分享:
分享到微信朋友圈
X
基础研究
AD小鼠脑胶质淋巴系统CSF流入量与年龄的关系:基于9.4 T DCE-MRI的可视化研究
江心雨 苏云燕 胡春洪 张龙江

Cite this article as: JIANG X Y, SU Y Y, HU C H, et al. Relationship between CSF inflow into the cerebral glymphatic system of AD mice and age: A visualization study based on 9.4 T DCE-MRI[J]. Chin J Magn Reson Imaging, 2024, 15(4): 113-119.本文引用格式:江心雨, 苏云燕, 胡春洪, 等. AD小鼠脑胶质淋巴系统CSF流入量与年龄的关系:基于9.4 T DCE-MRI的可视化研究[J]. 磁共振成像, 2024, 15(4): 113-119. DOI:10.12015/issn.1674-8034.2024.04.018.


[摘要] 目的 基于9.4 T 动态对比增强(dynamic contrast-enhanced, DCE)-MRI探索不同月龄的阿尔茨海默病(Alzheimer's disease, AD)模型小鼠脑胶质淋巴系统的脑脊液(cerebrospinal fluid, CSF)流入变化,以阐明随年龄增长脑胶质淋巴系统清除的变化规律及水通道蛋白4(aquaporin4, AQP4)在脑胶质淋巴系统清除中的作用。材料与方法 取2、4、6和8月龄的APP/PS1 AD小鼠和野生型(wild-type, WT)小鼠,每组1只,共8组,向小脑延髓池中注射钆喷酸葡胺(Gadopentetate dimeglumine, Gd-DTPA)后第30 min完成第一次DCE-MRI扫描,以后每15 min采集一次,共完成8次扫描。随后在DCE-MRI扫描之前,使用AQP4抑制剂N-(1, 3, 4-噻二唑基)烟酰胺[N-(1, 3, 4-Thiadiazolyl) nicotinamide, TGN-020]对2月龄WT小鼠进行处理。采用免疫荧光法检测AQP4和β-淀粉样蛋白随月龄增长的表达变化。结果 在APP/PS1小鼠模型的疾病早期,观察到随月龄增加,淀粉样蛋白逐渐累积,CSF流入信号强度均值从增加到降低,其中4至6月龄小鼠淀粉样蛋白的累积速率缓慢,对应于相应月龄CSF流入信号强度均值最高(4月龄为2 711.67±1 270.25;6月龄为2 632.25±729.65)。同时,AQP4表现出随月龄增加极化程度降低的变化过程。随后,经AQP4抑制剂TGN-020处理后,观察到脑胶质淋巴系统的CSF流入信号强度均值降低(由3 578.08±1 199.95下降为1 655.42±377.96;P=0.06)。结论 在AD疾病的早期阶段(8月龄前),6月龄的脑胶质淋巴系统利用更明显,此阶段可能作为AD治疗的窗口期。AQP4在脑胶质淋巴系统中起着重要作用,可能作为研究和治疗AD的靶点。
[Abstract] Objective To explore the changes of cerebrospinal fluid (CSF) inflow into the cerebral glymphatic system (GS) in Alzheimer's disease (AD) model mice at different ages via 9.4 T dynamic contrast-enhanced (DCE)-MRI, in order to elucidate the alterations through the cerebral GS clearance with age, and the role of aquaporin 4 (AQP4) in the cerebral GS clearance.Materials and Methods APP/PS1 AD mice and wild-type (WT) mice aged 2, 4, 6, and 8 months were included in a total of 8 groups, with 1 mouse in each group. After injection of gadolinium contrast agent Gadopentate dimeglumine (Gd-DTPA) into the cerebellomedullary cistern, the first DCE-MRI scan was completed at 30 minutes, followed by collection every 15 minutes until a total of 8 imaging scans were completed. Subsequently, AQP4 inhibitor N-(1, 3, 4-thiadiazole) nicotinamide (TGN-020) was used to treat WT mice aged 2 months before DCE scanning. Immunofluorescence assay was used to detect the expression changes of AQP4 and β-amyloid protein with increasing age.Results In the early stage of AD of the APP/PS1 mouse model, it was observed that with increasing age, amyloid protein gradually accumulated, and mean signal intensity of CSF inflow showed an initial increase followed by a decrease. At 4 to 6 months of age, the deposition rate of β-amyloid protein was slow, corresponding to the highest mean signal intensity of CSF inflow at corresponding age (CSF inflow at 4 months old, 2 711.67±1 270.25; CSF inflow at 6 months old, 2 632.25±729.65). Meanwhile, AQP4 exhibited a decreasing polarization degree with increasing age. Subsequently, after treatment with AQP4 inhibitor TGN-020, a decrease in mean signal intensity of CSF inflow was observed in the GS (from 3 578.08±1 199.95 to 1 655.42±377.96; P=0.06).Conclusions In the early stage of AD disease (before 8 months of age), the utilization of the cerebral GS is more pronounced in 6-month-old mice, which may serve as a window period for AD treatment. AQP4 plays an important role in the cerebral GS and may be a breakthrough point for studying and treating AD.
[关键词] 脑胶质淋巴系统;阿尔茨海默病;9.4 T磁共振成像;动态对比增强磁共振成像;水通道蛋白4;APP/PS1小鼠
[Keywords] cerebral glymphatic system;Alzheimer's disease;9.4 T magnetic resonance imaging;dynamic contrast-enhanced magnetic resonance imaging;aquaporin 4 (AQP4);APP/PS1 mouse model

