分享:
分享到微信朋友圈
X
临床研究
三维动脉自旋标记技术对甲状腺良恶性结节的鉴别诊断价值
邓文明 邱迎伟 康文焱 钟贻洪 陈胜利 王鸣宇 向露 廖跃豪

Cite this article as: DENG W M, QIU Y W, KANG W Y, et al. Value of three-dimensional arterial spin labeling in distinguishing between benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2024, 15(4): 45-49, 62.本文引用格式:邓文明, 邱迎伟, 康文焱, 等. 三维动脉自旋标记技术对甲状腺良恶性结节的鉴别诊断价值[J]. 磁共振成像, 2024, 15(4): 45-49, 62. DOI:10.12015/issn.1674-8034.2024.04.008.


[摘要] 目的 探讨三维准连续式动脉自旋标记(three-dimensional pseudo-continuous arterial spin labeling, 3D-pCASL)技术对甲状腺结节的诊断价值。材料与方法 纳入2021年11月至2023年4月在中国医学科学院肿瘤医院深圳医院行甲状腺磁共振成像(magnetic resonance imaging, MRI)的患者207例,其中一侧甲状腺正常的患者74例。扫描横轴位3D-pCASL序列,标记后延迟(post labeling delay, PLD)时间设为1525 ms,标记层面位于左颈总动脉起始部。在AW 4.7工作站进行图像后处理,分别测量正常甲状腺和甲状腺结节的血流量(blood flow, BF)。组间比较采用t检验或非参数检验,使用受试者工作特征(receiver operating characteristic, ROC)曲线及ROC曲线下面积(area under the curve, AUC)分析BF在鉴别甲状腺良、恶性结节的诊断效能,并比较分析甲状腺乳头状癌(papillary thyroid carcinoma, PTC)和非乳头状癌(non-papillary thyroid carcinoma, non-PTC)的血流灌注。结果 男性与女性正常甲状腺侧叶BF的差异无统计学意义(P均>0.05),正常甲状腺侧叶平均BF为(162.73±24.24)mL/(100 g·min)。207例患者共观察到甲状腺结节235个(良性44个、恶性191个),恶性结节BF明显高于良性结节,差异具有统计学意义(左叶t=6.607,右叶t=5.590,P均<0.001);BF鉴别甲状腺良性、恶性结节的临界值为177.96 mL/(100 g·min),诊断敏感度和特异度分别为73.1%、93.7%,诊断准确度为89.4%(AUC=0.861)。PTC与non-PTC的BF差异无统计学意义(t=1.578,P=0.124)。结论 3D-pCASL技术对甲状腺良、恶性结节的鉴别诊断具有较大价值,其定量值BF对鉴别不同病理类型甲状腺癌的价值有限。
[Abstract] Objective To assess the diagnostic efficacy of three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) for thyroid nodules.Materials and Methods A total of 207 patients who underwent thyroid magnetic resonance imaging (MRI) at the Chinese Academy of Medical Sciences/Cancer Hospital&Shenzhen Hospital from November 2021 to April 2023 were included in this study, among which 74 patients had normal unilateral thyroid glands. The 3D-pCASL sequence was acquired along the horizontal axis with a post-labeling delay (PLD) time set at 1525 ms, and the labeling plane was positioned at the origin of the left common carotid artery. Blood flow (BF) measurements of both normal thyroid glands and thyroid nodules were obtained using AW 4.7 workstation. The t-test or non-parametric test was employed for between-group comparisons. Receiver operating characteristic (ROC) curve analysis and calculation of area under the curve (AUC) were performed to evaluate the diagnostic efficacy of BF in distinguishing benign from malignant thyroid nodules, as well as to compare papillary thyroid carcinoma (PTC) with non-papillary thyroid carcinoma (non-PTC).Results There was no significant difference in BF between male and female (P>0.05). The average BF of the normal lateral lobe of the thyroid was (162.73±24.24) mL/(100 g·min). A total of 235 thyroid nodules were observed in 207 patients (44 benign and 191 malignant). BF of malignant nodules was significantly higher than that of benign nodules, and the difference was statistically significant (left lobe t=6.607 and right lobe t =5.590, both P<0.001). The cut-off value of BF for differentiating benign from malignant thyroid nodules was 177.96 mL/(100 g·min), the sensitivity, specificity and accuracy were 73.1%, 93.7% and 89.4%, respectively (AUC=0.861). There was no significant difference in BF between PTC and non-PTC (t=1.578, P=0.124).Conclusions 3D-pCASL technology has great value in the differential diagnosis of benign and malignant thyroid nodules, and its quantitative value BF has limited value in differentiating different pathological types of thyroid cancer.
[关键词] 甲状腺结节;动脉自旋标记;灌注;血流量;磁共振成像
[Keywords] thyroid nodules;arterial spin labeling;perfusion;blood flow;magnetic resonance imaging

