分享:
分享到微信朋友圈
X
综述
颈动脉斑块血流动力学成像技术及新进展
李璐 胥海洋 孙雨蒙 李婷婷 于薇

Cite this article as: LI L, XU H Y, SUN Y M, et al. Hemodynamic Imaging Techniques and New Advances in Carotid Artery Plaques[J]. Chin J Magn Reson Imaging, 2024, 15(4): 214-218.本文引用格式:李璐, 胥海洋, 孙雨蒙, 等. 颈动脉斑块血流动力学成像技术及新进展[J]. 磁共振成像, 2024, 15(4): 214-218. DOI:10.12015/issn.1674-8034.2024.04.035.


[摘要] 颈动脉粥样硬化性狭窄是引起缺血性脑卒中(ischemic stroke, IS)的主要疾病之一,尽早发现狭窄并识别易损斑块可以显著改善疗效,降低致死率和致残率。血流动力学改变与斑块的形成、发展、破裂有着密切关系。利用血流动力学参数来评估动脉粥样硬化斑块破裂的风险及指导临床治疗方式的选择已经成为动脉粥样硬化精确诊疗的研究焦点。然而,血流动力学参数与斑块相互作用的机制尚未被完全阐明,血流动力学相关影像学技术也未广泛开展。本文通过对既往文献进行回顾,进一步梳理颈动脉斑块血流动力学的影像进展,以及血流动力学变化与斑块形成、发展、破裂之间的相互作用机制,并探讨了这些特征与缺血性卒中的关系,旨在评估综合分析斑块成分和血流动力学对颈动脉粥样硬化性狭窄引起脑卒中事件的预测价值。
[Abstract] Carotid atherosclerotic stenosis is one of the main diseases causing ischemic stroke (IS), and early detection of stenosis and identification of vulnerable plaques can significantly improve the efficacy and reduce the mortality and disability rates. Hemodynamic changes are closely related to the formation, development, and rupture of plaques. The use of hemodynamic parameters to assess the risk of atherosclerotic plaque rupture and guide the selection of clinical treatment methods has become the focus of research on the precise diagnosis and treatment of atherosclerosis. However, the mechanism of the interaction between hemodynamic parameters and plaques has not been fully elucidated, and hemodynamic imaging techniques have not been widely developed. This article reviews the previous literature to further sort out the imaging progress of carotid plaque hemodynamics, as well as the interaction mechanism between hemodynamic changes and plaque formation, development and rupture, and discuss the relationship between these features and IS, aiming to evaluate the predictive value of plaque composition and hemodynamics in stroke events caused by carotid atherosclerotic stenosis.
[关键词] 颈动脉粥样硬化;血流动力学;计算流体动力学;四维血流磁共振成像;磁共振成像
[Keywords] carotid atherosclerosis;hemodynamics;computational fluid dynamics;four-dimensional flow magnetic resonance imaging;magnetic resonance imaging

李璐    胥海洋    孙雨蒙    李婷婷    于薇 *  

首都医科大学附属北京安贞医院影像科,北京市心肺血管疾病研究所,北京,100029

通信作者:于薇,E-mail:nxyw1969@163.com

作者贡献声明:于薇设计本研究的方案,对稿件重要的智力内容进行了修改;李璐起草和撰写稿件,获取、分析或解释本研究的数据;胥海洋、孙雨蒙、李婷婷获取、分析或解释本研究的数据,对稿件重要的智力内容进行了修改;于薇获得了北京市自然科学基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 北京市自然科学基金项目 7222047
收稿日期:2024-01-08
接受日期:2024-03-22
中图分类号:R445.2  R543.4  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.04.035
本文引用格式:李璐, 胥海洋, 孙雨蒙, 等. 颈动脉斑块血流动力学成像技术及新进展[J]. 磁共振成像, 2024, 15(4): 214-218. DOI:10.12015/issn.1674-8034.2024.04.035.