江心雨 1   苏云燕 1   胡春洪 1*   张龙江 2  

1 苏州大学附属第一医院放射科,苏州 215008

2 南京大学医学院金陵医院医学影像科,南京 210002

通信作者:胡春洪,E-mail:hch5305@163.com

作者贡献声明:胡春洪设计本研究方案,对稿件重要内容做批评性审阅、修改,获得了江苏省重点医学学科项目资助;苏云燕参与选题与设计,对稿件重要方面进行了关键修改,获得了江苏省青年科技人才托举工程项目资助;江心雨起草和撰写稿件,获取、分析和解释本研究数据;张龙江获取本研究数据,并对稿件重要内容进行修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 江苏省重点医学学科项目 JSDW202242 江苏省青年科技人才托举工程项目 TJ-2023-028
收稿日期:2023-12-29
接受日期:2024-03-29
中图分类号:R445.2  R-332 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.04.018
本文引用格式:江心雨, 苏云燕, 胡春洪, 等. AD小鼠脑胶质淋巴系统CSF流入量与年龄的关系:基于9.4 T DCE-MRI的可视化研究[J]. 磁共振成像, 2024, 15(4): 113-119. DOI:10.12015/issn.1674-8034.2024.04.018.

0 引言

       阿尔茨海默病(Alzheimer's disease, AD)是以β-淀粉样蛋白沉积和tau蛋白纠缠为主要病理特征的进行性神经退行性疾病[1, 2, 3],β-淀粉样蛋白被认为是AD发病过程中最关键性的因素。其在人体的清除途径主要有三条:泛素-蛋白酶体系统和自噬溶酶体系统[4, 5]的脑内降解、血液循环清除[6, 7, 8]及胶质淋巴系统(glymphatic system, GS)清除[9, 10]。而胶质淋巴系统在清除大脑中的β-淀粉样蛋白中起着重要作用[11, 12]。其中,星形细胞端足上水通道蛋白4(aquaporin 4, AQP4)在胶质淋巴通路中尤为关键[13, 14, 15]。动态对比增强(dynamic contrast-enhanced, DCE)-MRI技术近年来已逐渐用于探索脑胶质淋巴系统在多种神经退行性疾病中的作用,研究者通过DCE-MRI评估肌萎缩侧索硬化转基因小鼠在疾病早期的脑胶质淋巴系统功能[16]。为了评估胶质淋巴功能,BEN-NEJMA等[17]在14月龄的Tet-Off APP(AD)小鼠和年龄匹配的同窝对照中使用DCE-MRI。HARRISON等[12]也通过DCE-MRI证明了tau病小鼠模型中胶质淋巴系统CSF-ISF交换受损。然而高分辨率DCE-MRI尚未在年轻APP/PS1小鼠中进行广泛研究。

       在9.4 T系统下获得的小鼠大脑高质量高分辨率扩散MRI数据集,包括迄今为止获得的最高空间分辨率(25 μm各向同性,126个扩散编码方向)和最高角分辨率(50 μm各向异性,384个扩散编码方向),在小鼠中可用于表征组织微观结构和结构连接性[18]。本研究拟采用9.4 T DCE-MRI技术观察转基因AD小鼠脑胶质淋巴系统CSF流入量与年龄的关系,探索疾病早期阶段(8月龄前,脑胶质淋巴系统利用最强的时期,以期望作为AD早期治疗的窗口期。本研究评估AQP4随年龄变化表达模式的改变,并进一步抑制AQP4功能,验证AQP4在脑胶质淋巴系统中的关键作用,这对了解AD发病机制具有重要意义。

1 材料与方法

1.1 动物模型制作

       实验动物选取雌性2、4、6、8月龄APPswe/PSldE9(APP/PS1)转基因小鼠和野生型(wild-type, WT)小鼠各1只(江苏省集萃药康),该转基因小鼠模型通过插入APP和PSEN1基因增加β-淀粉样蛋白的产生,以模拟神经退行性疾病AD[19]。对于AQP4的药理学抑制,将N-(1, 3, 4-噻二唑基)烟酰胺[N-(1, 3, 4-Thiadiazolyl)nicotinamide, TGN-020)(上海蓝木化工有限公司,中国)溶解在β-环糊精(上海蓝木化工有限公司,中国)中以增加溶解度。将TGN-020溶液和β-环糊精溶液(250 mg/kg,20 mL/kg体质量)腹腔注射于2月龄WT小鼠。所有动物于无特定病原体(specific pathogen free, SPF)屏障环境饲养。本实验于2022年8月开始在东部战区总医院进行。实验方案由苏州大学伦理委员会批准(批准文号:202208A0515)。

