI:脑小血管病相关轻度认知障碍;FC:功能连接;CSVD:脑小血管病;MoCA:蒙特利尔认知评估量表。
Fig. 2  Scatter diagram of correlation between left anterior cingulate gyrus and right precuneus functional connection (FC) values, cerebral small vessel disease (CSVD) total load score and white matter high signal score, and Montreal Cognitive Assessment (MoCA) score of mild cognitive impairment associated with CSVD (CSVD-MCI) group. FC values of left anterior cingulate cortex and right precuneus are significantly positively correlated with MoCA scores (2A); 2B and 2C show a significant negative correlation between the total load score of CSVD, white matter high signal score, and MoCA score; and there is a negative correlation between the total load score of CSVD and the cognitive domain scores of visual space and executive function (2D).
图3  Spearman相关分析热图。*代表P<0.05,相关性显著。CSVD-MCI组,CSVD总负荷评分、白质高信号评分与MoCA评分呈显著负相关,CSVD总负荷评分与视空间与执行功能评分呈显著负相关。CSVD-MCI:脑小血管病相关轻度认知障碍;CSVD:脑小血管病;MoCA:蒙特利尔认知评估量表。
Fig. 3  Spearman correlation analysis heatmap. * represents P<0.05, with significant correlation. The mild cognitive impairment associated with cerebral small vessel disease (CSVD-MCI) group shows a significant negative correlation between the total load score of cerebral small vessel disease (CSVD), white matter high signal score, and Montreal Cognitive Assessment (MoCA) score, while the total load score of CSVD is significantly negatively correlated with the visual space and executive function scores.
表5  不同类型CSVD评分与MoCA评分的关系
Tab. 5  Relationship between different types of CSVD scores and MoCA scores
表6  MoCA各认知域评分与CSVD总负荷评分的相关性分析
Tab. 6  Correlation analysis between MoCA cognitive domain scores and CSVD total load scores

3 讨论

       本研究结果显示,饮酒、高血压、糖尿病这些危险因素在两组中存在明显差异,与之前的研究结果相符[14, 15, 16]。原因可能是这些心血管危险因素损伤微小血管,引起动脉硬化和微血管功能障碍,导致脑灌注降低,慢性脑缺血进展为CSVD的脑损伤[17, 18, 19],目前CSVD-MCI的管理主要是预防和控制这些危险因素[20]

3.1 两组DC及FC值差异显著脑区与相应认知功能的分析

       本研究通过静息态DC及基于种子点的FC指标,从全脑体素水平分析CSVD-MCI患者脑功能活动与MoCA评分的相关性,并进一步评估CSVD影像学指标与MoCA评分的相关性,从而探索CSVD-MCI患者脑损伤的神经病理学机制。与HC组相比,CSVD-MCI组左侧内侧额上回/左侧前扣带回、左侧角回/左侧缘上回、右侧内侧额上回/右侧额中回、左侧小脑及右侧小脑DC值减低;左侧前扣带回与左侧颞中下回、双侧楔前叶、双侧中扣带回FC值减低,且左侧前扣带回-右侧楔前叶的FC值与MoCA评分呈正相关。本研究主要涉及的脑功能指标减低的脑区为前扣带回、楔前叶、颞中回、内侧前额叶、角回、缘上回、小脑,这些脑区与认知储备相关。前扣带回参与认知控制,负责注意力与情感信息的整合,在执行功能中起调控作用,实时监控并发现目标行为执行过程中的错误,抑制无关信息[21]。内侧前额叶与决策、辨别、计算和推理相关。本研究CSVD-MCI患者执行功能受损,可能与前扣带回相关功能网络连接模式异常有关。楔前叶是DMN的中心节点,与更高层次认知功能相关,在视觉空间、情景记忆提取和自我信息处理中发挥重要作用[10, 22]。颞叶与记忆、情感及语言理解相关,参与认知功能调节。有研究[23]报告了CSVD患者双侧中扣带回神经元活动减少,我们的研究结果证实了这一点。缘上回和角回是顶下小叶的重要组成部分,通常与注意转移、视觉空间注意等领域有关,角回主要与语义信息处理有关[24]。传统观点认为小脑主要与人体运动协调功能相关,然而,越来越多的证据表明,小脑在认知加工中也发挥着关键作用,小脑后叶与记忆和执行功能有关[25]。CSVD-MCI患者左侧前扣带回-右侧楔前叶FC值降低与MoCA评分减低有关,提示静息状态下脑功能网络连接受损引发认知损伤。蔡丽娜等[26]研究认为CSVD早期存在FC值代偿性增高脑区,但本研究只得出FC值减低的结果,可能是因为患者数量有限,导致结果的重复性低,或者不可避免的个体差异影响试验结果。