0 引言

       缺血性脑卒中(ischemic stroke, IS)是仅次于癌症的第二大人类死亡原因,具有高复发率、残疾和死亡率的特点。颈动脉粥样硬化斑块脱落引起的栓塞是世界范围内公认为IS的主要原因,约占缺血性卒中的18%~25%[1, 2]。动脉粥样硬化斑块可发生于全身血管床,但某些区域的血管更易形成斑块,这与该区域的血流动力学密切相关[3]。管腔内血流动力学的变化直接影响内皮细胞形态与功能,促进炎症因子的表达,诱导动脉硬化斑块的形成[4]。斑块形成以后,局部血流动力学的改变影响着斑块成分的改变和斑块的进展[5]。既往研究大多探讨血流动力学参数变化与斑块形成之间的关系,但血流动力学参数与斑块稳定性之间的关系尚未被完全阐明。目前随着影像技术进步,在体动脉血流动力学的成像技术日趋成熟。本文通过对既往文献进行回顾,进一步梳理颈动脉斑块血流动力学的影像进展,以及血流动力学变化与斑块形成、发展、破裂之间的相互作用机制,同时提出了血流动力学分析在颈动脉粥样硬化性狭窄的临床诊断和治疗中存在的问题及未来研究方向。

1 血流动力学参数

       血流动力学指血液与血管壁之间的相互作用。血流动力学参数主要包括:血流速度、壁剪应力(wall shearing stress, WSS)、振荡壁剪切指数(oscillating wall shear index, OSI)、斑块内结构应力(structural stress with plaque, PSS)、压力梯度和能量损失[6]。其中WSS在动脉硬化斑块形成、发展及破裂相关的参数中研究最全面广泛[7]

       WSS是单位面积上由血液流动产生的靠近管壁的切向摩擦力。它受血管形态、血液特征和血流速度的影响[8]。WSS在整个心动周期中是变化的,因此时间平均壁剪应力(time average wall shearing stress, TAWSS)指血管壁单个位置在整个心动周期中的时间平均值。目前普遍认为低WSS会促进颈动脉斑块形成[9, 10]。而高WSS是斑块向不稳定方向发展的驱动因素[11]

       OSI指一个心动周期内由于搏动性血流引起的动脉WSS随时间变化的指数,与血栓形成密切相关[12]。有研究者观察到不同斑块成分处的OSI范围不同[13]。PSS指血管扩张或延展后,动脉压作用于血管壁或粥样斑块体部的应力,与斑块成分和形态相关,参与斑块破裂[14]。组织学研究表明斑块破裂区域的PSS较高[15]。当PSS超过覆盖斑块的纤维帽的强度时,斑块就会发生破裂[16]

       压力是垂直于管腔表面血流的机械力,压力梯度值反映了压力变化的幅度[17]。目前探讨压力梯度值与颈动脉斑块形成之间关系的研究较少。ZHANG等[18]的研究观察到健康人的压力梯度值随着年龄的增长而降低。高龄是颈动脉粥样硬化斑块发生发展的危险因素之一,这间接提示低压力梯度值会促进斑块形成。能量损失表示机械能的不可恢复的损失。SIA等[19]发现,颈内动脉狭窄可以通过最小化能量损失值来估计,但这一血流动力学参数是否会影响斑块的形成还有待进一步证实。

2 血流动力学的测量技术

2.1 超声技术

       颈动脉超声血流检查包括彩色多普勒血流成像(color Doppler flow imaging, CDFI)、脉冲波频谱多普勒成像及血流向量成像(vector flow imaging, V Flow)技术。CDFI观察血管内血液充盈度、血流方向及速度。脉冲波频谱多普勒成像可以测得狭窄段的收缩期峰值流速(peak systole velocity, PSV)和舒张末期流速(end diastole velocity, EDV)。PSV和EDV是颈动脉狭窄引起脑血管事件的重要预测因子[20]。V Flow可以测量血流速度和方向,提供空间和时间的矢量信息,实时计算WSS[21, 22]。最近一项研究采用V Flow技术发现有症状颈动脉狭窄患者的WSS高于无症状狭窄患者。颈动脉血管超声作为一种安全、无侵入性和非放射性的诊断技术,目前是临床筛选颈动脉粥样硬化狭窄患者的首选方法。该技术观察者间的一致性差,仍需要不断实践与验证。