1.2 DCE-MRI

1.2.1 手术准备

       动物准备,用2%异氟烷(深圳瑞沃德生物科技股份有限公司,中国)和氧气混合麻醉小鼠,向大池(cisterna magna, CM)注射对比剂钆喷酸葡胺(Gadopentetate dimeglumine, Gd-DTPA)(上海蓝木化工有限公司,中国)[20]。将动物放置在定制的立体定位架中,在颅底和第一节椎骨的枕骨边缘之间的中点处进行中线切口。暴露CM后,通过50 μL玻璃微量进样器(气相尖头,上海安亭微量进样器厂,中国)以1 μL/min的速度注射8 μL浓度为75 mM的低分子量顺磁对比剂Gd-DTPA溶液,进针深度1.5 mm。为了避免漏液,将微量注射器再放置5 min后拔针。

1.2.2 MR图像采集

       使用O2与2%异氟烷(深圳瑞沃德生物科技股份有限公司,中国)混合,以400 mL/min的流速诱导麻醉。在MR图像采集过程中,异氟烷浓度最初设定为2%,随后在需要时降低,以保持(100±10)次/min的稳定呼吸率。此外,使用体温调节系统(Thermo Fisher scientific,美国)将体温保持在37.0 °C~37.5 °C之间。获取磁共振图像后,将小鼠单独放在加热垫上回收并标记,然后返回各自的笼子。

       在30 cm孔径的9.4 T MR设备上(BioSpec 94/30,布鲁克,德国)上采集小鼠的MR图像。T2WI_TurboRARE扫描参数:TR 3500 ms,TE 33 ms,FOV 20 mm×20 mm,平均次数为2,层厚0.7 mm,层间距0 mm。T1WI_FLASH扫描参数:TR 17.5 ms,TE 4 ms,FOV 19.2 mm×12.8 mm,平均次数为3,层厚0.1 mm,层间距0 mm。每15 min进行一次DCE-MRI扫描,并在对比剂注射后30 min开始扫描直至150 min结束,共完成8次扫描。

1.3 数据处理

       选取背侧第三脑室和第三脑室及第四脑室与导水管交界处为3个感兴趣区,通过ITK-SNAP(version 3.8.0, http://www.itksnap.org)开源软件,由一位3年阅片经验医师采用盲法对数据进行手动勾画,勾画时避开脑室边缘,并由另一位具有10年放射科工作经验的副主任医师审核,共同确定最终感兴趣区(图1),并测量其信号强度均值,在每只小鼠每个感兴趣区上取30、60、90、120 min共4个时间点的均值为作为此感兴趣区并代表此月龄的CSF流入信号强度均值。两组之间采用t检验进行比较,显著性水平设为P<0.05,所有统计测试均使用GraphPad Prism 9.5(GraphPad Software,美国)。

图1  感兴趣区(ROI)勾画示意图。所有小鼠均选择背侧第三脑室(ROI体积范围0.03~0.05 mm3),第三脑室(ROI体积范围0.02~0.04 mm3),第四脑室与导水管交界处(ROI体积范围0.01~0.02 mm3)3个部分为ROI,并测量每个ROI在4个时间点的平均信号强度,代表此月龄的CSF流入信号强度均值。
Fig. 1  Region of interest (ROI) delineation diagram. Three ROIs are selected in all mice: the dorsal 3rd ventricle (ROI volume range is 0.03-0.05 mm3), the 3rd ventricle (ROI volume range is 0.02-0.04 mm3), and the junction of the 4th ventricle and aqueduct (ROI volume range is 0.01-0.02 mm3). The mean signal intensity of each ROI at four time points is measured, representing the signal intensity of CSF inflow at this month of age.

1.4 病理标本制作

       在MRI采集后直接收集大脑组织[12]。通过腹膜内注射60 mg/kg/BW戊巴比妥(Selleckchem,美国)对小鼠进行深度麻醉,然后用冰冷的磷酸盐缓冲盐水(武汉塞维尔生物科技有限公司,中国)和4%多聚甲醛(Sellekchem,美国)进行经心灌注。取出大脑组织,并在4%多聚甲醛中固定24 h,随后包埋切片。切片在0.3%的硫黄素(上海源叶生物,中国)染色溶液中染色[21];随后通过Anti-Aquaporin 4 Rabbit pAb(Servicebio,中国)一抗和CY3标记山羊抗兔IgG(Servicebio,中国)二抗,对AQP4以及Anti-CD31 Mouse mAb(Servicebio,中国)一抗和Fluor 488标记山羊抗小鼠IgG(Servicebio,中国)二抗对血管内皮细胞进行免疫荧光染色。使用组织切片数字扫描仪(Pannoramic MIDI,3D HISTECH,匈牙利)拍摄Th-S斑块、AQP4/CD31的免疫荧光图像,并使用数字切片浏览软件(Caseviewer 2.4,3D HISTECH,匈牙利)进行图像采集。Paxinos和Franklin的第二版小鼠大脑立体定位坐标被用作感兴趣区域定位的参考。