邓文明 1   邱迎伟 2*   康文焱 1   钟贻洪 1   陈胜利 2   王鸣宇 1   向露 1   廖跃豪 1  

1 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院深圳医院放射科,深圳 518116

2 华中科技大学协和深圳医院放射科,深圳 518000

通信作者:邱迎伟,E-mail:qiuyw1201@gmail.com

作者贡献声明:邱迎伟设计本研究方案,对稿件重要内容进行了修改;邓文明获取、分析并解释本研究数据,起草和撰写稿件,并获得了中国医学科学院肿瘤医院深圳医院院内科研课题资助;康文焱、钟贻洪、陈胜利、王鸣宇、向露、廖跃豪参与图像数据的采集、处理和分析,并对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 中国医学科学院肿瘤医院深圳医院院内科研课题 SZ2020QN014,SZ2020ZD005
收稿日期:2023-11-15
接受日期:2024-02-23
中图分类号:R445.2  R581.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.04.008
本文引用格式:邓文明, 邱迎伟, 康文焱, 等. 三维动脉自旋标记技术对甲状腺良恶性结节的鉴别诊断价值[J]. 磁共振成像, 2024, 15(4): 45-49, 62. DOI:10.12015/issn.1674-8034.2024.04.008.

0 引言

       甲状腺结节的人群发生率高达60%、恶性率约为7%[1],甲状腺癌占我国恶性肿瘤全人群的4.7%、居恶性肿瘤发病率的第七位[2],由于甲状腺良、恶性结节的治疗原则和预后截然不同[3],精准诊断甲状腺癌对于避免过度的甲状腺手术、提高甲状腺癌患者的早治率和治疗后生存质量具有重要意义。超声对甲状腺结节的诊断准确率达到80%~90%以上[4],但容易受操作者主观因素的影响,在显示结节与气管、食管等周围结构的关系时存在一定的局限性,且在鉴别甲状腺滤泡状癌和滤泡细胞腺瘤也有较大的难度[5]。磁共振灌注成像可评价组织的微循环状态和肿瘤新生血管的生成情况、并以定量或半定量参数来评估病变的良、恶性[6],避免了CT灌注成像的电离辐射和碘对比剂对甲状腺灌注测定的影响[7, 8],是磁共振成像(magnetic resonance imaging, MRI)重要的功能成像技术。目前甲状腺磁共振灌注成像的主要方法是动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI),但多个中心报告了DCE-MRI定量参数对甲状腺结节的诊断价值有限,对良、恶性结节的鉴别诊断效能欠佳[8, 9, 10]。三维准连续式动脉自旋标记(three-dimensional pseudo-continuous arterial spin labeling, 3D-pCASL)技术无需使用钆对比剂,可根据病变的灌注定量情况对病变进行良、恶性鉴别以及对恶性病变进行分级。甲状腺动脉自旋标记的研究报道较少,且多局限于甲状腺炎异常灌注的定量研究[11, 12],关于甲状腺结节的3D-pCASL研究尚无文献报道。本文旨在探讨3D-pCASL技术对甲状腺的灌注研究及其定量参数对良、恶性结节的诊断价值,为提高甲状腺癌的检出提供新的参考信息。

1 材料与方法

1.1 一般资料

       本研究遵守《赫尔辛基宣言》,并经中国医学科学院肿瘤医院深圳医院伦理委员会批准(批准文号:2020-123),所有患者均签署知情同意书。前瞻性纳入2021年11月至2023年4月在中国医学科学院肿瘤医院深圳医院行MRI检查的甲状腺结节患者共207例(男59例、女148例,中位年龄37岁)。纳入标准:(1)年龄≥18岁;(2)无MRI检查禁忌证并耐受全程检查;(3)在T1WI或T2WI脂肪抑制(T2WI fat suppression, T2WI/FS)序列可见实性或大部分实性的甲状腺结节,且结节的最大径>0.5 cm。排除标准:(1)3D-pCASL标记失败,甲状腺没有动脉标记信号;(2)病理显示合并甲状腺炎的结节。从207例患者中筛选存在一侧正常甲状腺的患者74例(男32例、女42例,中位年龄30岁)。本研究将正常甲状腺侧叶定义为:患者的甲状腺任一侧叶在本次MRI检查前一个月内的超声检查结果为阴性,并在本次MRI检查的各序列图像上均未发现该侧叶有结节、肿块或弥漫性病变。