2.2 计算流体动力学

       计算流体动力学(computational fluid dynamics, CFD)是一种研究心血管血流动力学的工具,该技术基于血管成像技术,包括数字减影血管造影(digital subtraction angiography, DSA)、CT血管造影(CT angiography, CTA)、磁共振血管成像(magnetic resonance angiography, MRA)技术,获取颈动脉几何形状,加上设定血流数值,得到仿真血管模型,同时根据Navier-Stokes方程,计算得出多项血流动力学参数,包括血流速度、WSS、OSI及压力分布等[10, 23, 24]。既往基于CFD的颈动脉血流动力学研究表明WSS、OSI及PSS与斑块形成及进展之间密切相关[25, 26]。低WSS对动脉粥样硬化斑块形成有早期驱动作用。斑块形成以后,局部高WSS促进易损斑块的形成[27]。CFD是目前研究人体颈动脉血液动力学情况的较可靠的非侵入性方法。然而理想的CFD模型需要近于精准的血流边界条件,真实的血液成分和血管壁特征[28]。在实际临床应用中,CFD在计算血流动力学参数时需要复杂的算法和相关的临床数据,操作过程烦琐。

2.3 MRI技术

2.3.1 相位对比MRI

       相位对比MRI(phase contrast MRI, PC-MRI)是以血液流动为基础进行成像编码的技术,既能显示血管解剖结构,也能同时测量血流方向、血流速度及流量等血液动力学参数[29]。PC扫描序列主要是2D-PC、3D-PC和4D-PC。2D-PC序列能够测量血流速度和流量[30, 31]。但空间分辨率有限是该技术的缺陷。3D-PC序列扫描时间较长,且图像质量有待提高。

2.3.2 四维血流MRI

       四维血流MRI(4D flow MRI)指随时间变化的三维PC-MRI技术,可直观和动态地显示心动周期不同时间点血流动力学参数的变化[32]。4D flow MRI技术在心动周期内直接从三维方向上获取体积速度数据,实时显示个体的血流模式,经过对这些血流信息的后处理,得到整个心动周期的流速以及其他相关血流动力学参数(包括WSS、压力梯度及能量损失)[33, 34]。目前,很多研究使用该技术成功获得了颈动脉的血流动力学情况,基于这些数据,我们可以发现血流动力学参数因颈动脉几何形状和位置不同有所差异,这些差异与斑块的发生发展密切相关[3]。ZHANG等[18]使用4D flow MRI技术评估不同年龄健康成年人颈总动脉(common carotid artery CCA)和颈内动脉(internal carotid artery ICA)不同解剖位置的血流动力学变化(体积、速度、WSS、压力梯度和能量损失),发现ICA近端的速度、WSS和压力梯度较低,并且老年组的参数值较中年组低,他们得出结论颈动脉血流动力学参数因解剖位置的不同而不同,并且这些参数会随年龄增长而降低。STRECKER等[35]采用高分辨率磁共振血管壁成像(high-resolution magnetic resonance vessel wall imaging, HRMR-VWI)结合4D flow MRI技术,对97名患者进行了为期1年的研究,探讨颈动脉几何形状和血流动力学参数(WSS、OSI)对颈动脉内膜厚度变化的作用机制。结果表明ICA/CCA比值、ICA的分叉角度和迂曲度及低WSS与颈动脉壁厚度增加有关。4D flow MRI能够全面真实反映在体颈动脉血流动力学情况,具有可操作性,这为颈动脉粥样硬化斑块的血流动力学研究提供了技术支持。

3 血流动力学与动脉硬化斑块的相互作用机制

3.1 血流动力学与斑块形成

       血管内血流动力学的变化导致内皮功能障碍,这是动脉粥样硬化发生的局部危险因素[36, 37]。病变易感区主要位于由于血流分离、再循环或再附着而产生湍流的区域[38]。血管内皮细胞在血流紊乱部位的粘附性增加,从而导致单核细胞的粘附性增加、脂质在血管壁的聚集、动脉粥样硬化的发生[39]。另一方面,血流紊乱导致局部血流动力学发生改变,如低WSS、高OSI,并通过机械作用刺激内皮细胞,促进多种粥样硬化基因的表达,如诱导单核细胞进入动脉壁的单核细胞趋化蛋白-1(monocyte chemoattractant Protein-1, MCP-1)和加速平滑肌细胞迁移的血小板源性生长因子(platelet-derived growth factors, PDGFs),从而加快动脉硬化斑块的发生[40, 41]

