分享:
分享到微信朋友圈
X
临床研究
基于DWI的分形维数评价3D打印技术对胶质瘤术后临床疗效的价值
席华泽 景梦园 柴彦军 赵志勇 袁隆 杨晶晶 徐敏 周俊林

Cite this article as: XI H Z, JING M Y, CHAI Y J, et al. The value of DWI-based fractal dimension in evaluating the clinical efficacy of 3D printing technology for gliomas after surgery[J]. Chin J Magn Reson Imaging, 2024, 15(4): 32-37, 44.本文引用格式:席华泽, 景梦园, 柴彦军, 等. 基于DWI的分形维数评价3D打印技术对胶质瘤术后临床疗效的价值[J]. 磁共振成像, 2024, 15(4): 32-37, 44. DOI:10.12015/issn.1674-8034.2024.04.006.


[摘要] 目的 使用基于弥散加权成像(diffusion weighted imaging, DWI)的分形维数(fractal dimension, FD)评价个性化3D打印技术是否可以提高手术治疗胶质瘤患者的临床疗效。材料与方法 回顾性分析2018年1月至2023年1月我院经病理证实的136例胶质瘤患者病例,其中32例为试验组,术前使用了个性化3D打印技术;其余患者为对照组,进行常规开颅手术。在术后一周DWI图上手动勾画术区周围边界,绘制二值图后测量FD。使用FD中位数对对照组进行分组,比较对照组中高FD和低FD患者的手术情况、疼痛程度、神经缺损程度、预后、日常生活能力是否存在差异;探究个性化3D打印技术是否会影响水肿创面的FD,以及是否会进一步提高患者临床疗效。结果 高FD组的疼痛程度(t=-13.228,P<0.001)、神经缺损程度(t=-2.627,P=0.008)高于低FD组,日常生活能力(t=4.821,P<0.001)及预后(t=-3.058,P=0.003)较低FD组差。受试者工作特征(receiver operating characteristic, ROC)曲线结果显示FD能对患者上述四项评分的高低进行有效区分,术前使用个性化3D打印技术可使得患者水肿带FD下降,减轻神经缺损程度并提高日常生活能力,但对改善预后及术区疼痛效果不明显。结论 个性化3D打印技术可以有效降低患者术区创面水肿带的FD,减轻神经损伤,值得临床应用。
[Abstract] Objective To evaluate whether personalized 3D printing technology can improve the clinical outcomes of surgically treated glioma patients using diffusion weighted imaging (DWI)-based FD.Materials and Methods We retrospectively analyzed 136 cases of patients with pathologically confirmed gliomas in our hospital from January 2018 to January 2023, of which 32 cases were in the experimental group, in which the personalized 3D printing technology was used preoperatively; the remaining patients were in the control group, in which conventional craniotomy was performed. The boundaries around the operated area were manually outlined on DWI maps one week after surgery, and the FD was measured after drawing binary maps. Using the median FD to group the control group, we compared whether there was a difference in surgical condition, pain level, neurological deficit, prognosis, and ability to perform daily life between patients with high and low FD in the control group; and explored whether the personalized 3D printing technology affected the FD of the edematous trauma and whether it would further improve the clinical outcome of the patients.Results The degree of pain (t=-13.228, P<0.001) and the degree of nerve defect (t=-2.627, P=0.008) in the high FD group were higher than those in the low FD group, and the activities of daily living (t=4.821, P<0.001) and prognosis (t=-3.058, P=0.003) were worse than those in the low FD group. The results of receiver operating characteristic (ROC) curve showed that FD could effectively distinguish the above four scores of patients. The use of personalized 3D printing technology before operation can reduce the FD of patients with edema zone, reduce the degree of nerve defect and improve the ability of daily living, but it has no obvious effect on improving the prognosis and pain in the operation area.Conclusions Personalized 3D printing technology can effectively reduce the FD of the oedema band in the surgical area of patients and reduce nerve damage, which is worthy of clinical application.
[关键词] 脑胶质瘤;弥散加权成像;磁共振成像;分形维数;3D打印技术;精准医疗
[Keywords] glioma;diffusion-weighted imaging;magnetic resonance imaging;fractal dimension;3D printing technology;precision medicine

席华泽 1, 2, 3, 4   景梦园 1, 2, 3, 4   柴彦军 1, 3, 4   赵志勇 5   袁隆 1, 2, 3, 4   杨晶晶 1, 2, 3, 4   徐敏 1, 2, 3, 4   周俊林 1, 2, 3, 4*  