2 结果

2.1 APP/PS1组和WT组对胶质淋巴通路利用的组内分析

       鞘内输注Gd-DTPA于30、60、90、120 min时的图像(图2, 3, 4)发现,APP/PS1组脑CSF流入信号强度均值从2至4月龄增加(2月龄为1 464.42±298.24;4月龄为2 711.67±1 270.25;P=0.18),4至6月龄在较高水平保持相对稳定(4月龄为2 711.67±1 270.25;6月龄为2 632.25±729.65;P=0.93),6至8月龄降低(6月龄为2 632.25±729.65;8月龄为1 688.83±436.44;P=0.13)(图2图4)。WT组脑CSF流入信号强度均值在2至4月龄增加(2月龄为2 579.58±911.70;4月龄为3 991.58±1 133.04;P=0.17),4至6至8月龄逐渐下降(6月龄为1 663.25±473.07;8月龄为1 305.92±382.86;P=0.37),其中4至6月龄下降显著(P=0.034)(图3图4)。

图2  Gd-DTPA鞘内注射后连续采集T1加权图像。APP/PS1组CSF流入信号强度均值先升高(2至4至6月龄)后降低(6至8月龄)。Gd-DTPA:钆喷酸葡胺;CSF:脑脊液;APP/PS1:阿尔茨海默病模型。
Fig. 2  T1 weighted images are continuously collected after intrathecal injection of Gd-DTPA. The mean signal intensity of CSF inflow in the APP/PS1 group first increased (2 to 4 to 6 months) and then decreased (6 to 8 months). Gd-DTPA: Gadopentetate dimeglumine; CSF: cerebrospinal fluid; APP/PS1: Alzheimer's disease model.
图3  Gd-DTPA鞘内注射后连续采集T1加权图像。WT组CSF流入信号强度均值先升高(2至4月龄)后降低(4至6至8月龄)。Gd-DTPA:钆喷酸葡胺;WT:野生型;CSF:脑脊液。
Fig. 3  T1 weighted images are continuously collected after intrathecal injection of Gd-DTPA. The mean signal intensity of CSF inflow in the WT group first increased (2 to 4 months) and then decreased (4 to 6 to 8 months). Gd-DTPA: Gadopentetate dimeglumine; WT: wild-type; CSF: cerebrospinal fluid.
图4  不同月龄APP/PS1组和WT组CSF流入信号强度均值变化。APP/PS1组CSF流入信号强度均值从2至4月龄增加,4至6月龄在较高水平保持相对稳定,6至8月龄降低。WT组CSF流入信号强度均值在2至4月龄增加,4至6至8月龄逐渐下降。其中4至6月龄降低显著,从而导致6月龄APP/PS1组 CSF流入信号强度均值超过WT组。APP/PS1:阿尔茨海默病模型;WT:野生型;CSF:脑脊液。
Fig. 4  Changes in the mean signal intensity of CSF inflow in APP/PS1 group and WT group at different ages. The mean signal intensity of CSF inflow in the APP/PS1 group increased from 2 to 4 months old, remained relatively stable at a higher level from 4 to 6 months old, and decreased from 6 to 8 months old. The mean signal intensity of CSF inflow in the WT group increased from 2 to 4 months of age, and gradually decreased from 4 to 6 to 8 months of age. The mean signal intensity decreased significantly from 4 to 6 months of age in the WT group, leading to a higher mean signal intensity of CSF inflow in APP/PS1 group at 6 months of age compared to WT group. APP/PS1: Alzheimer's disease model; WT: wild-type; CSF: cerebrospinal fluid.

2.2 APP/PS1组和WT组对胶质淋巴系统利用的组间比较

       相同月龄的APP/PS1组CSF流入信号强度均值低于WT组出现在2月龄(APP/PS1为1 464.42±398.24;WT为2 579.58±911.70;P=0.12)和4月龄(APP/PS1为2 711.667±1 270.25;WT为3 991.58±1 133.04;P=0.26),而6月龄(APP/PS1为2 632.25±729.65;WT为1 663.25±473.07;P=0.13)和8月龄(APP/PS1为1 688.833±436.44;WT为1 305.917±382.86;P=0.32)APP/PS1组CSF流入信号强度均值高于WT组,其中6月龄增高幅度更大(图4)。这与淀粉样蛋白沉积速率在4至6月龄阶段放缓相对应。

2.3 病理检测结果

       APP/PS1组淀粉样蛋白随年龄的增长而逐渐积累,2月龄至4月龄积累速度相对较慢,4月龄至6月龄基本保持稳定,6月龄至8月龄在海马、皮层加速积累(图5)。

       在APP/PS1组和WT组中,与2月龄相比,8月龄小鼠脑切片均表现出AQP4的极化程度下降,其中APP/PS1组随年龄增大AQP4极化程度下降幅度更大,与WT组相比,8月龄APP/PS1组AQP4极化程度降低,2月龄组降低不明显(图6)。

