分享:
分享到微信朋友圈
X
临床研究
MAGiC技术定量评估原发性骨质疏松症的可行性研究
王文娟 邹月芬 胡磊 刘啸峰 柴刘勇

Cite this article as: WANG W J, ZOU Y F, HU L, et al. Feasibility study of the MAGiC technique for quantitative assessment of primary osteoporosis[J]. Chin J Magn Reson Imaging, 2024, 15(4): 99-105.本文引用格式:王文娟, 邹月芬, 胡磊, 等. MAGiC技术定量评估原发性骨质疏松症的可行性研究[J]. 磁共振成像, 2024, 15(4): 99-105. DOI:10.12015/issn.1674-8034.2024.04.016.


[摘要] 目的 评估MRI集成(magnetic resonance image compilation, MAGiC)序列在原发性骨质疏松症中的应用价值。材料与方法 前瞻性招募2023年5月至2023年9月期间完成胸部低剂量CT检查的健康体检志愿者。所有志愿者均自愿接受常规腰椎MRI及MAGiC序列扫描。分别测量并计算基于胸部低剂量CT的腰椎平均骨密度(bone mineral density, BMD)值、基于常规T1WI椎体骨质量(vertebral bone quality, VBQ)值、基于MAGiC T1WI的VBQ(VBQ-magic)及平均T1弛豫时间(average T1 relaxation time, T1av)值、平均T2弛豫时间(average T2 relaxation time, T2av)值、质子密度平均(average proton density, PDav)值以及身体质量指数(body mass index, BMI)值。按腰椎定量CT(quantitative computed tomography, QCT)骨质疏松诊断标准分为骨量正常组(63例)、骨量减少组(43例)及骨质疏松组(22例)。多组间参数比较采用单因素方差分析或Kruskal-Wallis检验,两两比较采用LSD法检验或Wilcoxon检验,采用Pearson或Spearman相关系数分析年龄、VBQ、VBQ-magic、T1av、T2av、PDav与BMD的相关性,采用受试者工作特征(receiver operating characteristic, ROC)曲线评价单参数及联合参数对骨量减少及骨质疏松的诊断效能。结果 三组间年龄、VBQ、VBQ-magic、T1av、T2av、PDav值差异有统计学意义(P<0.05)。骨量正常组、骨量减少组、骨质疏松组VBQ-magic值分别为2.92(2.71,3.11)、3.16(2.87,3.40)、3.37(3.19,3.53),两两比较组间差异均有统计学意义(P≤0.009);T1av值分别为622.80(554.80,692.00)ms、565.40(538.00,599.20)ms、560.50(515.80,586.55)ms,骨量正常组与骨量减少组、骨质疏松组组间差异有统计学意义(P均=0.001);T2av值分别为(75.40±6.06)ms、(77.05±5.95)ms、(84.79±5.36)ms,骨量正常组、骨量减少组与骨质疏松组间差异有统计学意义(P均<0.001);骨量正常组PDav值小于骨量减少组及骨质疏松组(P=0.007、0.043)。VBQ-magic、T1av与BMD值呈中等相关(r=-0.524、0.403);T2av、PDav与BMD值呈弱相关(r=-0.365、-0.224)。VBQ-magic、T1av、VBQ-magic+T1av在区分骨量减少的曲线下面积(area under the curve, AUC)分别为0.772、0.702、0.782,VBQ-magic单独及联合T1av的诊断效能与VBQ间差异无统计学意义(P>0.05);VBQ-magic、T2av、VBQ-magic+T2av在区分骨质疏松的AUC分别为0.810、0.867、0.803,VBQ-magic单独及联合T2av的诊断效能与VBQ间差异无统计学意义(P>0.05)。结论 基于MAGiC T1WI的VBQ评分及T1、T2值对骨量减少及骨质疏松具有一定的预测能力,可为骨质疏松症提供新的检测方法和参考指标。
[Abstract] Objective To evaluate the application value of magnetic resonance image compilation (MAGiC) sequence in primary osteoporosis.Materials and Methods Prospectively recruited health screening volunteers who completed a low-dose chest CT scans between May 2023 and September 2023. All volunteers voluntarily underwent routine lumbar MRI and MAGiC sequence scans. The average bone mineral density (BMD) value of the lumbar spine based on low-dose chest CT, the VBQ value based on conventional T1-weighted imaging, and the VBQ-magic, average T1 relaxation time (T1av), average T2 relaxation time (T2av), average proton density (PDav) values based on MAGiC T1-weighted imaging were measured, and the body mass index (BMI) value was calculated. Patients were categorized into a normal bone group (63 cases), a bone loss group (43 cases), and an osteoporosis group (22 cases) based on the osteoporosis diagnostic criteria of lumbar quantitative computed tomography (QCT). Multiple group comparisons were performed using one-way ANOVA or Kruskal-Wallis test. Pairwise comparisons were conducted using either LSD test or Wilcoxon test. The correlations between each parameter and BMD were examined using Pearson or Spearman correlation analysis. Receiver operating characteristic (ROC) curves were employed to evaluate the diagnostic efficacy of single and combined parameters for bone loss and osteoporosis.Results The differences in age, VBQ, VBQ-magic, T1av, T2av, and PDav values among the three groups were statistically significant (P<0.05). The VBQ-magic values for the normal bone group, bone loss group, and osteoporosis group were 2.92 (2.71, 3.11), 3.16 (2.87, 3.40), and 3.37 (3.19, 3.53), respectively, the differences between each pair of groups were statistically significant (P≤0.009). The T1av values were 622.80 (554.80, 692.00) ms, 565.40 (538.00, 599.20) ms, and 560.50 (515.80, 586.55) ms, respectively, the differences between the normal bone group and the bone loss group, as well as the osteoporosis group, were statistically significant (P=0.001 for both). The T2av values were (75.40±6.06) ms, (77.05±5.95) ms, and (84.79±5.36) ms, respectively, the differences among the normal bone group, bone loss group, and osteoporosis group were statistically significant (P<0.001 for both). The PDav value of the normal bone group was less than that of the bone loss group and osteoporosis group (P=0.007, 0.043). There was a moderate correlation between VBQ-magic, T1av, and BMD values (r=-0.524, 0.403), while T2av and PDav showed a weak correlation with BMD values (r=-0.365, -0.224). The areas under the curve (AUC) for VBQ-magic, T1av, and VBQ-magic+T1av in distinguishing bone loss were 0.772, 0.702, and 0.782, respectively. The diagnostic efficacy of VBQ-magic alone and combined with T1av showed no statistically significant difference from VBQ (P>0.05). The AUCs for VBQ-magic, T2av, and VBQ-magic+T2av in distinguishing osteoporosis were 0.810, 0.867, and 0.803, respectively. The diagnostic efficacy of VBQ-magic alone and combined with T2av showed no statistically significant difference from VBQ (P>0.05).Conclusions The VBQ scoring based on MAGiC T1-weighted images and the T1 and T2 values have a certain predictive ability for bone loss and osteoporosis, providing new diagnostic methods and reference indices for osteoporosis.
[关键词] 骨质疏松症;骨质量;骨密度;磁共振成像;定量磁共振成像
[Keywords] osteoporosis;vertebral bone quality;bone mineral densitym;agnetic resonance imaging;quantitative magnetic resonance imaging