1 兰州大学第二医院放射科,兰州 730000

2 兰州大学第二临床医学院,兰州 730000

3 甘肃省医学影像重点试验室,兰州大学第二医院,兰州 730000

4 医学影像人工智能甘肃省国际科技合作基地,兰州 730000

5 兰州大学第二医院神经外科,兰州 730000

通信作者:周俊林,E-mail:lzuzjl601@163.com

作者贡献声明:周俊林设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金面上项目和甘肃省卫生行业科研计划项目的资助;席华泽起草和撰写稿件,获取、分析和解释本研究的数据;景梦圆、柴彦军、赵志勇、袁隆、杨晶晶、徐敏获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者对最终要发表的论文版本进行了全面的审阅和把关,对修改内容已进行讨论并最终同意该文发表,同意对研究工作各方面的诚信问题负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金面上项目 82371914 甘肃省卫生行业科研计划资助项目 GSWSKY2018-52
收稿日期:2023-09-22
接受日期:2024-03-15
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.04.006
本文引用格式:席华泽, 景梦园, 柴彦军, 等. 基于DWI的分形维数评价3D打印技术对胶质瘤术后临床疗效的价值[J]. 磁共振成像, 2024, 15(4): 32-37, 44. DOI:10.12015/issn.1674-8034.2024.04.006.

0 引言

       脑胶质瘤是中枢神经系统所占比重最大的恶性肿瘤,占原发性恶性脑肿瘤的80%[1],全世界每年约确诊10万例脑胶质瘤患者[2],同时具有高致死率和较高发病率等特点。手术、放化疗是临床治疗脑肿瘤的常用方式[3],常规开颅手术患者术后易发生多种并发症,同时术后患者生存质量均不同程度受到影响,效果一般。立体定向靶向微创手术虽然对脑肿瘤可做到更加精确的切除[4],但其价格较为昂贵,难以广泛应用。而个性化3D打印技术可以在常规手术的基础上使得神经外科医生提前了解术区重要结构,肿瘤侵袭范围,侵袭深度等信息,进而在手术过程中更加迅速精确的切除病灶,减少手术时间及神经损伤。

       为了更好地评价术后效果,除了使用各种量表对患者进行随访,我们还引入了一个基于磁共振弥散加权成像(diffusion weighted imaging, DWI)的形态特征——分形维数(fractal dimension, FD)。FD与自相似性的概念密切相关,即在几何图案或数据表示中以多个尺度重复自身的结构的存在,是一种对复杂形体不规则性的量度,有研究使用其检测神经系统疾病引起的组织边界的异常变化[5, 6, 7, 8, 9]。DWI是磁共振常用的功能成像技术之一,通过定量检测肿瘤组织内和瘤周水分子的自由弥散信息反映肿瘤异质性、细胞增殖状况、术后瘤周水肿情况等。术后瘤周水肿与患者预后密切相关[10, 11, 12, 13],而过去针对患者预后的研究大多仅使用问卷或者评分系统进行评价,或者使用DWI的定量参数,表观弥散系数(apparent diffusion coefficient, ADC)[14]、磁共振图像的灰度特征、纹理特征、几何特征等[15, 16]进行评估,鲜有引入描述术区整体形态的参数用于对术后临床疗效进行评价。因此,本研究旨在探讨基于DWI的FD能否评价3D打印技术对胶质瘤术后临床疗效的价值。

1 材料与方法

1.1 一般资料

       回顾性分析2018年1月至2023年1月期间兰州大学第二医院经初次诊断确诊的胶质瘤患者病例。纳入标准:(1)经手术病理证实为胶质瘤,临床资料完善;(2)术后1周行头颅T1WI、T2WI和DWI序列扫描;(3)患者术后三月内未失访。排除标准:(1)扫描图像前接受放疗或者化疗;(2)MRI图像质量差,存在伪影等干扰勾画感兴趣区的因素;(3)患者肿瘤无强化或难以区分瘤体及水肿带等因素导致无法3D打印建模;(4)患者随访资料不完整。最终共纳入136例脑胶质瘤患者,其中试验组术前使用3D打印技术进行评估及分析,共32例,男19例,女13例,年龄(49.05±7.69)岁;对照组104例,男57例,女47例,年龄(50.70±8.12)岁。本研究遵守《赫尔辛基宣言》,并获得了兰州大学第二医院伦理委员会批准,免除了受试者知情同意(批准文号:2020A-070)。

1.2 扫描仪器与参数

       采用Siemens Verio 3.0 T超导磁共振扫描仪,32通道头线圈对患者图像进行采集。所有患者均行常规T1WI、T2WI、T2 液体衰减反转恢复(fluid-attenuated inversion-recovery, FLAIR)序列、扩散张量成像(diffusion tensor imaging, DTI)及DWI扫描。T1WI(TR 250 ms,TE 2.48 ms,层厚5.0 mm,层间距1.0 mm,FOV 22 cm×22 cm,矩阵256×256);T2WI(TR 4000 ms,TE 96 ms,层厚5.0 mm,层间距1.0 mm,FOV 22 cm×22 cm,矩阵256×256);DWI(TR 4500 ms,TE 102 ms,层厚5.0 mm,层间距1.0 mm,矩阵256×256,b=0、1000 s/mm2);FLAIR序列(TR 9000 ms,TE 110.0 ms,层厚5.0 mm,层间距1.5 mm);DTI(平面回波成像序列,TR 9000 ms,TE 83 ms,FOV 256 mm×256 mm,矩阵128×128,层厚2 mm,64个方向,58层,b=0、1000 s/mm2)。