图5  免疫荧光硫黄素染色(×19.7)图显示了APP/PS1和WT小鼠年龄依赖性脑淀粉样蛋白的积累。在APP/PS1小鼠脑淀粉样蛋白的积累速率随着月龄增加,表现出从慢到平稳再加速的变化。在WT小鼠中没有淀粉样蛋白积累。绿色代表淀粉样蛋白,蓝色代表DAPI。APP/PS1:阿尔茨海默病模型;WT:野生型;DAPI:4', 6-二脒基-2-苯基吲哚。
Fig. 5  The immunofluorescence Thioflavin staining (×19.7) plot shows the accumulation of age-dependent cerebral amyloid protein in APP/PS1 and WT mice. Amyloid protein gradually accumulated with increasing age, and the accumulation rate in APP/PS1 mice range from slow to stable and then to fast. There is no accumulation of amyloid protein in WT mice. Green represents amyloid protein, and blue represents DAPI. APP/PS1: Alzheimer's disease model; WT: wild-type; DAPI: 4, 6-diamidino-2-phenylindole.
图6  冠状切片的AQP4免疫荧光染色(粉色)在2月龄和8月龄的APP/PS1和WT小鼠的免疫反应性(×78.5)。6A与2月龄相比,8月龄APP/PS1组在海马皮层的血管周围(CD31绿色)(×78.5)AQP4荧光强度降低。6B:与2月龄相比,8月龄WT组在海马皮层的血管周围AQP4荧光强度降低。与WT组相比,8月龄APP/PS1组AQP4信号强度降低,2月龄组降低不明显,典型图示于6A和6B。2和8∶2月龄和8月龄;T:APP/PS1组,W:WT组;Hc:海马;Cx:皮层;APP/PS1:阿尔茨海默病模型;WT:野生型。
Fig. 6  Immunofluorescence staining of AQP4 (pink) (×78.5) in coronal sections and its immunoreactivity in APP/PS1 and WT mice aged 2 and 8 months. 6A: Compared with the 2-month-old group, the APP/PS1 group aged 8 months shows a decrease in AQP4 fluorescence intensity around blood vessels in the hippocampus and cortex (CD31 green) (×78.5). 6B: Compared with the 2-month-old group, the WT group aged 8 months shows a decrease in AQP4 fluorescence intensity around blood vessels in the hippocampus and cortex. Compared with the WT group, the APP/PS1 group shows a decrease in AQP4 fluorescence intensity at 8 months of age, while the decrease is not pronounced in the 2-month-old group, as shown in typical figures 6A and 6B. 2 and 8∶2 and 8 months of age; T: APP/PS1 group, W: WT group; Hc: hippocampus; Cx: cortex; APP/PS1: Alzheimer's disease model; WT: wild-type.

2.4 AQP4的药理学抑制对CSF流入影响的分析

       用TGN-020处理的2月龄WT小鼠表现出CSF流入信号强度均值减少(环糊精处理为3 578.08±1 199.95;TGN-020处理为1 655.42±377.96;P=0.06)(图7图8)。

图7  TGN-020注射后,Gd-DTPA鞘内注射后连续采集T1加权图像。AQP4抑制组,CSF流入信号强度均值减少。TGN-020:N-(1, 3, 4-噻二唑基)烟酰胺;Gd-DTPA:钆喷酸葡胺;CSF:脑脊液;AQP4:水通道蛋白4。
Fig. 7  After TGN-020 injection, T1 weighted images are continuously collected after Gd-DTPA intrathecal injection. In AQP4 inhibition group, the mean signal intensity of CSF inflow decreased. TGN-020: N-(1, 3, 4-Thiadiazolyl) nicotinamide; Gd-DTPA: Gadopentetate dimeglumine; CSF: cerebrospinal fluid; AQP4: an aquaporin 4.
图8  AQP4抑制前后CSF流入信号强度均值变化,2月龄WT组经TGN-020处理后,CSF流入信号强度均值有减少的趋势。TGN-020:N-(1, 3, 4-噻二唑基)烟酰胺;CSF:脑脊液;AQP4:水通道蛋白4;WT:野生型。
Fig. 8  Changes in the mean signal intensity of CSF inflow before and after AQP4 inhibition. After WT group is treated with TGN-020 at 2 months old, there is a decreasing trend in the mean signal intensity of CSF inflow. TGN-020: N-(1, 3, 4-Thiadiazolyl) nicotinamide; CSF: cerebrospinal fluid; AQP4: an aquaporin 4; WT: wild-type.

3 讨论

       本研究对2、4、6、8月龄APP/PS1和WT小鼠进行DCE-MRI扫描,AQP4抑制后再行DCE-MRI扫描,并通过免疫荧光对AQP4和β-淀粉样蛋白染色。结果显示随着月龄增大,APP/PS1和WT小鼠均表现出CSF流入信号强度均值先升高后降低;WT组CSF流入信号强度均值6月龄较4月龄出现显著降低。2月龄和4月龄WT组CSF流入信号强度均值高于APP/PS1组,而6月龄和8月龄APP/PS1组CSF流入信号强度均值高于WT组,其中6月龄增高幅度更大,8月龄相差不明显。同时本研究发现,随月龄增长,APP/PS1组脑淀粉样蛋白的沉积速率呈现出缓慢到平稳到加快趋势。进一步研究发现AQP4血管周极化程度随年龄增大而降低,其中APP/PS1组随年龄增大,AQP4极化程度下降幅度更大,使得8月龄APP/PS1组AQP4极化程度低于WT组。且对AQP4进行药理学抑制后,CSF流入信号强度均值降低。研究表明随着年龄的增长,大脑结构的损伤速率并不均匀[22],因此8月龄前等年龄间距的设计有助于确定疾病进展最缓慢的阶段,这对寻找早期治疗的时间窗至关重要。