3.2 CSVD评分与MoCA评分的相关性分析

       LI等[27]在调整了年龄、性别和受教育程度后,多因素线性回归分析显示,CSVD总负荷严重程度与整体认知和单一认知域(如记忆、执行功能、速度和运动控制)的认知水平下降有关。研究发现[28, 29, 30],在CSVD标志物中,WMH对认知损害的预测作用最强,严重的WMH负担可能是额叶脑血流量减少的原因,导致额叶功能障碍和认知损伤。本研究得出,CSVD总负荷评分、白质高信号评分与MoCA评分呈显著负相关,CSVD总负荷评分与视空间和执行功能认知域评分呈负相关,证实了以上观点。本研究中,CSVD总负荷评分与延迟回忆功能相关性不显著,提示CSVD-MCI患者早期主要影响执行功能,而对记忆损伤相对较小,与部分研究[2, 8, 20]的观点一致。

3.3 CSVD通过损伤脑功能网络进而影响认知功能

       DU等[31]采用结构方程模型对有认知障碍和无认知障碍的CSVD患者进行中介分析显示,脑血管病变通过干扰CSVD患者功能网络完整性而产生认知功能障碍,说明CSVD对认知的影响完全由脑功能网络中断介导。WMH会破坏介导皮质-皮质或皮质-皮质下白质束或U型纤维的连接[32],这为我们的研究结果提供了解剖学支撑。FREY等[33]运用DTI技术研究发现,CSVD损害白质完整性,导致脑网络之间整合减少、分离增加。皮质下缺血性脑血管病后非痴呆型血管性轻度认知障碍前额叶-皮质下环路结构和功能异常导致执行功能损伤[34]。研究表明,结构网络破坏程度与CSVD严重程度有关,并且介导了其与认知能力下降的关联[33, 35]。本研究发现CSVD-MCI患者左侧前扣带回DC值及左侧前扣带回与右侧楔前叶FC值减低,由此推测,CSVD通过影响皮质下环路,损害不相邻脑区间功能连通性,进一步导致网络功能障碍和认知障碍,这可能是CSVD-MCI的神经病理学机制。

3.4 局限性

       本研究仍存在一些不足。首先,样本量较小;其次,应该采用单个认知域专用量表进行各个认知水平评估;此外,部分患者没有扫描磁敏感加权成像序列,因此没有研究微出血灶与临床认知评分的相关性;而且,本研究是横断面研究,后续需要研究CSVD-MCI进展对认知的影响。