1.2 扫描方法及参数

       所有患者均使用3.0 T MRI仪(Discovery 750w,GE,美国)及32通道甲状腺专用表面线圈(Medcoil TL320,众志医疗,中国苏州)进行扫描。平扫包括横轴位T1WI、T2WI/FS、弥散加权成像(diffusion weighted imaging, DWI)(b值=0和700 s/mm²)等常规序列和3D-pCASL序列。3D-pCASL参数为:TR 4437 ms,TE 8.9 ms、层厚4.0 mm,FOV 26 cm×26 cm,采样臂数8,采样点数512,激励次数4,标记后延迟(post labeling delay, PLD)1525 ms、标记层面位于左颈总动脉起始部[13]。其他常规序列的主要参数见表1

表1  甲状腺MRI常规序列扫描参数
Tab. 1  Parameters of routine MRI sequence scanning of thyroid

1.3 图像处理

       在AW 4.7工作站进行图像后处理,将3D-pCASL彩阶图像与T2W/FS图像进行融合,由1名具有12年工作经验的放射科技师使用融合图像测量血流量(blood flow, BF)。测量方法:在甲状腺结节的三个主体层面与相同层面的正常甲状腺侧叶上各测一个感兴趣区(region of interest, ROI),记录BF,如结节较小则测量其主体层面三次,均取三者的平均值。ROI标准为:圆形、面积(20±5)mm2,并测量实性中心区域。

1.4 统计学分析

       运用SPSS 24.0软件进行数据分析,符合正态分布的计量资料以x¯±s描述,组间比较采用t检验或非参数检验。以病理诊断结果为金标准,使用受试者工作特征(receiver operating characteristic, ROC)曲线及ROC曲线下面积(area under the curve, AUC)分析BF在鉴别甲状腺良、恶性结节的诊断效能。P<0.05为差异具有统计学意义。

2 结果

2.1 正常甲状腺的BF

       32例男性正常甲状腺左、右侧叶BF分别为(155.07±19.06)、(170.72±22.53)mL/(100 g·min),42例女性正常甲状腺左、右侧叶BF分别为(155.45±28.34)、(169.75±21.08)mL/(100 g·min),男性与女性正常甲状腺左叶BF的差异无统计学意义(t=0.066,P=0.948),右叶BF的差异无统计学意义(t=0.191,P=0.849)。正常甲状腺侧叶平均BF为(162.73±24.24)mL/(100 g·min)。

2.2 甲状腺结节的病理资料

       207例患者共发现甲状腺结节235个,其中良性结节44个(左叶25个、右叶19个),包含结节性甲状腺肿35个(其中伴腺瘤样增生14个)、腺瘤8个、嗜酸性滤泡细胞瘤1个;恶性结节191个(左叶84个、右叶107个),包括PTC 180个(经典型155个、滤泡型9个、混合亚型16个),non-PTC 11个(滤泡细胞癌7个、髓样癌3个、未分化癌1个)。

2.3 甲状腺良、恶性结节BF比较

       甲状腺良性结节44个(左叶25个、右叶19个)、平均BF为(160.80±26.58)mL/(100 g·min)(图1),恶性结节191个(左叶84个、右叶107个)、平均BF为(197.03±20.88)mL/(100 g·min)(图2),良、恶性结节BF差异具有统计学意义(左叶t=6.607,P<0.001;右叶t=5.590,P<0.001),甲状腺恶性结节BF大于良性结节(图3)。双侧良性结节BF比较、双侧恶性结节BF比较,差异均无统计学意义(P均>0.05)(表2)。