王文娟 1, 3   邹月芬 2*   胡磊 3   刘啸峰 3   柴刘勇 3  

1 南京医科大学,南京 211166

2 南京医科大学第一附属医院放射科,南京 210029

3 池州市人民医院放射科,池州 247100

通信作者:邹月芬,E-mail:zou_yf@163.com

作者贡献声明:王文娟参与选题及设计,获取、分析及解释本研究的数据,起草和撰写稿件,获得了池州市2023年度社会发展领域科技攻关项目资金资助;邹月芬参与选题及设计,分析及解释本研究的数据,对稿件重要内容进行了修改;胡磊、刘啸峰、柴刘勇获取、分析及解释本研究的数据,对稿件重要内容进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 池州市2023年度社会发展领域科技攻关项目 CZ23KJSFy012
收稿日期:2024-01-04
接受日期:2024-03-22
中图分类号:R445.2  R681.55 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.04.016
本文引用格式:王文娟, 邹月芬, 胡磊, 等. MAGiC技术定量评估原发性骨质疏松症的可行性研究[J]. 磁共振成像, 2024, 15(4): 99-105. DOI:10.12015/issn.1674-8034.2024.04.016.

0 引言

       原发性骨质疏松症是全球广泛存在的一种常见骨代谢性疾病,其主要特征是骨量减少、骨微结构退化和脆性骨折。原发性骨质疏松症通常与年龄增长相关,由于其发病过程隐匿,常容易在出现症状之前被忽视[1]。2018年一项关于我国骨质疏松症患病率的流行病学调查报告显示:50岁以上人群患病率达19.2%,65岁以上人群患病率达32.0%[2]。随着人口老龄化的加剧,患病率预计还在继续增加,预计2050年骨质疏松性脆性骨折人数将达599万,届时将产生高达1745亿元的医疗支出,这不仅给患者带来严重的健康问题,还将给医疗和社会造成巨大的人力和经济负担[3]

       目前双能X线吸收测定法(dual-energy X-ray absorptiometry, DEXA)、定量CT(quantitative computed tomography, QCT)为临床常用的骨矿物含量检测方法[4]。DEXA因操作简单、价廉、辐射剂量低的优势,在过去几十年里一直被作为骨质疏松症的诊断金标准,但DEXA为2D投影图像,不可避免地受软组织、血管壁钙化、皮质骨、植入物等的干扰,易导致骨密度(bone mineral density, BMD)值的过高评估和骨折风险的假性降低。QCT的应用克服了以上局限性,可区分皮质骨和小梁骨,它基于常规CT成像,利用体模校准和软件分析,获得单位体积内腰椎和股骨近端的骨矿物含量,明显提高了诊断的准确性。QCT虽敏感性较DEXA高,但额外增加了患者受照射剂量,且骨强度由骨矿物含量与骨质量共同决定[5],单位面积及单位体积内骨矿物含量并不能完全反映骨强度[6, 7]。骨质量是除骨密度外反映骨强度全部指标的总称,能够反映骨组织内在结构及分子水平的变化。近些年,关于骨质量要素的磁共振定量研究成为热点。磁共振波谱成像(magnetic resonance spectroscopy, MRS)、弥散加权成像(diffusion weighted image, DWI)、动态对比增强MRI(dynamic contrast enhancement MRI, DCE-MRI)、高分辨率MRI(high-resolution MRI, HR-MRI)、超短回波时间MRI(ultrashort echo-time MRI, UTE-MRI)、魔镜成像(mDixon-Quant)、非对称回波最小二乘估算法迭代水脂分离序列(iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence, IDEAL-IQ)等在评估骨质疏松症中虽取得了一定的成果,但各自均存在一定的局限性,且定性还需基于常规MRI检查,额外增加了扫描及后处理时间,另外获得的参数有限,目前还均处在临床前阶段[8]。MRI集成(magnetic resonance image complication, MAGiC)序列为一站式弛豫定量技术,采用一次多动态多回波序列(multiple dynamic multiple echo, MDME)扫描进行合成重建,可获得多种不同对比度形态学图像和T1-mapping、T2-mapping、PD-mapping三种定量图谱[9],在满足定性诊断的同时,获取反映组织生物物理特性的多种定量参数。由于扫描采用了一系列180°重聚脉冲,有效避免了磁场不均匀性及磁敏感效应,扫描时间短且无电离辐射。目前,在骨肌系统主要用于椎间盘变性及关节软骨损伤方面的研究[9],对VBQ进行评估的报道甚少,目前尚无利用QCT作为金标准评估MAGiC序列各参数单独及联合诊断骨质疏松症的报道[10, 11]。基于此,本研究旨在探究MAGiC T1WI的VBQ(VBQ-magic)、T1av、T2av、PDav值单独及联合应用于原发性骨质疏松症中的价值。