1.3 FD测定和图像分析

       FD的定义繁多,在影像学方面,以盒维数法的应用最为简洁、清晰[17]。盒维数的基本定义是:假设P是二维平面内任意一个非空有界子集,对于任意一个r>0,Nr表示用来覆盖P所需边长为r的盒子数。若存在一个参数D,使得r→0时:

       图像分析由一名中枢神经系统影像诊断10年经验的放射科医师使用3D Slicer 5.2经过图像灰度配准后,在b=0 s/mm2的DWI图像上进行半自动勾画,选取肿瘤术区最大层面及最大层面上下两个层面勾画感兴趣区(region of interest, ROI),勾画边界为术区边界灰度值差异最大的像素界限(如图1B),再经1名中枢神经系统影像诊断15年经验的医师进行审核,如存在较大分歧时由两人商讨达成一致后决定最终勾画区域,并将图像二值化(图1)。在T2加权图像上测量肿瘤最大径,记录肿瘤位置。

图1  透明结构为脑表结构,厚度3 mm,红色结构为软性水凝胶材质,模拟瘤周水肿质地,墨绿色结构为瘤体。1A:内面观;1B:外面观。
Fig. 1  The transparent structure is the brain surface structure with a thickness of 3 mm, the red structure is the soft hydrogel material, which mimics the peritumoral edema texture, and the dark green structure is the tumor. 1A: Inside view; 1B: Outside view.

1.4 个性化3D模型制作

       经患者术前影像学检查获得完整且清晰的DICOM格式数据,使用MIMICS(Materialise's interactive medical image control system)对图像进行后处理。按照磁共振图像对肿瘤及瘤周水肿进行重建,判断肿瘤大小、侵犯程度及范围。瘤周水肿带的定义为T1WI上肿瘤病灶周围低信号区;T2WI序列上肿瘤病灶周围高信号区但T1加权增强扫描无强化区;T2-FLAIR序列上肿瘤病灶周围的高信号区但T1加权增强扫描无强化区。按照CT扫描参数进行骨骼重建。将两者重建结果进行融合,获得肿瘤及瘤周水肿的三维数据模型,1∶1比例3D打印肿瘤模型,模型见图1

1.5 术后观察指标及评价

       术后观察指标包括:(1)手术时间及住院时间。(2)疼痛程度。采用视觉模拟评分法(Visual Analogue Scale, VAS)评价疼痛程度,满分10分,分值越高表示疼痛程度越严重,对术后当天疼痛程度进行评分。(3)神经功能缺损程度。采用美国国立卫生研究院卒中量表(National Institutes of Health Stroke Scale, NIHSS)评价患者术后3个月后神经功能缺损程度,满分42分,分值越高表示患者的神经功能缺损程度越严重。(4)患者预后情况。采用改良 Rankin量表(modified Rankin Scale, mRS)评价患者术后3个月后的预后情况,总分5分,分值越高表示患者的预后情况越差。(5)日常生活能力。采用日常生活活动能力(Ability of Daily Living, ADL)评价患者术后3个月后日常生活能力,满分100分,分值越高表示患者的日常生活能力越好。

1.6 统计学方法

       采用SPSS 23.0进行统计学分析。对所有计量资料进行正态性检验,用均数±标准差表示。计量资料组间比较采用独立样本t检验及Fisher's确切概率法。采用Python 3.11编写代码计算1.3中处理后二值图的FD,每个患者共计算三个FD数据,并取平均值作为最终的FD。采用受试者工作特征(receiver operating characteristic, ROC)曲线评价FD对患者疼痛程度评分、神经缺损程度评分、预后评分、ADL力评分的效能,以上评分使用中位数进行分组后进行ROC曲线绘制,获得ROC曲线下面积(area under the curve, AUC)并分别计算敏感度、特异度等。AUC比较采用DeLong检验。以上P<0.05认为差异具有统计学意义。