图1  女,32岁,右叶结节性甲状腺肿伴腺瘤样增生。1A~1B:T1WI和T2WI/FS图像显示右叶结节,长径1.8 cm(白箭);1C:T2WI/FS和3D-pCASL彩阶图像进行融合,使用融合图像测得BF=168.6 mL/(100 g·min);1D:病理(HE ×100)显示肿瘤由微滤泡结构组成,细胞核大小一致,圆形,无异形性。
图2  女,34岁,右叶乳头状癌(经典型)。2A~2B:T1WI和T2WI/FS图像显示右叶结节,长径1.1 cm(白箭);2C:融合图像测得BF=226.3 mL/(100 g·min);2D:病理(HE ×100)显示肿瘤有乳头状及滤泡结构,细胞核重叠拥挤,浅染,核型不规则,核内假包涵体。
图3  女,68岁,右侧甲状腺未分化癌、左侧结节性甲状腺肿。3A:T1WI显示右叶及峡部肿物,最长径达4.7 cm,左叶结节显示不具体;3B:融合图像测得右侧肿物BF=176.3 mL/(100 g·min)(红箭),左侧高灌注小结节BF=111.3 mL/(100 g·min)(白箭);3C~3D:右侧肿物和左侧小结节病理图片(HE ×100)。T2WI/FS:T2WI 脂肪抑制;3D-pCASL:三维准连续式动脉自旋标记;BF:血流量。
Fig. 1  A 32-year-old woman presented with a nodular goiter of the right lobe with adenomatous hyperplasia. 1A-1B: T1WI and T2WI/FS images show the right lobe tubercle with a length of 1.8 cm (white arrow); 1C: T2WI/FS and 3D-pCASL color scale images are fused, and BF=168.6 mL/(100 g·min) is measured using the fused images; 1D: Pathology (HE ×100) shows that the tumor consisted of microfollicular structures with uniformly sized, round nuclei and undifferentiated morphology.
Fig. 2  A 34-year-old woman with right lobe papillary carcinoma (classic). 2A-2B: T1WI and T2WI/FS images show the right lobe tubercle with a length of 1.1 cm (white arrow); 2C: BF measured by fusion image, BF=226.3 mL/(100 g·min); 2D: Pathological (HE ×100) findings show that the tumor had papillary and follicular structures, overlapping and crowded nuclei, superficial staining, irregular karyotype, and pseudoinclusion bodies.
Fig. 3  A 68-year-old woman presented with an anaplastic carcinoma of the thyroid on the right and a nodular goiter on the left. 3A: T1WI shows a mass in the right lobe and isthmus with the longest diameter of 4.7 cm, and the nodule in the left lobe is not specific; 3B: BF measured by fusion image, BF of right mass is 176.3 mL/(100 g·min) (red arrow), BF of left hyperperfusion small nodule is 111.3 mL/(100 g·min) (white arrow); 3C and 3D: Pathological (HE ×100) images of the right mass and the left small nodule. T2WI/FS: fat suppression in T2WI; 3D-pCASL: three-dimensional pseudo-continuous arterial spin labeling; BF: blood flow.
表2  甲状腺良、恶性结节BF比较
Tab. 2  BF comparison between benign and malignant thyroid nodules

2.4 定量BF鉴别甲状腺良、恶性结节的诊断效能

       应用3D-pCASL的BF定量鉴别甲状腺良、恶性结节的临界值为177.96 mL/(100 g·min),诊断敏感度和特异度分别为73.1%、93.7%,诊断准确率为89.4%,其AUC为0.861(图4)。

图4  BF鉴别甲状腺良恶性结节ROC曲线,AUC为0.861。BF:血流量;ROC:受试者工作特征;AUC:曲线下面积。
Fig. 4  ROC curve of BF in differentiating benign and malignant thyroid nodules,and AUC=0.861. BF: blood flow; ROC: receiver operating characteristic; AUC: area under the curve.