1 材料与方法

1.1 一般资料

       前瞻性招募2023年5月至2023年9月参加池州市人民医院健康体检并完成胸部低剂量CT的志愿者。所有志愿者均自愿接受常规腰椎MRI及MAGiC序列扫描。纳入标准:(1)年龄大于20岁;(2)已完成胸部低剂量CT扫描,3个月内自愿接受常规MRI及MAGiC序列扫描的志愿者。排除标准:(1)行胸部低剂量CT时未包全L3椎体;(2)腰椎侧凸畸形;(3)腰椎体骨折及手术史;(4)腰椎体病变、良恶性骨质破坏;(5)代谢性全身性骨病,如严重肝肾疾病、糖尿病、先天性骨代谢异常等;(6)腰椎椎管狭窄,影响脑脊液(cerebrospinal fluid, CSF)信号强度(signal intensity, SI)的测量。本论文研究遵循《赫尔辛基宣言》,符合池州市人民医院伦理委员会要求,经伦理委员会审核并批准(批准号:2023-KY-09),全体受试者均对本研究知情并签署了同意书。

1.2 检查及测量方法

1.2.1 胸部低剂量CT扫描及腰椎BMD测量

       采用东软医疗NeuViz Extra 63排CT机进行扫描,扫描条件:管电压120 kV,管电流50 mAs,层厚5.0 mm。在CT基础上利用非同步定量CT骨密度分析系统(QCT PRO V6.1,Mindways公司,美国)的QCT校准体模进行数据的校准,数据上传至QCT后处理工作站进行BMD值的测量,通过三平面定位,避开骨皮质及椎基静脉,在L1~L3椎体中央偏前位置设置最大程度感兴趣区(region of interest, ROI),分别测量L1~L3椎体BMD值,取其平均值为最终测量结果。依据QCT诊断标准[12]进行分组:骨量正常组BMD>120 mg/cm3,骨量减少组BMD介于80~120 mg/cm3之间,骨质疏松组BMD<80 mg/cm3

1.2.2 腰椎常规MRI及MAGiC序列扫描及定量参数测量

       采用美国GE SIGNA Architect 3.0 T磁共振进行腰椎常规矢状位T1快速自旋回波(fast spin echo, FSE)序列(TR 733 ms,TE 7.8 ms,层厚4.0 mm,视野320 mm×320 mm)、T2快速反转自旋回波(fast recovery fast spin echo, FRFSE)序列(TR 2699.0 ms,TE 102 ms,层厚4 mm,视野320 mm×320 mm)、T2 FLEX序列(TR 2123 ms,TE 102 ms,层厚4 mm,视野320 mm×320 mm)扫描,扫描时长4 min 32 s。同时进行MAGiC序列(TR 4000 ms,TE 19.3、89.2 ms,层厚4 mm,视野280 mm×280 mm)扫描,扫描时长4 min 8 s。使用MAGiC后处理应用程序生成T1WI、T2WI、T1-mapping、T2-mapping以及PD-mapping三组定量图谱,并保存及上传至影像存储及传输系统(picture archiving and communication systems, PACS)。

       VBQ评分基于骨质疏松症患者椎体骨小梁萎缩和脂肪浸润所引起的T1WI像SI增加,通过测量T1WI像L1~L4椎体SI,取其平均值,并除以L3 CSF SI进行标准化来表达患者的骨质量,从而实现患者之间的比较[13]。椎体ROI的放置要求:(1)避开皮质骨和椎基静脉;(2)ROI覆盖尽可能多的骨小梁区域,ROI因椎体形状和大小不要求一致;(3)测量时选取正中矢状切面。CSF ROI置于L3椎体后方,避开突出的椎间盘、硬膜外脂肪、下行神经根等组织(图1A)。

       在PACS系统利用相同的标准分别测量常规T1及MAGiC T1 L1~L4椎体及L3平面CSF SI,利用公式VBQ=SI(L1~L4)/SI(L3 CSF)分别计算常规T1 VBQ值及MAGiC T1 VBQ-magic值。利用MAGiC软件在T1WI序列正中矢状位勾画L1~L5椎体ROI,勾画标准同VBQ的测量,分别测量T1、T2、PD值(图1B~1D),并取相应平均值T1av、T2av、PDav值为最终结果。