4 结论

       CSVD评分结合静息态体素水平全脑DC及FC指标可以筛查出有CSVD-MCI风险的患者,为临床提供功能影像学依据,从而早期指导患者进行针对性预防,阻止疾病进展。

[1]
GORELICK P B, COUNTS S E, NYENHUIS D. Vascular cognitive impairment and dementia[J]. Biochim Biophys Acta, 2016, 1862(5): 860-868. DOI: 10.1016/j.bbadis.2015.12.015.
[2]
PENG D. Clinical practice guideline for cognitive impairment of cerebral small vessel disease[J]. Aging Med (Milton), 2019, 2(2): 64-73. DOI: 10.1002/agm2.12073.
[3]
RUNK T, TOLEA M, ARIKO T, et al. Vascular Cognitive Impairment (VCI)[J].Neurotherapeutics, 2022, 19(1): 68-88. DOI: 10.1007/s13311-021-01170-y.
[4]
CHEN X, WANG J, SHAN Y, et al. Cerebral small vessel disease: neuroimaging markers and clinical implication[J]. J Neurol, 2019, 266(10): 2347-2362. DOI: 10.1007/s00415-018-9077-3.
[5]
CANNISTRARO R J, BADI M, EIDELMAN B H, et al. CNS small vessel disease: A clinical review[J]. Neurology, 2019, 92(24): 1146-1156. DOI: 10.1212/WNL.0000000000007654.
[6]
HUANG X, CHEN C, ZHANG Q, et al. Meta-analysis of the efficacy of acupuncture in the treatment of the vascular cognitive impairment associated with cerebral small vessel disease[J]. Explore, 2023, 19(4): 509-518. DOI: 10.1016/j.explore.2022.10.019.
[7]
LI Y, LIU X, JIA X, et al. Structural and functional alterations in cerebral small vessel disease: an ALE-based meta-analysis[J]. Cereb Cortex, 2023, 33(9): 5484-5492. DOI: 10.1093/cercor/bhac435.
[8]
DU J, XU Q. Neuroimaging studies on cognitive impairment due to cerebral small vessel disease[J]. Stroke Vasc Neurol, 2019, 4(2): 99-101. DOI: 10.1136/svn-2018-000209.
[9]
康晓萌, 李华兵. 磁共振成像技术在脑小血管疾病与血管性认知障碍中的应用及研究进展[J]. 磁共振成像, 2022, 13(9): 132-135. DOI: 10.12015/issn.1674-8034.2022.09.031.
KANG X M, LI H B. Application and research progress of MRI on cerebral small vessel disease and vascular cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(9): 132-135. DOI: 10.12015/issn.1674-8034.2022.09.031.
[10]
LI H Y, JIA X Q, LI Y Y, et al. Aberrant amplitude of low-frequency fluctuation and degree centrality within the default mode network in patients with vascular mild cognitive impairment[J/OL]. Brain Sci, 2021, 11(11): 1534 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615791. DOI: 10.3390/brainsci11111534.
[11]
汤伟, 徐倩, 高婷婷, 等. 额颞叶和小脑及感觉运动区局部的度中心度值异常与帕金森患者冻结步态有关[J]. 磁共振成像, 2022, 13(7): 84-89. DOI: 10.12015/issn.1674-8034.2022.07.015.
TANG W, XU Q, GAO T T, et al. Abnormal degree centrality values in the frontotemporal lobe, cerebellum and sensorimotor regions are associated with gait freezing in Parkinson's patients[J]. Chin J Magn Reson Imaging, 2022, 13(7): 84-89. DOI: 10.12015/issn.1674-8034.2022.07.015.
[12]
COLE D M, SMITH S M, BECKMANN C F. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data[J/OL]. Front Syst Neurosci, 2010, 4: 8 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854531. DOI: 10.3389/fnsys.2010.00008.
[13]
HAHN A, LANZENBERGER R, KASPER S. Making sense of connectivity[J]. Int J Neuropsychopharmacol, 2019, 22(3): 194-207. DOI: 10.1093/ijnp/pyy100.
[14]
SCHULZ M, MALHERBE C, CHENG B, et al. Functional connectivity changes in cerebral small vessel disease-a systematic review of the resting-state MRI literature[J/OL]. BMC Med, 2021, 19(1): 103 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097883. DOI: 10.1186/s12916-021-01962-1.
[15]
ERIKSSON M I, SUMMANEN P, GORDIN D, et al. Cerebral small-vessel disease is associated with the severity of diabetic retinopathy in type 1 diabetes[J/OL]. BMJ Open Diabetes Res Care, 2021, 9(1): e002274 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386215. DOI: 10.1136/bmjdrc-2021-002274.
[16]
SIERRA C. Cerebral small vessel disease, cognitive impairment and vascular dementia[J]. Panminerva Med, 2012, 54(3): 179-188. DOI: 10.202207.
[17]
李仁实, 韩晓琳, 华梦羽, 等. 2型糖尿病认知障碍患者的磁共振成像研究进展[J]. 磁共振成像, 2022, 13(2): 108-111, 115. DOI: 10.12015/issn.1674-8034.2022.02.026.
LI R S, HAN X L, HUA M Y, et al. Advances in magnetic resonance imaging studies in patients with cognitive impairment in type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2022, 13(2): 108-111, 115. DOI: 10.12015/issn.1674-8034.2022.02.026.
[18]
MA Y, SONG A, VISWANATHAN A, et al. Blood pressure variability and cerebral small vessel disease a systematic review and meta-analysis of population-based cohorts[J]. Stroke, 2020, 51(1): 82-89. DOI: 10.1161/STROKEAHA.119.026739.
[19]
ZHANG L, GAO F, ZHANG Y, et al. Analysis of risk factors for the development of cognitive dysfunction in patients with cerebral small vessel disease and the construction of a predictive model[J/OL]. Front Neurol, 2022, 13: 944205 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403715. DOI: 10.3389/fneur.2022.944205.