2.5 不同病理类型甲状腺癌BF的比较

       本研究中,PTC病灶共180个,平均BF为(196.43±20.90)mL/(100 g·min);non-PTC病灶共11个,包括滤泡癌7个、髓样癌3个、未分化癌1个,平均BF为(195.68±21.14)mL/(100 g·min)。各类型甲状腺癌BF数据服从正态分布(P>0.05),结果显示,PTC与non-PTC的BF差异无统计学意义(t=1.578,P=0.124)。

3 讨论

       临床上诊断甲状腺结节要结合结节的大小形态、MRI信号特点、各期强化幅度、颈部淋巴结等情况进行综合判断,功能MRI也提供了重要的定量信息。3D-pCASL无需使用钆对比剂,广泛应用于中枢神经系统,但甲状腺结节的3D-pCASL研究尚无相关报道。本研究首次应用3D-pCASL灌注技术对甲状腺结节进行了初步研究,表明其定量参数BF在良、恶性结节存在灌注差异,为甲状腺结节的鉴别诊断提供了新的依据,既利于甲状腺癌的早诊早治、降低患者的检查费用,也避免了因DCE-MRI使用钆对比剂所致的肾源性系统性纤维化和脑内核团钆剂沉积等低风险危害的发生。

3.1 正常甲状腺3D-pCASL灌注表现及生理基础

       SCHRAML等[12]首次报道了动脉自旋标记在甲状腺的应用,该研究中纳入了10例正常甲状腺,测量BF值为(491±89)mL/(100 g·min),与本研究的正常甲状腺侧叶的BF有很大差异。除了该研究样本量少以外,最主要原因是动脉自旋标记方法和成像的设备不同,该研究是基于1.5 T MRI设备和使用脉冲式动脉自旋标记(pulsed arterial spin labeled, PASL)技术,PASL容易因激励到静脉血液而导致定量错误[14]。3D-pCASL因其标记效率高、热效应低等优点,是国内外共识中一致推荐首选的动脉自旋标记扫描序列[14-15],国内有报道应用3D-pCASL研究正常甲状腺的BF范围在(109.76~163.68)mL/(100 g·min)[13],与本研究结果相符。可见,在临床上应用动脉自旋标记进行灌注监测时,应该遵循设备和技术方法的一致性原则[16]。本研究表明了不同性别正常甲状腺组织的BF并无差异,鉴于女性甲状腺疾病的发病率高于男性的流行病学特点[17],这个结果为甲状腺疾病的3D-pCASL灌注研究奠定更深层次的认识基础,即甲状腺疾病的3D-pCASL灌注分析无性别相关性。有研究证实了男性甲状腺上、下动脉的内径及面积均大于女性,同时右侧甲状腺上、下动脉内径均大于左侧[18]。可见,上述双侧甲状腺供血动脉的几何差异是导致甲状腺右侧BF高于左侧的主要原因。另外,甲状腺供血动脉的起始位置和分布存在多种变异,男性甲状腺体积与女性的并无明显差异[19, 20],加上存在甲状腺最下动脉等变异血管[18, 21],因此,男性与女性正常甲状腺的BF无明显差异与上述因素密切相关。

3.2 甲状腺良、恶性结节3D-pCASL灌注差异的病理基础

       甲状腺恶性结节的BF高于良性结节,与恶性结节的血管化程度高及其新生血管内皮不成熟、基底膜发育不完整等因素相关,该类血管网更容易加快标记水分子的外渗而呈现出高灌注状态,这与3D-pCASL在颅脑、鼻咽等部位的肿瘤评价和治疗后反应的认知基本一致[22, 23, 24]。然而,BF定量在良、恶性结节之间存在一定程度的交叉,最主要原因是部分恶性结节常合并结节性甲状腺肿等良性病变或者在良性病变基础上发生恶性病变[17, 25],从而造成病理上结节细胞分化程度不一、结节良恶性成分同时存在。本研究表明3D-pCASL 的甲状腺BF定量能较为可靠地识别上述存在复杂情况的结节,诊断效能高于应用DCE-MRI定量参数进行良、恶性结节鉴别所报道的结果[9, 10],说明3D-pCASL高灌注往往提示恶性度较高的部位,可引导穿刺获得更为准确的结果。可见,对于甲状腺结节恶性占比较高且预后不及成人的少儿群体[26]、孕期妇女、肾功能不全等特殊群体[27],3D-pCASL安全无创,提供了珍贵的甲状腺结节诊断信息。