图1  男,34岁,健康志愿者。1A:MAGiC T1WI图像;1B:T1-mapping图谱;1C:T2-mapping图谱;1D:PD-mapping图谱。MAGiC T1WI图上勾画ROI,测量L1~L4椎体及L3平面脑脊液SI,测量L1~L5椎体T1、T2、PD值,计算获得VBQ-magic值为3.36,T1av值为511.60 ms,T2av值为80.40 ms,PDav值为74.68 pu。MAGiC:MRI集成;ROI:感兴趣区;SI:信号强度;PD:质子密度;VBQ:椎体骨质量;T1av:平均T1弛豫时间;T2av:平均T2弛豫时间;PDav:平均质子密度。
Fig. 1  Male, 34 years old, health volunteer. 1A: MAGiC T1WI; 1B: T1-mapping; 1C: T2-mapping; 1D: PD-mapping. ROI is outlined in the MAGiC T1WI map. Measurement of SI in the L1-L4 vertebral and L3 plane cerebrospinal fluid. Measurement of L1-L5 vertebral T1, T2, PD values. The VBQ-magic value is 3.36, the T1av value is 511.60 ms, the T2av value is 80.40 ms, the PDav value is 74.68 pu. MAGiC: magnetic resonance image compilation; ROI: region of interest; SI: signal intensity; VBQ: vertebral bone quality; T1av: average T1 relaxation time; T2av: average T2 relaxation time; PDav: average proton density.

1.2.3 一致性检验

       从研究的总样本中随机抽取64位志愿者资料,由2名经过培训的年资分别为9年及11年的主治医师先后独立进行VBQ-magic、T1av、T2av、PDav值测量及计算,进一步验证观察者间数据的可重复性。

1.3 统计学方法

       采用Med Calc 20.0软件及SPSS 26.0软件进行统计学分析。采用组内相关系数(intra-class correlation coefficient, ICC)评价观察者间数据的一致性,ICC<0.4表示信度较差,0.4≤ICC≤0.75表示信度一般,ICC>0.75代表信度较好。对所有计量资料进行正态性检验,符合正态性分布的数据以(x¯±s)表示,不符合正态分布的数据以MP25,P75)表示。三组间年龄、BMI、VBQ、VBQ-magic、T1av、T2av、PDav值比较采用单因素方差分析或Kruskal-Wallis非参数秩和检验,两两比较采用LSD法或Wilcoxon检验。采用Pearson或Spearman相关系数分析各参数与BMD的相关性。将差异有统计学意义的参数分别使用logistic回归建立单因素及多因素联合诊断模型,通过绘制受试者工作特征(receiver operating characteristic curve, ROC)曲线分析单独及联合参数对骨量减少及骨质疏松的诊断效能。曲线下面积(area under the curve, AUC)的比较采用Z检验。以P<0.05为差异有统计学意义。

2 结果

2.1 入组资料

       本研究最终纳入128名健康志愿者,骨量正常组63例,骨量减少组43例,骨质疏松组22例。其中男62名,女66名,年龄23~81岁,中位年龄52岁。三组间年龄差异均有统计学意义(P均<0.001)。

2.2 各参数差异性比较

       除BMI外,三组间VBQ、VBQ-magic、T1av、T2av、PDav值差异均有统计学意义(表1)。组间两两比较结果显示:(1)VBQ、VBQ-magic值各组间两两比较差异均有统计学意义(P≤0.009),骨质疏松组VBQ-magic值大于骨量减少及骨量正常组(P=0.009、P<0.001),骨量减少组VBQ-magic值大于骨量正常组(P<0.001);(2)T1av值在骨量正常组大于骨量减少组及骨质疏松组(P均=0.001),骨量减少组与骨质疏松组间差异无统计学意义(P>0.05);(3)T2av值在骨质疏松组大于骨量减少组及骨量正常组(P均<0.001),骨量减少组与骨量正常组间差异无统计学意义(P>0.05);(4)PDav值在骨量正常组小于骨量减少组及骨质疏松组(P=0.007、P=0.043),骨量减少组与骨质疏松组间差异无统计学意义(P>0.05)。

表1  一般资料及各定量参数比较
Tab. 1  Comparison of general information and each quantitative parameter

2.3 数据一致性检验

       结果显示VBQ-magic、T1av、T2av、PDav的ICC分别为0.965、0.955、0.982、0.965,均显示出较好的观察者间信度。

2.4 各参数与BMD的相关性

       年龄、VBQ与BMD均呈强负相关,r值及其95%置信区间(confidence interval, CI)分别为-0.740(-0.815~-0.637)、-0.651(-0.742~-0.534),P均<0.001;VBQ-magic与BMD呈中等负相关,r(95% CI)=-0.524(-0.649~-0.384),P<0.001;T1av与BMD呈中等正相关,r(95% CI)=0.403(0.245~0.546),P<0.001;T2av [r(95% CI)=-0.365(-0.490~-0.201),P<0.001]、PDav [r(95% CI)=-0.224(-0.365~-0.077)]与BMD呈弱负相关(图2)。

图2  各参数与BMD值相关性散点图。BMD:骨密度;VBQ-magic:基于MAGiC序列的椎体骨质量;T1av:平均T1弛豫时间;T2av:平均T2弛豫时间;PDav:平均质子密度。
Fig. 2  Scatterplot of the correlation of each parameter with BMD values. BMD: bone mineral density; VBQ-magic: vertebral bone quality based on MAGiC sequence; T1av: average T1 relaxation time; T2av: average T2 relaxation time; PDav: average proton density.