2 结果

2.1 3D打印模型展示

       3D打印模型见图1

2.2 ROI勾画及FD测定

       ROI勾画及FD测定见图2

图2  ROI勾画及FD测定。2A:FD的意义。FD可以解释为复杂性或混乱度的度量[18, 19]。忽略厚度时,纸张是二维物体。当纸张被弄皱时,它会占据一定的体积,并且其几何复杂性或混沌度会根据其被弄皱的程度而增加,直到变成三维对象。2B:DWI图像ROI勾画、提取二值图、FD测定,示意图FD约为1.284 9。2C:基于表面复杂度进行的3D深度映射模型,颜色深浅度代表图形表面的复杂程度,峰高度代表图形表面的灰度值和两个像素间的灰度差,可以发现术区周围组织边缘更加复杂毛糙,除术区周围之外的脑组织结构形态复杂度类似。ROI:感兴趣区;FD:分形维数;DWI:弥散加权成像。
Fig. 2  ROI delineation and FD determination. 2A: The significance of FD. FD can be interpreted as a measure of complexity or chaos[18, 19]. Ignoring the thickness, the paper is a two-dimensional object. When paper is wrinkled, it takes up a certain volume, and its geometric complexity or chaos increases depending on how much it is wrinkled until it becomes a 3D object. 2B: DWI ROI delineation, binary map extraction, FD determination, schematic FD is about 1.284 9. 2C: 3D depth mapping model based on surface complexity, the color depth represents the complexity of the graphics surface, and the peak height represents the gray value of the graphics surface and the gray difference between two pixels. It can be found that the tissue edge around the surgical area is more complex and rough, and the complexity of the brain tissue structure and morphology is similar except around the surgical area. ROI: region of interest; FD: fractal dimension; DWI: diffusion weighted imaging.

2.3 高FD与低FD组患者的临床疗效比较

       高FD组的住院时间长于低FD组,NIHSS评分、mRS评分、VAS评分高于低FD组,ADL评分低于低FD组,差异具有统计学意义(P<0.05,表1)。

表1  高FD与低FD组患者的临床疗效比较
Tab. 1  Comparison of clinical efficacy between patients with high and low fractal dimension

2.4 FD对不同评分的ROC 曲线分析

       分别使用疼痛程度评分、神经缺损程度评分、预后评分、日常生活能力的中位数将患者分为两组(高评分组、低评分组),ROC结果显示各ADC值均能对不同评分的高地进行区分,其中,对NIHSS评分鉴别效能最佳,AUC值为0.915,其余评分的鉴别效能分别如下:对ADL评分的AUC值为0.747,对mRS评分的AUC值为0.730,对术后当日VAS评分的AUC值为0.758,见图3。不同ROC曲线诊断效能之间差异有统计学意义(P<0.05)。

图3  ROC曲线示FD对不同评分高低的效能评估。3A:ADL评分;3B:NIHSS评分;3C:mRS 评分;3D:术后当日VAS评分。ROC:受试者工作特征;FD:分形维数;ADL:日常生活活动能力;NIHSS:美国国立卫生研究院卒中量表;mRS:改良 Rankin量表;VAS:视觉模拟评分法。
Fig. 3  ROC curve shows the efficacy evaluation of FD for different scores. 3A: ADL score; 3B: NIHSS score; 3C: mRS score; 3D: VAS score on the day of surgery. ROC: receiver operating characteristic; FD: fractal dimension; ADL: Ability of Daily Living; NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale; VAS: Visual Analogue Scale.

2.5 低FD组与试验组患者的临床效果比较

       对照组中低FD组的住院时间长于试验组,NIHSS评分、mRS评分、VAS评分高于试验组,ADL评分低于试验组,同时试验组FD较对照组中的低FD组进一步降低,差异具有统计学意义(P<0.05,表2)。典型患者术后扫描结果见图4

图4  典型患者术后扫描结果图。4A~4C:患者女,22岁,右侧额叶胶质瘤,WHO Ⅱ级,术前采用个性化3D打印技术评估及模拟手术方案,术后DTI示右侧皮质脊髓束及周围沟回束局部不连续,受压征象,但未见明显连续性中断。FD约为1.150 9。4D~4F:患者女,29岁,右侧额叶胶质瘤,WHO Ⅱ级,常规外科手术治疗,术后DTI示右侧皮质脊髓束破坏、中断。FD约为1.391 1。DTI:扩散张量成像;FD:分形维数。
Fig. 4  The postoperative scan results of typical patients. 4A-4C: A 22-year-old female patient with right frontal lobe glioma, WHO grade Ⅱ, is evaluated and simulated with personalized 3D printing technology before operation. DTI shows the right corticospinal tract and the surrounding sulci gyrus tract are partially discontinuous and shows signs of compression, but there is no obvious interruption of continuity. FD=1.150 9. 4D-4F: A 29-year-old female patient with right frontal lobe glioma, WHO grade Ⅱ, is treated by conventional craniotomy. DTI shows the right corticospinal tract is destroyed and interrupted. FD=1.391 1. DTI: diffusion tensor imaging; FD: fractal dimension.
表2  低FD组与试验组患者的临床效果比较
Tab. 2  Comparison of clinical effects between the low fractal dimension group and the experimental group

3 讨论

       本研究首先分析了不同胶质瘤患者术区FD和预后之间的相关性,其次发现个性化3D打印技术可以使神经外科医生直观了解患者病变位置、浸润范围及周围组织的水肿大小,降低术区的FD,减少对周围神经纤维束不必要的损伤。并且据我们所知,本研究是首次使用FD对胶质瘤术后预后进行评估。