3.3 不同病理类型甲状腺癌的3D-pCASL灌注表现

       PTC是甲状腺恶性结节中最常见的病理类型,占所有甲状腺癌的85%~90%,其预后明显优于滤泡癌、髓样癌、未分化癌等non-PTC肿瘤[3]。因此,在临床干预前判断甲状腺恶性结节是否为PTC对于治疗方案的确定具有重要价值。在病理上,各种甲状腺癌的微循环变化均以异常新生血管增多为主要特征[17],3D-pCASL可以识别这种微循环的变化并进行量化。PTC、non-PTC的强化形式和灌注定量结果均与评价模型相关[28],本研究用于甲状腺BF定量的3D-pCASL灌注模型是基于脑BF的计算模型,该模型血脑分配系数为0.9 mL/g[29, 30],考虑到水分子可以自由通过血脑屏障,而甲状腺组织也没有阻断水分子自由弥散的生物屏障,故而可忽略血脑分配系数用于甲状腺BF定量而导致的误差。因此,PTC与non-PTC的BF无差异与灌注评价模型无关,3D-pCASL灌注模型可用于甲状腺BF定量。YANG等[31]研究表明了PTC的对比增强灌注模式与其血管生成密度密切相关,可见PTC与non-PTC的BF无明显差异的主要原因是各类型PTC异常新生的血管密度无明显差别,但这还有待增加滤泡癌、髓样癌、未分化癌等non-PTC的样本量,结合病理做进一步研究。

3.4 本研究的局限性与展望

       本研究存在以下主要不足:(1)虽然本研究的样本具有客观连续性,但纳入的甲状腺良性结节较少,这与其临床发病规律不符,存在一定程度的样本偏差;(2)由于3D-pCASL图像固有的信噪比和空间分辨率比较低,本研究对于0.5 cm以下结节的诊断价值有限。下一步将应用3D-pCASL与DCE-MRI、DWI等对功能参数进行比较,探索多种功能参数对甲状腺结节的联合诊断效能。

4 结论

       本研究应用3D-pCASL对甲状腺进行成像,发现甲状腺恶性结节的BF明显大于良性结节,双侧良、恶性结节BF相当和不同病理类型甲状腺癌BF无明显差异等灌注特点。表明3D-pCASL的定量参数BF对甲状腺良、恶性结节具有较高的鉴别诊断价值,该技术安全无创、简便易行,为甲状腺结节的诊断提供了新证据。