2.5 单参数及联合参数对骨量减少及骨质疏松的诊断效能

       以骨量减少为阳性事件,VBQ、VBQ-magic、T1av、VBQ-magic+T1av诊断的AUC分别为0.798、0.772、0.702、0.782(表2图3A)。VBQ-magic、VBQ-magic+T1av分别与VBQ间对骨量减少的诊断效能差异均无统计学意义(P=0.442、0.668)。

       以骨质疏松为阳性事件,VBQ、VBQ-magic、T2av、VBQ-magic+T2av诊断的AUC分别为0.845、0.810、0.867、0.803(表3图3B)。VBQ-magic、VBQ-magic+T2av分别与VBQ间对骨质疏松的诊断效能差异均无统计学意义(P=0.323、0.446)。

图3  单参数及联合参数的受试者工作特征(ROC)曲线。3A:预测骨量减少的ROC曲线;3B:预测骨质疏松的ROC曲线。VBQ:基于常规MRI序列的椎体骨质量;VBQ-magic:基于MAGiC序列的椎体骨质量;T1av:平均T1弛豫时间;T2av:平均T2弛豫时间。
Fig. 3  Receiver operating characteristic (ROC) curve of single and combined parameters. 3A: ROC curves for predicting bone loss; 3B: ROC curves for predicting osteoporosis. VBQ: vertebral bone quality based on conventional MRI sequence; VBQ-magic: vertebral bone quality based on MAGiC sequence; T1av: average T1 relaxation time; T2av: average T2 relaxation time.
表2  各参数评估骨量减少的诊断效能
Tab. 2  Diagnostic efficacy of each parameter in assessing bone loss
表3  各参数评估骨质疏松的诊断效能
Tab. 3  Diagnostic efficacy of each parameter to assess osteoporosis

3 讨论

       鉴于MAGiC技术用于腰椎成像的可行性[14],本研究探讨了基于MAGiC序列的VBQ-magic评分、T1、T2及PD值与BMD的相关性,并分析其诊断骨量减少及骨质疏松的价值。VBQ-magic、T1av、T2av与BMD有一定的相关性,PDav与BMD的相关性较弱,VBQ-magic单独及联合T1av、T2av对骨量减少及骨质疏松均具有一定的诊断价值,且VBQ-magic+T1av联合诊断骨量减少的效能有所提升。MAGiC技术在骨质疏松症筛查及诊断方面具有良好的应用前景。

3.1 基于MAGiC的VBQ-magic评分价值

       VBQ-magic评分是建立在EHRESMAN等[13]学者提出的常规MRI评估患者VBQ的基础之上,由于人体CSF组成相对恒定,利用L3平面CSF SI作为基线进行标准化,VBQ评分可实现不同患者在不同机型、不同场强及不同参数下的对比[15]。本研究中,VBQ-magic在各组间差异均具有统计学意义,骨质疏松组>骨量减少组>骨量正常组,且VBQ-magic与BMD呈中等负相关,同VBQ与BMD的相关性相当。伴随骨质疏松的发生,VBQ-magic呈递增趋势,这正与骨质疏松症患者椎体骨小梁退化,BMD下降,脂肪细胞增多,从而引起T1WI上SI增加的机制相呼应[16]。HAFFER等[17]学者也通过研究证明了VBQ与μCT确定的小梁微观结构之间显著的相关性。VBQ-magic评分提供了额外的骨质量信息,可作为BMD的补充。近3年国内外关于VBQ评分的大量研究[18, 19, 20, 21, 22, 23]表明VBQ评分可成为预测骨质疏松、脆性骨折、腰椎椎弓根螺钉松动及融合器下沉风险的良好评估工具,值得临床推广应用。本研究进一步评估VBQ-magic对骨量减少及骨质疏松的诊断效能中发现,VBQ-magic对骨量减少具有良好的预测能力(AUC=0.772),敏感度、特异度、阳性预测值及阴性预测值均显示良好;VBQ-magic对骨质疏松具有一定的预测能力(AUC=0.810),敏感度及阴性预测值显示良好,但特异度及阳性预测值略偏低,提示筛查过程中可能有部分病例存在假阳性。SALZMANN等[24]及ROCH等[25]的研究显示VBQ评分鉴别骨量减少与骨量正常患者的AUC分别为0.708、0.713,KIM等[26]的研究显示VBQ预测骨质疏松的AUC为0.754。本文研究结果与以上学者的结果相似,且VBQ-magic与VBQ的诊断效能无明显差异,进一步确立了VBQ-magic评分可成为预测骨量减少及骨质疏松的良好评估方法。

3.2 MAGiC定量参数T1、T2及PD值的诊断价值

       利用MAGiC定量图谱可直接测量组织T1、T2及PD值,可作为间接反映组织微结构变化的指标。在评价椎体骨质量方面的研究甚少。一项针对62位症状性腰椎退行性疾病患者开展的MAGiC定量初步研究[10]显示,PD值与DEXA T值呈中度负相关(r=-0.565),T1、T2与T值相关性极弱,PD值被认为是骨量减少及骨质疏松的极好预测因子。而在本研究中,PDav与BMD值的相关性较弱(r=-0.224),T1av、T2av却表现出与BMD较好的相关性(r=0.403、-0.365),进一步通过ROC曲线分析,T1av对骨量减少有一定的预测能力,VBQ-magic+T1av联合诊断骨量减少的效能有所提高;T2av对骨质疏松有一定的预测能力,但VBQ-magic+T2av联合诊断骨质疏松的效能略下降,但特异度有所提升,降低了诊断的误诊率。最新的一项探讨中老年女性骨质量变化的定量研究[11]与我们的结果相符,T1、T2值与BMD值呈中度相关,且诊断OP具有较高的准确性。相比以上研究,本研究样本量更大,招募志愿者时严格控制了不同年龄段及性别的人数,覆盖面更广,降低了选择偏倚性,且使用精准度更高的QCT结果作为诊断标准,使我们的结果更具说服力。