[20]
LIVINGSTON G, HUNTLEY J, SOMMERLAD A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. The Lancet, 2020, 396(10248): 413-446. DOI: 10.1016/S0140-6736(20)30367-6.
[21]
邓丽霞, 阮杏林, 黄华品, 等. 静息态功能磁共振观察非痴呆型血管性认知障碍前扣带回功能连接的特点[J]. 中华神经科杂志, 2014, 47(4): 219-224. DOI: 10.3760/cma.j.issn.1006-7876.2014.04.002.
DENG L X, RUAN X L, HUANG H P, et al. Impaired functional connectivity of anterior cingulated cortexin vascular cognitive impairment with non dementia explored by resting state functional magnetic resonance imaging[J]. Chin J Neurol, 2014, 47(4): 219-224. DOI: 10.3760/cma.j.issn.1006-7876.2014.04.002.
[22]
FENG M M, WEN H W, XIN H T, et al. Altered spontaneous brain activity related to neurologic dysfunction in patients with cerebral small vessel disease[J/OL]. Front Aging Neurosci, 2021, 13: 731585 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718906. DOI: 10.3389/fnagi.2021.731585.
[23]
SCHAEFER A, QUINQUE E M, KIPPING J A, et al. Early small vessel disease affects frontoparietal and cerebellar hubs in close correlation with clinical symptoms--a resting-state fMRI study[J]. J Cereb Blood Flow Metab, 2014, 34(7): 1091-1095. DOI: 10.1038/jcbfm.2014.70.
[24]
熊思宁, 万娜, 郭瑞, 等. 静息态功能磁共振成像观察帕金森病患者低频振幅自发活动特征及功能连接[J]. 磁共振成像, 2023, 14(1): 25-31. DOI: 10.12015/issn.1674-8034.2023.01.005.
XIONG S N, WAN N, GUO R, et al. Resting state functional magnetic resonance imaging observation on the characteristics of spontaneous brain activity and functional connectivity in Parkinson's diseases[J]. Chin J Magn Reson Imaging, 2023, 14(1): 25-31. DOI: 10.12015/issn.1674-8034.2023.01.005.
[25]
CAO S S, NIE J J, ZHANG J, et al. The cerebellum is related to cognitive dysfunction in white matter hyperintensities[J/OL]. Front Aging Neurosci, 2021, 13: 670463 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261068. DOI: 10.3389/fnagi.2021.670463.
[26]
蔡丽娜, 李晓陵, 崔璇, 等. 静息态功能MRI不同分析方法在非痴呆型血管性认知障碍中的研究进展[J]. 磁共振成像, 2022, 13(9): 116-119. DOI: 10.12015/issn.1674-8034.2022.09.027.
CAI L N, LI X L, CUI X, et al. Research progress of different analysis methods of resting state magnetic resonance imaging in vascular cognitive impairment no dementia[J]. Chin J Magn Reson Imaging, 2022, 13(9): 116-119. DOI: 10.12015/issn.1674-8034.2022.09.027.
[27]
LI X, YUAN J, QIN W, et al. Higher total cerebral small vessel disease burden was associated with mild cognitive impairment and overall cognitive dysfunction: A propensity score-matched case-control study[J/OL]. Front Aging Neurosci, 2021, 13: 695732 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312094. DOI: 10.3389/fnagi.2021.695732.
[28]
LIANG Y, CHEN Y K, LIU Y L, et al. Cerebral small vessel disease burden is associated with accelerated poststroke cognitive decline: A 1-year follow-up study[J]. J Geriatr Psychiatry Neurol, 2019, 32(6): 336-343. DOI: 10.1177/0891988719862630.
[29]
DEBETTE S, SCHILLING S, DUPERRON M G, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and meta-analysis[J]. JAMA Neurol, 2019, 76(1): 81-94. DOI: 10.1001/jamaneurol.2018.3122.
[30]
SEKI M, YOSHIZAWA H, HOSOYA M, et al. Neuropsychological profile of early cognitive impairment in cerebral small vessel disease[J]. Cerebrovasc Dis, 2022, 51(5): 600-607. DOI: 10.1159/000522438.
[31]
DU J, WANG Y, ZHI N, et al. Structural brain network measures are superior to vascular burden scores in predicting early cognitive impairment in post stroke patients with small vessel disease[J/OL]. NeuroImage Clin, 2019, 22: 101712 [2023-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378318. DOI: 10.1016/j.nicl.2019.101712.
[32]
WARD A M, MORMINO E C, HUIJBERS W, et al. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits[J]. Neurobiol Aging, 2015, 36(1): 265-272. DOI: 10.1016/j.neurobiolaging.2014.06.028.
[33]
FREY B M, PETERSEN M, SCHLEMM E, et al. White matter integrity and structural brain network topology in cerebral small vessel disease: The Hamburg city health study[J]. Hum Brain Mapp, 2021, 42(5): 1406-1415. DOI: 10.1002/hbm.25301.
[34]
SACHDEV P S, BRODATY H, VALENZUELA M J, et al. The neuropsychological profile of vascular cognitive impairment in stroke and TIA patients[J]. Neurology, 2004, 62(6): 912-919. DOI: 10.1212/01.wnl.0000115108.65264.4b.
[35]
ZOTIN M C Z, SVEIKATA L, VISWANATHAN A, et al. Cerebral small vessel disease and vascular cognitive impairment from diagnosis to management[J]. Curr Opin Neurol, 2021, 34(2): 246-257. DOI: 10.1097/WCO.0000000000000913.

上一篇 乳腺癌化疗患者脑结构及功能磁共振成像研究
下一篇 基于DWI的分形维数评价3D打印技术对胶质瘤术后临床疗效的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2