3.2 血流动力学与斑块易损性

       斑块形成以后,局部血流动力学的变化影响着斑块成分的改变和斑块的进展破裂[42, 43]。WSS是预测易损斑块和斑块破裂的潜在指标,狭窄处的高WSS促进斑块向易损性进展[44]。一项体外颈动脉研究表明管腔狭窄程度通过改变WSS影响斑块破裂[23, 45]。局部WSS超过40 Pa可直接损伤颈动脉粥样硬化斑块处的血管内皮细胞,加重炎症反应,刺激脂质核心进展和斑块内出血形成[46]。一项对30例颈动脉粥样硬化中度狭窄患者的回顾分析,通过选取20个时间点测量速度、轴向WSS和周向WSS,结果发现高危斑块组的WSS高于低危斑块。舒张期WSS和轴向WSS的增加与高危斑块密切相关,并可能引起脑血管事件[47]。有研究联合HRMR-VWI和CFD,同时观察易损斑块特征和WSS,发现了高WSS会促进斑块内出血和大的脂质坏死核心的发生。此外,高WSS和高PSS共同作用,更易导致斑块破裂[48]

       狭窄处的OSI升高同样影响斑块的进展。一项关于颈动脉的研究调查了三名同等狭窄程度的颈动脉粥样硬化患者,利用CTA建立3D流固耦合模型分析斑块的形态学和生物力学参数,发现颈动脉分叉处和颈内动脉狭窄下游区域的TAWSS和OSI显著增加。此外三者的斑块成分及稳定性存在显著差异,其中钙化体积较多的斑块处的WSS和OSI范围更广泛,且PSS更低[13]

       PSS在斑块破裂中同样起着潜在的作用。狭窄病变远心端的PSS增加,这可能与斑块内新生血管有关。高PSS有利于巨噬细胞聚集、抑制平滑肌细胞活性,引起基质降解和纤维帽变薄。同时高PSS能够诱发新生血管破裂和斑块内血肿[49]。一项体内颈动脉研究显示易损斑块中的PSS高于稳定斑块[50]

4 当前研究的局限性及未来发展方向

       血流动力学改变对斑块的形成、进展与破裂起着重要作用。颈动脉分叉处的血流为湍流或受干扰的层流,这会导致血流动力学发生改变,如WSS和压力梯度值减低、OSI升高,这些变化直接作用于血管内皮,导致斑块形成。斑块形成之后,病变处的多种血流动力学改变共同作用,如WSS、PSS和OSI升高,会加速局部炎症反应,刺激斑块向不稳定性进展。既往研究评估斑块易损性或破裂风险时,大多探讨斑块成分的单一作用,忽略了血流动力学在斑块进展中的作用。实际上,斑块向易损性或破裂进展的病理生理学机制是十分复杂的,单一考虑斑块成分不一定能准确地评估不同狭窄程度斑块的风险性。因此,除颈动脉狭窄程度外,需同时考虑不同斑块成分和力学特性在评估斑块易损性和防治IS方面的重要作用。

       多种成像方法可以从成分和血流动力学的角度表征颈动脉斑块。以往大多采用CFD分析血流动力学,然而该技术需要精准符合在体血液流动状态,耗费大量时间和人力。颈动脉超声血流检查技术虽然无创、成本低,但其观察者间一致性较差。2D-PC MRI、3D-PC MRI技术的缺陷在于空间分辨率有限。4D flow MRI已广泛用于测量心脏、瓣膜以及大血管的研究,这种成像技术的可重复性已经得到了验证。4D flow MRI可以回顾性分析在体动脉的血流动力学特征,对于颈动脉斑块的临床应用具有重要的前景和潜力。通过HRMR-VWI结合4D flow技术,可以对颈动脉斑块进行全面评估和监测,提供动脉狭窄程度、斑块成分特征和血流动力学信息。综合分析这些信息有助于全面评估斑块的稳定性和易损性,从而判断患者的风险水平。这对于评估治疗效果、指导后续治疗方案和监测病情进展非常重要。目前该技术仍处于发展阶段,需要更多的研究和临床验证,以进一步确认其在颈动脉斑块管理中的临床价值。