3.1 术区水肿带FD与预后之间的关系

       目前,脑胶质瘤的常规治疗途径是手术切除,然后进行放化疗,如放疗联合替莫唑胺或其他烷化药物[20, 21, 22, 23, 24, 25]。但是由于肿瘤形态通常极不规则,且瘤周水肿范围往往较大,临床实践中为最大限度保持脑功能,通常未将瘤周水肿完全切除,这使得瘤周水肿内浸润的肿瘤细胞成为日后进展的严重隐患[26, 27, 28]。多项研究研究发现,超过70%的肿瘤复发位于初诊瘤体周边水肿带内,手术精度对肿瘤复发的影响较大[29, 30, 31]。因此水肿带的切除范围与患者预后有着紧密关系。将常规外科开颅治疗的患者按术区水肿带FD的中位数进行分组后,低FD组术后疼痛,神经功能缺损程度均低于高FD组,而预后及日常生活能力则较高FD组好,手术时间上两组间没有明显差异。这说明术区创面水肿的形态与患者的预后相关。FD增高代表患者创面更为毛糙,褶皱增加,进而导致创面的面积增大。我们猜测这些“褶皱”增加和创面面积增大导致了患者的神经损伤增加,但目前国内外尚无相关研究,因此还需要进一步深入研究论证。同时,此种FD差异与手术时长关系不大,属于常规手术中难以优化的个体化差异,也说明了在没有其他辅助的情况下临床医生难以通过降低切除速度来精确切除肿瘤,减少神经损伤。

3.2 3D打印技术能否降低术区水肿带FD并提高预后

       为了综合评估个性化3D打印技术的疗效,除了使用各种量表进行评价,我们还收集了患者的DWI图像分析FD。DWI与其他功能成像研究相比,定量简单,检查省时,不仅在明确水肿范围中有重要意义,而且基于DWI图像的ADC值已被广泛用作临床癌症成像生物标志物之一 [32, 33, 34],并且可能是肿瘤不良预后的预测因子[32]。从前DWI图像研究大多基于ADC值对肿瘤鉴别[35]、肿瘤分型[36]、肿瘤预后[37]等进行研究。因此本研究引入鲜有研究的FD,结合量表结果评估3D打印技术能否提高脑胶质瘤患者预后。同时本课题组前期发现[43],相比于T2-FLAIR,DWI测定的FD更加便捷,简单,同样可以对患者预后进行分析。

       我们发现使用3D打印技术不仅可以减少术区创面水肿区的FD,同时在水肿区FD近似的情况下还可以进一步提高临床疗效,同时减少手术时间及住院时间,间接减少患者的治疗费用,这也是一个全新的发现。我们选择两例病灶类似,年龄接近,性别相同的患者进行对比后,和JACOBSON等[38]、VEZIRSKA等[39]结果类似,3D打印技术可以使得神经外科医生对术区的界限和切除范围有定量的认知,而非通过术中所见定性认知,这使得神经纤维束的损伤降至最低,进而使得FD降低。相比于其他技术手段,立体定向微创手术虽然在切除较深病灶具有更多优势,但价格昂贵[40];增强显示辅助技术虽然在外科发展、应用近30年,但在神经外科中的应用仅限于早期临床研究[41, 42]。因此价格低廉、更加直观的个性化3D打印模型在辅助胶质瘤外科治疗中,对临床医生及患者均有其独特的价值。

3.3 不足与展望

       首先,3D打印技术收益最大群体为单发性病灶,多发及弥漫性胶质瘤患者目前并没有纳入研究;其次,盒维数法亦属于估算法的其中一种,可能会影响最终测量FD值的精确度。未来将扩大样本量、联合多个中心,使用更多种FD的测量手段,讨论3D打印技术能否使得更多患者受益,花费较少,预后提高,生存期延长,就此开展进一步的研究。

4 结论

       综上所述,个性化3D打印模型在辅助胶质瘤外科治疗脑胶质瘤方面有显著意义。可缩短患者手术时间、住院时间,同时减少手术对神经纤维束的破坏,减少神经功能损伤,进一步提高患者日常生活能力及生活质量,值得临床应用。