3.3 T1、T2及PD值的反应机制

       本研究与既往多项研究[27, 28]均显示T1与BMD值相关性较好,即伴随骨量减少,T1值逐渐缩短。我们认为T1值的缩短与骨小梁退化及骨髓脂肪化密切相关。由于椎体脂肪含量与增龄相关的骨质疏松有关,骨小梁减少,间隙增宽,被脂肪组织所填充,导致椎体脂肪含量增加[29, 30, 31];骨髓脂肪组织的T1值与体积骨密度、骨体积分数、骨小梁厚度呈正相关,骨髓脂肪化程度间接反映了松质骨的骨密度及微结构[28]。我们的研究与TOKGÖZ等[32]的发现类似,骨质疏松组T2av值大于骨量减少组及骨量正常组,T2av值随着BMD的降低而增加。原因可能为:松质骨由骨小梁与交织分布其内的骨髓组织所构成,骨小梁网络结构会影响骨髓MR特性,骨小梁和骨髓界面的磁化效应增加会缩短T2值[33],反之,骨小梁退化导致骨小梁与骨髓界面磁化效应降低,T2值会延长[34]。另外骨质疏松患者骨组织孔隙率增加,其内游离水及总水含量随之增加,结合水含量随羟基磷灰石晶体、胶原蛋白等基质的降低而减少[35, 36, 37],较高的T2值与骨水含量的增加和胶原基质的紊乱有关[38, 39]。人体水和脂肪氢质子含量最高,骨髓组织主要由水与脂肪成分所组成,因此PD值主要反映骨髓中水与脂肪含量的变化,同时受孔隙水、胶原结合水及胶原本身质子的影响[40]。本研究中骨量减少与骨质疏松组PDav值高于骨量正常组,可能也与骨髓中水与脂肪含量增加有关,但这种变化在骨量减少与骨质疏松组间无明显差异。

3.4 局限性及展望

       本研究存在一些局限性:首先,骨质疏松组数据相对较少,可能存在选择偏倚,后续将进一步细化纳排标准,收集更多样本量;其次,骨髓微环境除受年龄、骨密度、水及脂肪组织的影响外,还受女性雌激素、组织扩散特性及微循环灌注等的影响[41],后续将探索其与MAGiC各定量参数相互作用的机制;最后,关于T1、T2、PD值在骨质疏松症中的研究结果仍然存在部分矛盾的地方,还需进行多中心研究,扩大样本量,建立更加稳定的模型。

4 结论

       我们的数据表明,VBQ-magic、T1av、T2av对骨量减少及骨质疏松具有一定的诊断价值,且诊断骨量减少时联合参数效能有所提升,MAGiC序列有望成为骨质疏松症新的筛查及诊断工具。