3.1 APP/PS1组和WT组对随月龄增大对胶质淋巴通路利用的改变

       本研究发现在年轻小鼠(8月龄前)中,APP/PS1和WT组均表现出CSF流入信号强度均值先升高后降低,而APP/PS1组CSF流入信号强度均值的降低时间(6月开始)较WT组(4月开始)晚,且CSF流入信号强度均值6月龄较4月龄在WT组出现显著降低,而APP/PS1组未出现显著降低,使得APP/PS1组CSF的流入信号强度均值在4至6月龄保持较高水平,更有利于β-淀粉样蛋白的清除,这与β-淀粉样蛋白在4至6月龄间沉积速率最缓慢的现象相一致。我们推测出现这一现象的原因可能是年轻小鼠脑β-淀粉样蛋白含量积累到一定程度,胶质淋巴系统利用下降之前的代偿阶段示踪剂CSF流入信号强度均值较高,β-淀粉样斑块沉积较缓慢。此结果与KIM等[23]近期研究互相佐证,脑淀粉样血管病(CAA)不仅在老年(19~21月龄)小鼠中,而且在年轻(7~9月龄)的小鼠中都会加重血管周围清除障碍;且示踪剂CSF流入量较高的区域是β-淀粉样斑块负荷最低的区域。因此,推测β-淀粉样蛋白在此阶段沉积速率缓慢可能也是脑自我调节代偿的结果或原因:4至6月龄APP/PS1小鼠β-淀粉样蛋白的沉积量可以更好地激活脑胶质淋巴清除途径。

3.2 APP/PS1组和WT组小鼠对脑胶质淋巴利用对比

       本研究发现,与年龄匹配的WT组相比,APP/PS1组小鼠CSF流入信号强度均值较低出现在2、4月龄,这与BEN-NEJMA等[17]提出的与对照组相比AD组的GS功能受损,尤其是CSF流入减少一致。有趣的是,6月龄APP/PS1组,较年龄匹配的WT组小鼠CSF流入信号强度均值更高。研究证实,脑动脉的搏动作为血管旁CSF-ISF交换的驱动力[24, 25, 26],受其动脉壁顺应性改变(老龄化)和血管周围外部因素(如反应性星形胶质细胞增生等)[27]影响。8月龄及以前的年轻小鼠,动脉硬化发生概率较低,由此推测,6月龄WT组的CSF流入减少,可能是由于星形胶质细胞增生致动脉壁顺应性降低所致。

3.3 AQP4在胶质淋巴系统中的重要作用

       脑胶质淋巴系统作用通过星形细胞终足上AQP4通道的表达来促进[28, 29, 30]。AQP4的存在可降低跨质膜流体转运的驱动力[31]。据报道,缺乏AQP4的动物CSF流入减少了70%,ISF溶质清除减少了55%[32]。通过一种已被证明通过细胞内泛素-蛋白酶体系统在体内和体外抑制AQP4的较为安全的小分子抑制剂- TGN-020[12, 33],对2月龄WT小鼠(其AQP4表达受年龄和基因型影响较小)进行药理学功能抑制。随后,在本研究中观察到AQP4抑制导致CSF流入信号强度均值减少。这与在不同模型中证明的星形胶质细胞AQP4对脑胶质淋巴系统至关重要[34, 35, 36]的结论相一致。此外,我们发现与2月龄相比,8月龄小鼠AQP4极化程度下降,且在APP/PS1组中下降幅度更大,与年龄匹配的WT组相比,8月龄APP/PS1组小鼠AQP4极化程度降低。这与研究者发现的衰老导致AQP4失去足端极化[37],且AD导致AQP4极化降低[38]相一致。进一步验证了AQP4在AD中β-淀粉样蛋白清除过程中的重要性。

3.4 本研究的局限性

       本研究仍有局限性:首先,样本量有限,结果的准确性需进一步验证,未来将在更大的样本量下对转基因小鼠进行CSF流入量的定量分析;其次,未对组织病理学和行为学进行更多的定量和统计学研究,以更准确地解释DCE-MRI中获得的结果。

4 结论

       本研究描述了脑胶质淋巴CSF流入量与年龄的关系,并表明早期胶质淋巴利用的变化趋势为先升高后降低,观察到6月时,胶质淋巴功能增强可能会减缓β-淀粉样蛋白在AD转基因小鼠脑中的积聚。因此,推测此阶段可能作为治疗AD的窗口期。随年龄增大,AQP4极化受损,以及药物抑制AQP4后导致脑胶质淋巴利用受损,提示AQP4水通道可能是调节该途径的一个新的靶点,后续我们将深入研究验证。