[1]
HANIF F, MUZAFFAR K, PERVEEN K, et al. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment[J]. Asian Pac J Cancer Prev, 2017, 18(1): 3-9. DOI: 10.22034/APJCP.2017.18.1.3.
[2]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. DOI: 10.3322/caac.21492.
[3]
杜方雷, 纪文军, 马小红. 脑血管介入栓塞疗法辅助立体定向放射治疗高血运性脑肿瘤的效果[J]. 临床医学研究与实践, 2019, 4(24): 56-58. DOI: 10.19347/j.cnki.2096-1413.201924023.
DU F L, JI W J, MA X H. Effect of cerebrovascular interventional embolization therapy assisted with stereotactic radiotherapy therapy in the treatment of hvpervascular brain tumors[J]. Clinical Research and Practice, 2019, 4(24): 56-58. DOI: 10.19347/j.cnki.2096-1413.201924023.
[4]
华锋, 梁珂. 立体定向靶向微创手术治疗脑肿瘤的临床效果[J]. 临床医学研究与实践, 2023, 8(21): 53-56. DOI: 10.19347/j.cnki.2096-1413.202321014.
HUA F, LAING K. Clinical effect of stereotactic targeting minimally invasive surgery in the treatment of brain tumor[J]. Clinical Research and Practice, 2023, 8(21): 53-56. DOI: 10.19347/j.cnki.2096-1413.202321014.
[5]
ZHANG L, BUTLER A, SUN J, et al. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function[J]. Brain Res, 2008, 1228: 229-240. DOI: 10.1016/j.brainres.2008.06.008
[6]
SMITHA K A, GUPTA A K, JAYASREE R S. Fractal analysis: Fractal dimension and lacunarity from MR images for differentiating the grades of glioma[J]. Phys Med Biol, 2015, 60: 6937-6947. DOI: 10.1088/0031-9155/60/17/6937.
[7]
SÁNCHEZ J, MARTÍN-LANDROVE M. Morphological and fractal properties of brain tumors[J/OL]. Front Physiol, 2022, 27, 13: 878391 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/35832478/. DOI: 10.3389/fphys.2022.878391.
[8]
CURTIN L, WHITMIRE P, WHITE H, et al. Shape matters: morphological metrics of glioblastoma imaging abnormalities as biomarkers of prognosis[J/OL]. Sci Rep, 2021, 11(1): 23202 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/34853344/. DOI: 10.1038/s41598-021-02495-6.
[9]
BATTALAPALLI D, VIDYADHARAN S, PRABHAKAR RAO BVVSN, et al. Fractal dimension: analyzing its potential as a neuroimaging biomarker for brain tumor diagnosis using machine learning[J/OL]. Front Physiol, 2023, 14: 1201617 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37528895/. DOI: 10.3389/fphys.2023.1201617.
[10]
刘晓玉, 肖道雄, 何艳枚, 等. 联合应用DWI及PWI对脑内肿瘤及瘤周水肿的比较研究[J]. 临床放射学杂志, 2017, 36(7): 928-933. DOI: 10.13437/j.cnki.jcr.2017.07.004.
LIU X Y, XIAO D X, HE Y M, et al. To analyze brain tumors and peritumoral brain edema using MR perfusion weighted lmacing combined with MR diffusion weighted imaging[J]. J Clin Radiol, 2017, 36(7): 928-933. DOI: 10.13437/j.cnki.jcr.2017.07.004
[11]
何晨曦, 王伟, 冯会玉, 等. 磁共振DWI技术对贝伐珠单抗联合放射治疗脑胶质瘤术后进展的预测价值[J].中国CT和MRI杂志, 2023, 21(6): 11-13. DOI: 10.3969/j.issn.1672-5131.2023.06.004.
HE C X, WANG W, FENG H Y, et al. Predictive value of magnetic reonance DWI technique for postoperative progression of glioma patients treated with bevacizumab combined with radiotherapy[J]. Chin J CT & MRI, 2023, 21(6): 11-13. DOI: 10.3969/j.issn.1672-5131.2023.06.004.
[12]
ERAKY A M, BECK R T, TREFFY R W, et al. Role of advanced MR imaging in diagnosis of neurological malignancies: Current status and future perspective[J/OL]. J Integr Neurosci, 2023, 22(3): 73 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37258452/. DOI: 10.31083/j.jin2203073.
[13]
BERGER A, TZARFATI G G, SERAFIMOVA M, et al. Clinical and prognostic implications of rim restriction following glioma surgery[J/OL]. Sci Rep, 2022, 12(1): 12874 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/35896589/. DOI: 10.1038/s41598-022-16717-y.
[14]
刘泽亮, 王效春, 张辉, 等. 磁共振扩散成像在脑胶质瘤预后预测的研究进展[J]. 磁共振成像, 2021, 12(1): 77-80. DOI: 10.12015/issn.1674-8034.2021.01.017.
LIU Z L, WANG X C, ZHANG H, et al. MR diffusion imaging: research advances in prognosis prediction of gliomas[J]. Chin J Magn Reson Imaging, 2021, 12(1): 77-80. DOI: 10.12015/issn.1674-8034.2021.01.017.
[15]