[1]
KUSHCHAYEVA Y, PESTUN I, KUSHCHAYEV S, et al. Advancement in the treatment of osteoporosis and the effects on bone healing[J/OL]. J Clin Med, 2022, 11(24): 7477 [2024-01-08]. https://pubmed.ncbi.nlm.nih.gov/36556093. DOI: 10.3390/jcm11247477.
[2]
中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4): 317-318. DOI: 10.3969/j.issn.1674-2591.2019.04.001.
Osteoporosis and Bone Mineral Salt Diseases Branch of the Chinese Medical Association. Epidemiological investigation of osteoporosis in China and the release of the results of the special action of "healthy bones"[J]. Chin J Osteoporos Bone Miner Res, 2019, 12(4): 317-318. DOI: 10.3969/j.issn.1674-2591.2019.04.001.
[3]
SI L, WINZENBERG T M, JIANG Q, et al. Projection of osteoporosis-related fractures and costs in China: 2010-2050[J]. Osteoporos Int, 2015, 26(7): 1929-1937. DOI: 10.1007/s00198-015-3093-2.
[4]
DESHPANDE N, HADI M S, LILLARD J C, et al. Alternatives to DEXA for the assessment of bone density: a systematic review of the literature and future recommendations[J]. J Neurosurg Spine, 2023, 38(4): 436-445. DOI: 10.3171/2022.11.SPINE22875.
[5]
GRIFFITH J F, GENANT H K. New advances in imaging osteoporosis and its complications[J]. Endocrine, 2012, 42(1): 39-51. DOI: 10.1007/s12020-012-9691-2.
[6]
LINK T M, HEILMEIER U. Bone quality-beyond bone mineral density[J]. Semin Musculoskelet Radiol, 2016, 20(3): 269-278. DOI: 10.1055/s-0036-1592365.
[7]
PUMBERGER M, PALMOWSKI Y, STRUBE P, et al. Dual-energy X-ray absorptiometry does not represent bone structure in patients with osteoporosis[J]. Spine, 2020, 46(13): 861-866. DOI: 10.1097/brs.0000000000003917.
[8]
王璐, 黄爱兵. 常规磁共振成像检查评估骨质疏松症的研究进展[J]. 国际骨科学杂志, 2023, 44(3): 166-169. DOI: 10.3969/j.issn.1673-7083.2023.03.007.
WANG L, HUANG A B. Research progress of conventional magnetic resonance imaging in evaluating osteoporosis[J]. Int J Orthop, 2023, 44(3): 166-169. DOI: 10.3969/j.issn.1673-7083.2023.03.007.
[9]
崔峰, 王聪, 王娅, 等. MAGiC技术的基本原理及临床研究进展[J]. 临床放射学杂志, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
CUI F, WANG C, WANG Y, et al. Basic principle and clinical research progress of MAGiC technology[J]. J Clin Radiol, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
[10]
CHANG H K, HSU T W, KU J, et al. Simple parameters of synthetic MRI for assessment of bone density in patients with spinal degenerative disease[J]. J Neurosurg Spine, 2021, 36(3): 414-421. DOI: 10.3171/2021.6.SPINE21666.
[11]
CHEN Y M, MEI X T, LIANG X Q, et al. Application of magnetic resonance image compilation (MAGiC) in the diagnosis of middle-aged and elderly women with osteoporosis[J/OL]. BMC Med Imaging, 2023, 23(1): 63 [2024-01-08]. https://pubmed.ncbi.nlm.nih.gov/37189019. DOI: 10.1186/s12880-023-01010-9.
[12]
李凯, 陈捷, 赵林芬, 等. 中国人群定量CT (QCT)脊柱骨密度正常参考值的建立和骨质疏松症QCT诊断标准的验证[J]. 中国骨质疏松杂志, 2019, 25(9): 1257-1262, 1272. DOI: 10.3969/j.issn.1006-7108.2019.09.011.
LI K, CHEN J, ZHAO L F, et al. The establishment of QCT spinal vBMD reference database and the validation of the diagnosis criteria of osteoporosis with QCT for Chinese[J]. Chin J Osteoporos, 2019, 25(9): 1257-1262, 1272. DOI: 10.3969/j.issn.1006-7108.2019.09.011.
[13]
EHRESMAN J, PENNINGTON Z, SCHILLING A, et al. Novel MRI-based score for assessment of bone density in operative spine patients[J]. Spine J, 2020, 20(4): 556-562. DOI: 10.1016/j.spinee.2019.10.018.
[14]
ZHANG W L, ZHU J Y, XU X H, et al. Synthetic MRI of the lumbar spine at 3.0 T: feasibility and image quality comparison with conventional MRI[J]. Acta Radiol, 2020, 61(4): 461-470. DOI: 10.1177/0284185119871670.
[15]
PU M Y, ZHONG W T, HENG H Q, et al. Vertebral bone quality score provides preoperative bone density assessment for patients undergoing lumbar spine surgery: a retrospective study[J]. J Neurosurg Spine, 2023: 1-10. DOI: 10.3171/2023.1.SPINE221187.
[16]
SHAH L M, HANRAHAN C J. MRI of spinal bone marrow: part I, techniques and normal age-related appearances[J]. AJR Am J Roentgenol, 2011, 197(6): 1298-1308. DOI: 10.2214/AJR.11.7005.
[17]
HAFFER H, MUELLNER M, CHIAPPARELLI E, et al. Bone quality in patients with osteoporosis undergoing lumbar fusion surgery: analysis of the MRI-based vertebral bone quality score and the bone microstructure derived from microcomputed tomography[J]. Spine J, 2022, 22(10): 1642-1650. DOI: 10.1016/j.spinee.2022.05.008.
[18]
吕永威, 杨淑辉, 马超, 等. 基于MRI的椎体骨质量分数在腰椎手术前骨量评估中的作用[J]. 中国医刊, 2021, 56(9): 984-987. DOI: 10.3969/j.issn.1008-1070.2021.09.017.
LÜ Y W, YANG S H, MA C, et al. MRI-based score for evaluation of bone quality before lumbar surgery[J]. Chin J Med, 2021, 56(9): 984-987. DOI: 10.3969/j.issn.1008-1070.2021.09.017.
[19]
刘浩, 杨红胜, 曾智谋, 等. 腰椎MRI椎体骨质量评分评价绝经后女性骨质疏松的严重程度[J]. 中国组织工程研究, 2023, 27(4): 606-611.
LIU H, YANG H S, ZENG Z M, et al. Lumbar MRI vertebral bone quality score to evaluate the severity of osteoporosis in postmenopausal women[J]. Chin J Tissue Eng Res, 2023, 27(4): 606-611.
[20]
LI W S, ZHU H Z, HUA Z J, et al. Vertebral bone quality score as a predictor of pedicle screw loosening following surgery for degenerative lumbar disease[J]. Spine, 2023, 48(23): 1635-1641. DOI: 10.1097/BRS.0000000000004577.