[1]
CHANG Y L, YANG C C, HUANG Y Y, et al. The HSP40 family chaperone isoform DNAJB6b prevents neuronal cells from tau aggregation[J/OL]. BMC Biol, 2023, 21(1): 293 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/38110916/. DOI: 10.1186/s12915-023-01798-6.
[2]
VICENTE-ZURDO D, ROSALES-CONRADO N, LEON-GONZALEZ M E. Unravelling the in vitro and in vivo potential of selenium nanoparticles in Alzheimer's disease: A bioanalytical review[J/OL]. Talanta, 2023, 269: 125519 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/38086100/. DOI: 10.1016/j.talanta.2023.125519.
[3]
CHEN X Y, FIRULYOVA M, MANIS M, et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy[J]. Nature, 2023, 615(7953): 668-677. DOI: 10.1038/s41586-023-05788-0.
[4]
LIU Y, DING R, XU Z, et al. Roles and Mechanisms of the Protein Quality Control System in Alzheimer's Disease[J/OL]. Int J Mol Sci, 2021, 23(1) [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/35008771/. DOI: 10.3390/ijms23010345.
[5]
DO H A, BAEK K H. Cellular functions regulated by deubiquitinating enzymes in neurodegenerative diseases[J/OL]. Ageing Res Rev, 2021, 69:101367 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/34023421/. DOI: 10.1016/j.arr.2021.101367.
[6]
SWEENEY M D, ZHAO Z, MONTAGNE A, et al. Blood-brain barrier: from physiology to disease and back[J]. Physiol Rev, 2019, 99(1): 21-78. DOI: 10.1152/physrev.00050.2017.
[7]
UCHIDA Y, KAN H, SAKURAI K, et al. Contributions of blood-brain barrier imaging to neurovascular unit pathophysiology of Alzheimer's disease and related dementias[J/OL]. Front Aging Neurosci, 2023, 15: 1111448 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/36861122/. DOI: 10.3389/fnagi.2023.1111448.
[8]
VERHEGGEN I C M, VAN BOXTEL M P J, VERHEY F R J, et al. Interaction between blood-brain barrier and glymphatic system in solute clearance[J/OL]. Neurosci Biobehav Rev, 2018, 90: 26-33 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/29608988/. DOI: 10.1016/j.neubiorev.2018.03.028.
[9]
RASMUSSEN M K, MESTRE H, NEDERGAARD M. Fluid transport in the brain[J]. Physiol Rev, 2022, 102(2): 1025-1151. DOI: 10.1152/physrev.00031.2020.
[10]
GOULAY R, MENA ROMO L, HOL E M, et al. From stroke to dementia: a comprehensive review exposing tight interactions between stroke and amyloid-β formation[J]. Transl Stroke Res, 2020, 11(4): 601-614. DOI: 10.1007/s12975-019-00755-2.
[11]
HAMILTON M G. Editorial. The glymphatic system imagined and now imaged: what is it, and why is it important[J/OL]? J Neurosurg, 2023: 1-3 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/37724797/. DOI: 10.3171/2023.7.JNS231284.
[12]
HARRISON I F, ISMAIL O, MACHHADA A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model[J]. Brain, 2020, 143(8): 2576-2593. DOI: 10.1093/brain/awaa179.
[13]
SILVA I, SILVA J, FERREIRA R, et al. Glymphatic system, AQP4, and their implications in Alzheimer's disease[J/OL]. Neurol Res Pract, 2021, 3(1): 5 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/33499944/. DOI: 10.1186/s42466-021-00102-7.
[14]
GOMOLKA R S, HABLITZ L M, MESTRE H, et al. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation[J/OL]. Elife, 2023, 12 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/36757363/. DOI: 10.7554/eLife.82232.
[15]
LIU Y, HU P P, ZHAI S, et al. Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer's disease[J]. Neural Regen Res, 2022, 17(9): 2079-2088. DOI: 10.4103/1673-5374.335169.
[16]
ZAMANI A, WALKER A K, ROLLO B, et al. Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis[J/OL]. Transl Neurodegener, 2022, 11(1): 17 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/35287738/. DOI: 10.1186/s40035-022-00291-4.
[17]
BEN-NEJMA I R H, KELIRIS A J, VANREUSEL V, et al. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis[J/OL]. Alzheimers Res Ther, 2023, 15(1): 23 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/36707887/. DOI: 10.1186/s13195-023-01175-z.
[18]
CRATER S, MAHARJAN S, QI Y, et al. Resolution and b value dependent structural connectome in ex vivo mouse brain[J/OL]. Neuroimage, 2022, 255: 119199 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/35417754/. DOI: 10.1016/j.neuroimage.2022.119199.
[19]
HUANG Q, JIANG C, XIA X, et al. Pathological BBB Crossing Melanin-Like Nanoparticles as Metal-Ion Chelators and Neuroinflammation Regulators against Alzheimer's Disease[J/OL]. Research (Wash D C), 2023, 6: 0180 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/37363131/. DOI: 10.34133/research.0180.
[20]