谢刚, 李康. 基于MRI及影像组学的列线图预测脑胶质瘤术后短期复发[J]. 临床放射学杂志, 2022, 41(10): 1814-1818. DOI: 10.13437/j.cnki.jcr.2022.10.022.
XIE G, LI K. A nomogram based on MRl and radiomics for prediction of postoperative recurrence of glioma[J]. J Clin Radiol, 2022, 41(10): 1814-1818. DOI: 10.13437/j.cnki.jcr.2022.10.022.
[16]
STUPP R, BRADA M, VAN DEN BENT M J, et al. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2014, 25(3): 93-101. DOI: 10.1093/annonc/mdu050.
[17]
SARKAR N, CHAUDHURI B B. An efficient differential boxcounting approach to compute fractal dimension of image[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24 (1): 115-120. DOI: 10.1109/21.259692.
[18]
MALLELA A N, DENG H, GHOLIPOUR A, et al. Heterogeneous growth of the insula shapes the human brain[J/OL]. Proc Natl Acad Sci U S A, 2023, 120(24): e2220200120 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37279278/. DOI: 10.1073/pnas.2220200120.
[19]
DORRAKI M, MURATOVIC D, FOULADZADEH A, et al. Hip osteoarthritis: A novel network analysis of subchondral trabecular bone structures[J/OL]. PNAS Nexus, 2022, 1(5): 258 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/36712355/. DOI: 10.1093/pnasnexus/pgac258.
[20]
WITTELER J, KJAER TW, TVILSTED S, et al. Re-Evaluation of prognostic factors for survival after radiotherapy of cerebral gliomas: a supplementary analysis to a previous study[J]. Anticancer Res, 2020, 40(11): 6513-6515. DOI: 10.21873/anticanres.14674.
[21]
RAGNHILDSTVEIT A, LI C, ZIMMERMAN M H, et al. Intra-operative applications of augmented reality in glioma surgery: a systematic review[J/OL]. Front Surg, 2023, 10: 1245851 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37671031/. DOI: 10.3389/fsurg.2023.1245851.
[22]
ZHOU H, WU H, LI M, et al. Clinical efficacy of early postoperative intensity-modulated radiotherapy combined with Temozolomide chemotherapy in the treatment of patients with malignant glioma[J]. Pak J Med Sci, 2022, 38(6): 1460-1465. DOI: 10.12669/pjms.38.6.5244.
[23]
MALHOTRA A K, KARTHIKEYAN V, ZABIH V, et al. Adolescent and young adult glioma: systematic review of demographic, disease, and treatment influences on survival[J/OL]. Neurooncol Adv, 2022, 4(1): vdac168 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/36479061/. DOI: 10.1093/noajnl/vdac168.
[24]
GUPTA T, MAITRE M, MAITRE P, et al. High-dose salvage re-irradiation for recurrent/progressive adult diffuse glioma: healing or hurting?[J]. Clin Transl Oncol, 2021, 23(7): 1358-1367. DOI: 10.1007/s12094-020-02526-0.
[25]
刘晟. 磁共振灌注成像在高级别脑胶质瘤与单发脑转移瘤鉴别诊断中的价值[J]. 中国医学物理学杂志, 2019, 36(7): 808-810. DOI: 10.3969/j.issn.1005-202X.2019.07.012.
LIU S. Value of maonetic resonance perfusion imacing in the differential diaanosis of hioh-arade olioma and sinole brain metastasis[J]. Chinese Journal of Medical Physics, 2019, 36(7): 808-810. DOI: 10.3969/j.issn.1005-202X.2019.07.012.
[26]
TANG W, CHEN Y, WANG X, et al. Expression of CXC-motif-chemokine 12 and the receptor C-X-C receptor 4 in glioma and theeffect on peri tumoral brain edema[J]. Oncol Lett, 2018, 15(2): 2501-2507. DOI: 10.3892/ol.2017.7547.
[27]
QIN X, LIU R, AKTER F, et al. Peri-tumoral brain edema associated with glioblastoma correlates with tumor recurrence[J]. J Cancer, 2021, 12(7): 2073-2082. DOI: 10.7150/jca.53198.
[28]
CHO S J, KIM H S, CHONG H S, et al. Radiological recurrence patterns after bevacizumab treatment of recurrent high-grade glioma: A systematic review and meta-analysis[J]. Korean J Radiol, 2020, 21(7): 908-918. DOI: 10.3348/kjr.2019.0898.
[29]
符念霞, 宋建勋, 罗泽斌. 多模态MR功能成像技术评估高级别胶质瘤瘤周浸润的价值[J]. 实用放射学杂志, 2019, 35(12): 1897-1900, 1939. DOI: 10.3969/j.issn.1002-1671.2019.12.003.
FU N X, SONG J X, LUO Z B. Value of multimodal functional magnetic resonance imaging in evaluating the peritumoral invasion of high grade glioma[J]. J Prac Radiol, 2019, 35(12): 1897-1900, 1939. DOI: 10.3969/j.issn.1002-1671.2019.12.003.
[30]