[1]
CHAKRABORTY S, BALAKRISHNAN M C, RAPHAEL V, et al. Incidence and malignancy rates in thyroid nodules in north-east Indian population by Bethesda system: a single institutional experience of 3 years[J]. South Asian J Cancer, 2022, 12(2): 166-172. DOI: 10.1055/s-0042-1757776.
[2]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[3]
SAJISEVI M, CAULLEY L, ESKANDER A, et al. Evaluating the rising incidence of thyroid cancer and thyroid nodule detection modes: a multinational, multi-institutional analysis[J]. JAMA Otolaryngol Head Neck Surg, 2022, 148(9): 811-818. DOI: 10.1001/jamaoto.2022.1743.
[4]
WU Y, ZHOU C M, SHI B, et al. Systematic review and meta-analysis: diagnostic value of different ultrasound for benign and malignant thyroid nodules[J]. Gland Surg, 2022, 11(6): 1067-1077. DOI: 10.21037/gs-22-254.
[5]
WANG C Y, LI Y, ZHANG M M, et al. Analysis of differential diagnosis of benign and malignant partially cystic thyroid nodules based on ultrasound characterization with a TIRADS grade-4a or higher nodules[J/OL]. Front Endocrinol, 2022, 13: 861070 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/35651976/. DOI: 10.3389/fendo.2022.861070.
[6]
TASO M, ALSOP D C. Arterial spin labeling perfusion imaging[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 63-72. DOI: 10.1016/j.mric.2023.08.005.
[7]
王奕文, 周哲, 孙占国. 磁共振成像在甲状腺结节诊断中的研究进展[J]. 磁共振成像, 2023, 14(8): 150-153, 181. DOI: 10.12015/issn.1674-8034.2023.08.026.
WANG Y W, ZHOU Z, SUN Z G. Research progress of magnetic resonance imaging in diagnosis of thyroid nodules[J]. Chin J Magn Reson Imag, 2023, 14(8): 150-153, 181. DOI: 10.12015/issn.1674-8034.2023.08.026.
[8]
吴美妮, 梁龙飞, 张妙如, 等. 多参数MRI在甲状腺良恶性结节诊断中的应用价值[J]. 中华放射学杂志, 2021, 55(7): 710-715. DOI: 10.3760/cma.j.cn112149-20200822-01022.
WU M N, LIANG L F, ZHANG M R, et al. Value of multi-parameter MRI in the diagnosis of thyroid benign and malignant nodules[J]. Chin J Radiol, 2021, 55(7): 710-715. DOI: 10.3760/cma.j.cn112149-20200822-01022.
[9]
何品, 胡尔曼·巴合提别克, 张妙如, 等. 动态对比增强MRI的定量及半定量参数在鉴别甲状腺良恶性结节中的应用研究[J]. 磁共振成像, 2021, 12(7): 12-17. DOI: 10.12015/issn.1674-8034.2021.07.003.
HE P, HUERMAN·B H T B K, ZHANG M R, et al. Semiquantitative and quantitative analyses of dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign thyroid nodules[J]. Chin J Magn Reson Imag, 2021, 12(7): 12-17. DOI: 10.12015/issn.1674-8034.2021.07.003.
[10]
SAKAT M S, SADE R, KILIC K, et al. The use of dynamic contrast-enhanced perfusion MRI in differentiating benign and malignant thyroid nodules[J]. Indian J Otolaryngol Head Neck Surg, 2019, 71(Suppl 1): 706-711. DOI: 10.1007/s12070-018-1512-3.
[11]
SCHRAML C, SCHWENZER N F, MARTIROSIAN P, et al. Perfusion imaging of the pancreas using an arterial spin labeling technique[J]. J Magn Reson Imaging, 2008, 28(6): 1459-1465. DOI: 10.1002/jmri.21564.
[12]
SCHRAML C, MÜSSIG K, MARTIROSIAN P, et al. Autoimmune thyroid disease: arterial spin-labeling perfusion MR imaging[J]. Radiology, 2009, 253(2): 435-442. DOI: 10.1148/radiol.2533090166.
[13]
邓文明, 刘周, 钟贻洪, 等. 甲状腺MRI三维动脉自旋标记技术的应用探讨[J]. 实用放射学杂志, 2021, 37(8): 1357-1361. DOI: 10.3969/j.issn.1002-1671.2021.08.032.
DENG W M, LIU Z, ZHONG Y H, et al. Application of three-dimensional arterial spin labeling technique in thyroid imaging at MR[J]. J Pract Radiol, 2021, 37(8): 1357-1361. DOI: 10.3969/j.issn.1002-1671.2021.08.032.
[14]
中华医学会放射学分会质量管理与安全管理学组, 中华医学会放射学分会磁共振学组. 动脉自旋标记脑灌注MRI技术规范化应用专家共识[J]. 中华放射学杂志, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
Quality and Safety Management Group & Magnetic Resonance Group, Branch Radiology, Chinese Medical Association. Expert consensus on the standardized application of arterial spin labeled brain perfusion MRI technology[J]. Chin J Radiol, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
[15]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[16]
MARTÍN-NOGUEROL T, KIRSCH C F E, MONTESINOS P, et al. Arterial spin labeling for head and neck lesion assessment: technical adjustments and clinical applications[J]. Neuroradiology, 2021, 63(12): 1969-1983. DOI: 10.1007/s00234-021-02772-1.
[17]