XAVIER A L R, HAUGLUND N L, VON HOLSTEIN-RATHLOU S, et al. Cannula Implantation into the Cisterna Magna of Rodents[J/OL]. J Vis Exp, 2018(135) [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/29889209/. DOI: 10.3791/57378.
[21]
DING B, LIN C, LIU Q, et al. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-kappaB signaling pathway in vivo and in vitro[J/OL]. J Neuroinflammation, 2020, 17(1): 302 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/33054814/. DOI: 10.1186/s12974-020-01981-4.
[22]
ANCKAERTS C, BLOCKX I, SUMMER P, et al. Early functional connectivity deficits and progressive microstructural alterations in the TgF344-AD rat model of Alzheimer's Disease: A longitudinal MRI study[J/OL]. Neurobiol Dis, 2019, 124: 93-107 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/30445024/. DOI: 10.1016/j.nbd.2018.11.010.
[23]
KIM SH, AHN JH, YANG H, et al. Cerebral amyloid angiopathy aggravates perivascularclearance impairment in an Alzheimer's disease mouse model[J/OL]. Acta Neuropathol Commun, 2020, 8(1): 181 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/33153499/. DOI: 10.1186/s40478-020-01042-0.
[24]
GAN Y, HOLSTEIN-RONSBO S, NEDERGAARD M, et al. Perivascular pumping of cerebrospinal fluid in the brain with a valve mechanism[J/OL]. J R Soc Interface, 2023, 20(206): 20230288 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/37727070/. DOI: 10.1098/rsif.2023.0288.
[25]
YE D, CHEN S, LIU Y, et al. Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles[J/OL]. Proc Natl Acad Sci U S A, 2023, 120(21): e2212933120 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/37186852/. DOI: 10.1073/pnas.2212933120.
[26]
WEN Q, TONG Y, ZHOU X, et al. Assessing pulsatile waveforms of paravascular cerebrospinal fluid dynamics within the glymphatic pathways using dynamic diffusion-weighted imaging (dDWI)[J/OL]. Neuroimage, 2022, 260: 119464 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/35835339/. DOI: 10.1016/j.neuroimage.2022.119464.
[27]
MATHIISEN T M, LEHRE K P, DANBOLT N C, et al. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction[J]. Glia, 2010, 58(9): 1094-1103. DOI: 10.1002/glia.20990.
[28]
PETERS M E, LYKETSOS C G. The glymphatic system's role in traumatic brain injury-related neurodegeneration[J]. Mol Psychiatry, 2023, 28(7): 2707-2715. DOI: 10.1038/s41380-023-02070-7.
[29]
JI C, YU X, XU W, et al. The role of glymphatic system in the cerebral edema formation after ischemic stroke[J/OL]. Exp Neurol, 2021, 340: 113685 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/33676917/. DOI: 10.1016/j.expneurol.2021.113685.
[30]
GAO Y, LIU K, ZHU J. Glymphatic system: an emerging therapeutic approach for neurological disorders[J/OL]. Front Mol Neurosci, 2023, 16: 1138769 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/37485040/. DOI: 10.3389/fnmol.2023.1138769.
[31]
VERKMAN A S, TRADTRANTIP L, SMITH A J, et al. Aquaporin water channels and Hydrocephalus[J]. Pediatr Neurosurg, 2017, 52(6): 409-416. DOI: 10.1159/000452168.
[32]
MESTRE H, HABLITZ LM, XAVIER AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J/OL]. Elife, 2018, 7 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/30561329/. DOI: 10.7554/eLife.40070.
[33]
ROSU G C, CATALIN B, BALSEANU T A, et al. Inhibition of aquaporin 4 decreases amyloid Aβ40 drainage around cerebral vessels[J]. Mol Neurobiol, 2020, 57(11): 4720-4734. DOI: 10.1007/s12035-020-02044-8.
[34]
FENG S, WU C Y, ZOU P B, et al. High-intensity interval training ameliorates Alzheimer's disease-like pathology by regulating astrocyte phenotype-associated AQP4 polarization[J]. Theranostics, 2023, 13(10): 3434-3450. DOI: 10.7150/thno.81951.
[35]
WU C, ZHANG Q, FENG Y W, et al. GABA promotes interstitial fluid clearance in an AQP4-dependent manner by activating the GABAA R[J]. J Neurochem, 2023, 166(3): 560-571. DOI: 10.1111/jnc.15869.
[36]
WEN G, ZHAN X, XU X, et al. Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model[J/OL]. Mol Neurobiol, 2023 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/37840071/. DOI: 10.1007/s12035-023-03669-1.
[37]
VERKHRATSKY A, SEMYANOV A. Astrocytes in Ageing[J/OL]. Subcell Biochem, 2023, 103: 253-277 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/37120471/. DOI: 10.1007/978-3-031-26576-1_11.
[38]
LIU S, LI H, SHEN Y, et al. Moxibustion improves hypothalamus Aqp4 polarization in APP/PS1 mice: Evidence from spatial transcriptomics[J/OL]. Front Aging Neurosci, 2023, 15: 1069155 [2023-12-24]. https://pubmed.ncbi.nlm.nih.gov/36819717/. DOI: 10.3389/fnagi.2023.1069155.

上一篇 靶向Rho激酶1纳米探针联合MRI可视化动脉粥样硬化斑块的实验研究
下一篇 磁共振靶向成像检测心肌纤维化大鼠模型中TGF-β1表达的实验研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2