ALIZADEH M, BROOMAND LOMER N, AZAMI M, et al. Radiomics: The new promise for differentiating progression, recurrence, pseudoprogression, and radionecrosis in glioma and glioblastoma multiforme[J/OL]. Cancers (Basel), 2023, 15(18): 4429 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37760399/. DOI: 10.3390/cancers15184429.
[31]
VIJITHANANDA S M, JAYATILAKE M L, GONÇALVES T C, et al. Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques[J/OL]. Sci Rep, 2023, 13(1): 15772 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37737249/. DOI: 10.1038/s41598-023-41353-5.
[32]
SZYCHOT E, BHAGAWATI D, SOKOLSKA M J, et al. Evaluating drug distribution in children and young adults with diffuse midline glioma of the pons (DIPG) treated with convection-enhanced drug delivery[J/OL]. Front Neuroimaging, 2023, 2: 1062493 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37554653/. DOI: 10.3389/fnimg.2023.1062493.
[33]
CHO N S, SANVITO F, THAKURIA S, et al. Multi-nuclear sodium, diffusion, and perfusion MRI in human gliomas[J]. J Neurooncol, 2023, 163(2): 417-427. DOI: 10.1007/s11060-023-04363-x.
[34]
KAMIMURA K, KAMIMURA Y, NAKANO T, et al. Differentiating brain metastasis from glioblastoma by time-dependent diffusion MRI[J/OL]. Cancer Imaging, 2023, 23(1): 75 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37553578/. DOI: 10.1186/s40644-023-00595-2.
[35]
王茹, 王少或, 张华鹏, 等. 瘤体、瘤周水肿区DCE-MRI对弥漫性胶质瘤分级的应用价值[J]. 磁共振成像, 2021, 12(6): 88-91. DOI: 10.12015/issn.1674-8034.2021.06.017.
WNAG R, WANG S H, ZHANG H P, et al. Application value of DCE-MRI in tumor body, peritumoral edema area in grading diffuse glioma[J]. Chin J Magn Reson Imaging, 2021, 12(6): 88-91. DOI: 10.12015/issn.1674-8034.2021.06.017.
[36]
VILLANUEVA-MEYERJ E, WOODM D, CHOIB S, et al. MRI features and IDH mutational status of grade Ⅱ diffuse gliomas: Impact on diagnosis and prognosis[J]. AJR Am J Roentgenol, 2018, 210(3): 621-628. DOI: 10.2214/AJR.17.18457.
[37]
陈科宇, 江普查. 瘤周水肿与人脑高级别胶质瘤预后的相关性[J]. 中国临床神经外科杂志, 2021, 26(5): 352-353, 359. DOI: 10.13798/j.issn.1009-153X.2021.05.011.
CHEN K Y, JIANG P C. Correlation between peritumoral edema of high-grade glioma and patients 'prognoses[J]. Chin J Clin Neurosurg, 2021, 26(5): 352-353, 359. DOI: 10.13798/j.issn.1009-153X.2021.05.011.
[38]
JACOBSON N M, BRUSILOVSKY J, DUCEY R, et al. The inner complexities of multimodal medical data: Bitmap-based 3D printing for surgical planning using dynamic physiology[J]. 3D Print Addit Manuf, 2023, 10(5): 855-868. DOI: 10.1089/3dp.2022.0265.
[39]
VEZIRSKA D, MILEV M, LALEVA L, et al. Three-dimensional printing in neurosurgery: A review of current indications and applications and a basic methodology for creating a three-dimensional printed model for the neurosurgical practice[J/OL]. Cureus, 2022, 14(12): e33153 [2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/30473948/. DOI: 10.7759/cureus.33153.
[40]
周保丹, 李君, 高飞, 等. 立体定向微创手术与开颅手术对脑胶质瘤患者神经肽水平及功能康复的影响[J].数理医药学杂志, 2022, 35(8): 1118-1120. DOI: 10.3969/j.issn.1004-4337.2022.08.004.
ZHOU B D, LI J, GAO F, et al. Effects of stereotactic minimally invasive surgery and craniotomy on neuropeptide levels and functional rehabilitation in patients with glioma[J]. Journal of Mathematical Medicine, 2022, 35(8): 1118-1120. DOI: 10.3969/j.issn.1004-4337.2022.08.004.
[41]
CHO J, RAHIMPOUR S, CUTLER A, et al. Enhancing reality: a systematic review of augmented reality in neuronavigation and education[J]. World Neurosurg, 2020, 139: 186-195. DOI: 10.1016/j.wneu.2020.04.043.
[42]
CONTRERAS LÓPEZ W O, NAVARRO P A, CRISPIN S. Intraoperative clinical application of augmented reality in neurosurgery: a systematic review[J]. Clin Neurol Neurosurg, 2019, 177: 6-11. DOI: 10.1016/j.clineuro.2018.11.018.

上一篇 静息态全脑体素水平功能连接分析对脑小血管病相关轻度认知障碍患者认知水平的预测作用
下一篇 神经突方向离散度和密度成像预测成人型弥漫性胶质瘤IDH基因型的应用
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2