RAGUSA F, FALLAHI P, ELIA G, et al. Hashimotos' thyroiditis: Epidemiology, pathogenesis, clinic and therapy[J/OL]. Best Pract Res Clin Endocrinol Metab, 2019, 33(6): 101367 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/31812326/. DOI: 10.1016/j.beem.2019.101367.
[18]
周新杰, 周代全, 钟丽娟, 等. 能谱CT血管成像显示甲状腺供血动脉[J]. 中国医学影像技术, 2019, 35(10): 1565-1568. DOI: 10.13929/j.1003-3289.201904078.
ZHOU X J, ZHOU D Q, ZHONG L J, et al. Dual-energy CT angiography in displaying thyroid feeding artery[J]. Chin J Med Imag Technol, 2019, 35(10): 1565-1568. DOI: 10.13929/j.1003-3289.201904078.
[19]
SAHA A, NANDY S. Cross sectional study on thyroid arteries with clinical correlations[J]. Bengal J Otolaryngol Head Neck Surg, 2023, 30(3): 305-312. DOI: 10.47210/bjohns.2022.v30i3.875.
[20]
SHAW S, MAHARAJ K, MIRZA T. Variations in origin of the superior thyroid artery: an update for the head and neck surgeon[J/OL]. Ann R Coll Surg Engl, 2021, 103(7): e238-e239 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/34192484/. DOI: 10.1308/rcsann.2021.0007.
[21]
WESTRYCH K, RUZIK K, ZIELINSKA N, et al. Common trunk of the internal thoracic artery, inferior thyroid artery and thyrocervical trunk from the subclavian artery: a rare arterial variant[J]. Surg Radiol Anat, 2022, 44(7): 983-986. DOI: 10.1007/s00276-022-02977-w.
[22]
吕瑞瑞, 杨治花, 葛鑫, 等. 集成MRI联合三维动脉自旋标记成像鉴别胶质瘤复发和假性进展的初步研究[J]. 磁共振成像, 2022, 13(8): 19-23, 35. DOI: 10.12015/issn.1674-8034.2022.08.004.
LÜ R R, YANG Z H, GE X, et al. Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imag, 2022, 13(8): 19-23, 35. DOI: 10.12015/issn.1674-8034.2022.08.004.
[23]
刘腾, 肖磊, 韦波, 等. 单、双指数模型扩散加权成像及动脉自旋标记预测复发性鼻咽癌近期疗效的应用价值[J]. 磁共振成像, 2023, 14(9): 63-69. DOI: 10.12015/issn.1674-8034.2023.09.011.
LIU T, XIAO L, WEI B, et al. Application value of mono- and bi-exponential model diffusion weighted imaging and arterial spin labeling in predicting short-term curative effect of recurrent nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(9): 63-69. DOI: 10.12015/issn.1674-8034.2023.09.011.
[24]
YU X D, YANG F, LIU X, et al. Arterial spin labeling and diffusion-weighted imaging for identification of retropharyngeal lymph nodes in patients with nasopharyngeal carcinoma[J/OL]. Cancer Imaging, 2022, 22(1): 40 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/35978445/. DOI: 10.1186/s40644-022-00480-4.
[25]
RODRIGUES M G, DA SILVA L F F, ARAUJO-FILHO V J F, et al. Incidental thyroid carcinoma: correlation between FNAB cytology and pathological examination in 1093 cases[J/OL]. Clinics, 2022, 77: 100022 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/35306374/. DOI: 10.1016/j.clinsp.2022.100022.
[26]
WANG H Y, MEHRAD M, ELY K A, et al. Incidence and malignancy rates of indeterminate pediatric thyroid nodules[J]. Cancer Cytopathol, 2019, 127(4): 231-239. DOI: 10.1002/cncy.22104.
[27]
LANGE S, MĘDRZYCKA-DĄBROWSKA W, ZORENA K, et al. Nephrogenic systemic fibrosis as a complication after gadolinium-containing contrast agents: a rapid review[J/OL]. Int J Environ Res Public Health, 2021, 18(6): 3000 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/33804005/. DOI: 10.3390/ijerph18063000.
[28]
PAUDYAL R, LU Y G, HATZOGLOU V, et al. Dynamic contrast-enhanced MRI model selection for predicting tumor aggressiveness in papillary thyroid cancers[J/OL]. NMR Biomed, 2020, 33(1): e4166 [2023-11-14]. https://pubmed.ncbi.nlm.nih.gov/31680360/. DOI: 10.1002/nbm.4166.
[29]
HERSCOVITCH P, RAICHLE M E. What is the correct value for the brain: blood partition coefficient for water?[J]. J Cereb Blood Flow Metab, 1985, 5(1): 65-69. DOI: 10.1038/jcbfm.1985.9.
[30]
JUNG Y, TAN H, BURDETTE J H. Physical principles of non-gadolinium perfusion technique (arterial spin labeling)[M]//FARO SH, MOHAMED FB. Functional Neuroradiology. Cham: Springer, 2023: 35-46.10.1007/978-3-031-10909-6_3
[31]
YANG M, JIANG Y X, SU N, et al. The contrast enhanced perfusion pattern and pathological changes of papillary thyroid cancer (PTC) and the correlation with pathogesis[J/OL]. Ultrasound Med Biol, 2017, 43: S45 [2023-11-14]. https://www.umbjournal.org/article/S0301-5629(17)31451-5/fulltext. DOI: 10.1016/j.ultrasmedbio.2017.08.1090.

上一篇 神经突方向离散度和密度成像预测成人型弥漫性胶质瘤IDH基因型的应用
下一篇 基于MRI影像组学机器学习模型在脊髓型颈椎病危险度分级中的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2