[21]
HU Y H, YEH Y C, NIU C C, et al. Novel MRI-based vertebral bone quality score as a predictor of cage subsidence following transforaminal lumbar interbody fusion[J]. J Neurosurg Spine, 2022: 1-9. DOI: 10.3171/2022.3.SPINE211489.
[22]
GAO Y, YE W, GE X H, et al. Assessing the utility of MRI-based vertebral bone quality (VBQ) for predicting lumbar pedicle screw loosening[J]. Eur Spine J, 2024, 33(1): 289-297. DOI: 10.1007/s00586-023-08034-3.
[23]
PU X X, WANG X D, RAN L Y, et al. Comparison of predictive performance for cage subsidence between CT-based Hounsfield units and MRI-based vertebral bone quality score following oblique lumbar interbody fusion[J]. Eur Radiol, 2023, 33(12): 8637-8644. DOI: 10.1007/s00330-023-09929-x.
[24]
SALZMANN S N, OKANO I, JONES C, et al. Preoperative MRI-based vertebral bone quality (VBQ) score assessment in patients undergoing lumbar spinal fusion[J]. Spine J, 2022, 22(8): 1301-1308. DOI: 10.1016/j.spinee.2022.03.006.
[25]
ROCH P J, ÇELIK B, JÄCKLE K, et al. Combination of vertebral bone quality scores from different magnetic resonance imaging sequences improves prognostic value for the estimation of osteoporosis[J]. Spine J, 2023, 23(2): 305-311. DOI: 10.1016/j.spinee.2022.10.013.
[26]
KIM A Y E, LYONS K, SARMIENTO M, et al. MRI-based score for assessment of bone mineral density in operative spine patients[J]. Spine, 2023, 48(2): 107-112. DOI: 10.1097/BRS.0000000000004509.
[27]
ITO M, HAYASHI K, UETANI M, et al. Bone mineral and other bone components in vertebrae evaluated by QCT and MRI[J]. Skeletal Radiol, 1993, 22(2): 109-113. DOI: 10.1007/BF00197987.
[28]
ENDO K, TAKAHATA M, SUGIMORI H, et al. Magnetic resonance imaging T1 and T2 mapping provide complementary information on the bone mineral density regarding cancellous bone strength in the femoral head of postmenopausal women with osteoarthritis[J]. Clin Biomech, 2019, 65: 13-18. DOI: 10.1016/j.clinbiomech.2019.03.010.
[29]
冯红梅, 洪居陆, 陈婉雯, 等. IDEAL-IQ精准定量评价腰椎椎体脂肪含量[J]. 实用放射学杂志, 2019, 35(4): 607-610. DOI: 10.3969/j.issn.1002-1671.2019.04.023.
FENG H M, HONG J L, CHEN W W, et al. Accurate and quantitative evaluation of fat fraction of lumbar vertebrae body by IDEAL-IQ[J]. J Pract Radiol, 2019, 35(4): 607-610. DOI: 10.3969/j.issn.1002-1671.2019.04.023.
[30]
黄文亮, 吴淑芬. 3T磁共振mDixon-Quant技术对腰椎骨密度的定量研究[J]. 中国CT和MRI杂志, 2022, 20(11): 151-153. DOI: 10.3969/j.issn.1672-5131.2022.11.055.
HUANG W L, WU S F. 3T MRI mDixon-quant technipue on lumbar spine bone mineral density assessment[J]. Chin J CT & MRI, 2022, 20(11): 151-153. DOI: 10.3969/j.issn.1672-5131.2022.11.055.
[31]
ZHOU F, SHENG B, LV F R. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 721 [2024-01-08]. https://pubmed.ncbi.nlm.nih.gov/37697287. DOI: 10.1186/s12891-023-06846-4.
[32]
TOKGÖZ N, AKDENIZ M, UÇAR M, et al. Is quantitative magnetic resonance imaging valuable in the assessment of trabecular bone structure in osteoporosis?[J]. Jt Dis Relat Surg, 2013, 24(1): 2-6. DOI: 10.5606/ehc.2013.02.
[33]
MAJUMDAR S, GENANT H K. A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis[J]. Osteoporos Int, 1995, 5(2): 79-92. DOI: 10.1007/BF01623308.
[34]
DOOMS G C, FISHER M R, HRICAK H, et al. Bone marrow imaging: magnetic resonance studies related to age and sex[J]. Radiology, 1985, 155(2): 429-432. DOI: 10.1148/radiology.155.2.3983394.
[35]
BAE W C, CHEN P C, CHUNG C B, et al. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties[J]. J Bone Miner Res, 2012, 27(4): 848-857. DOI: 10.1002/jbmr.1535.
[36]
TECHAWIBOONWONG A, SONG H K, LEONARD M B, et al. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging[J]. Radiology, 2008, 248(3): 824-833. DOI: 10.1148/radiol.2482071995.
[37]
JONES B C, LEE H, CHENG C C, et al. MRI quantification of cortical bone porosity, mineralization, and morphologic structure in postmenopausal osteoporosis[J/OL]. Radiology, 2023, 307(2): e221810 [2024-01-08]. https://pubmed.ncbi.nlm.nih.gov/36692396. DOI: 10.1148/radiol.221810.
[38]
TENG H L, PEDOIA V, LINK T M, et al. Local associations between knee cartilage T1ρ and T2 relaxation times and patellofemoral joint stress during walking: a voxel-based relaxometry analysis[J]. Knee, 2018, 25(3): 406-416. DOI: 10.1016/j.knee.2018.02.016.
[39]
LI X J, CHENG J, LIN K, et al. Quantitative MRI using T1ρ and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology[J]. Magn Reson Imaging, 2011, 29(3): 324-334. DOI: 10.1016/j.mri.2010.09.004.
[40]
SINGH S, BRAY T J P, HALL-CRAGGS M A. Quantifying bone structure, micro-architecture, and pathophysiology with MRI[J]. Clin Radiol, 2018, 73(3): 221-230. DOI: 10.1016/j.crad.2017.12.010.
[41]
周凤, 吕富荣. MRI定量技术在骨质疏松症中的应用现状及进展[J]. 磁共振成像, 2023, 14(9): 192-197. DOI: 10.12015/issn.1674-8034.2023.09.035.
ZHOU F, LÜ F R. Research status and progress in the application of MRI quantitative techniques in osteoporosis[J]. Chin J Magn Reson Imag, 2023, 14(9): 192-197. DOI: 10.12015/issn.1674-8034.2023.09.035.

上一篇 多参数MRI联合影像组学在鉴别PI-RADS 4~5分前列腺病灶良恶性中的应用分析
下一篇 靶向Rho激酶1纳米探针联合MRI可视化动脉粥样硬化斑块的实验研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2