5 总结

       综上所述,斑块形成与进展过程中血流动力学发挥着重要作用,综合考虑斑块成分及血流动力学来评估斑块易损性及斑块破裂的风险是更有意义的。多种成像方法可以从成分和血流动力学的角度表征颈动脉斑块。4D flow MRI技术用于颈动脉粥样硬化斑块研究具有很大潜力。目前,有关在体颈动脉粥样硬化狭窄的血流动力学的研究和应用仍然较少。因此,需要大样本多中心前瞻性或队列性研究提供更有价值的信息,最终推广这些先进技术,从而有效应用于临床。

[1]
SUN T, CHEN S Y, WU K, et al. Trends in incidence and mortality of stroke in China from 1990 to 2019[J/OL]. Front Neurol, 2021, 12: 759221 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645546. DOI: 10.3389/fneur.2021.759221.
[2]
MA Y, CAO J H, MUBARIK S, et al. Age-period-cohort analysis of long trend of mortality for stroke and subtypes attributed to high SBP in Chinese adults[J/OL]. Front Neurol, 2022, 13: 710744 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959307. DOI: 10.3389/fneur.2022.710744.
[3]
STRECKER C, KRAFFT A J, KAUFHOLD L, et al. Carotid geometry is an independent predictor of wall thickness - a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 67 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488078. DOI: 10.1186/s12968-020-00657-5.
[4]
SAITO K, ABE S, KUMAMOTO M, et al. Blood flow visualization and wall shear stress measurement of carotid arteries using vascular vector flow mapping[J]. Ultrasound Med Biol, 2020, 46(10): 2692-2699. DOI: 10.1016/j.ultrasmedbio.2020.06.018.
[5]
ZIEGLER M, ALFRAEUS J, GOOD E, et al. Exploring the relationships between hemodynamic stresses in the carotid arteries[J/OL]. Front Cardiovasc Med, 2020, 7: 617755 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886794/. DOI: 10.3389/fcvm.2020.617755.
[6]
XIANG Y Q, MENDIETA J B, WANG J Q, et al. Differences in carotid artery geometry and flow caused by body postural changes and physical exercise[J]. Ultrasound Med Biol, 2023, 49(3): 820-830. DOI: 10.1016/j.ultrasmedbio.2022.11.009.
[7]
ZALUD N C, BULUSU K V, PLESNIAK M W. Shear stress metrics associated with pro-atherogenic high-risk anatomical features in a carotid artery bifurcation model[J/OL]. Clin Biomech, 2023, 105: 105956 [2023-11-25]. https://doi.org/10.1016/j.clinbiomech.2023.105956. DOI: 10.1016/j.clinbiomech.2023.105956.
[8]
MÜFTÜOĞULLARı A, SÜNER M, SARPER B. The effect of bifurcation angulation on flow characteristics and hemodynamic indicators in an idealized left coronary artery[J/OL]. Int J Thermofluids, 2024, 21: 100554 [2024-03-09]. https://doi.org/10.1016/J.IJFT.2023.100554. DOI: 10.1016/j.ijft.2023.100554.
[9]
HE L, CAI Y D, FENG Y H, et al. Utility of vector flow mapping technology in quantitative assessment of carotid wall shear stress in hypertensive patients: a preliminary study[J/OL]. Front Cardiovasc Med, 2022, 9: 967763 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649775. DOI: 10.3389/fcvm.2022.967763.
[10]
MORBIDUCCI U, MAZZI V, DOMANIN M, et al. Wall shear stress topological skeleton independently predicts long-term restenosis after carotid bifurcation endarterectomy[J]. Ann Biomed Eng, 2020, 48(12): 2936-2949. DOI: 10.1007/s10439-020-02607-9.
[11]
J M, L N, A V, et al. Wall shear stress alteration: a local risk factor of atherosclerosis[J]. Curr Atheroscler Rep, 2022, 24(3): 143-151. DOI: 10.1007/s11883-022-00993-0.
[12]
LIU X H, SONG P, GAO Q, et al. Impact on hemodynamics in carotid arteries with carotid webs at different locations: a Numerical Study Integrating Thrombus Growth Model[J/OL]. Comput Methods Programs Biomed, 2024, 243: 107926 [2024-03-09].https://doi.org/10.1016/J.CMPB.2023.107926. DOI: 10.1016/j.cmpb.2023.107926.
[13]
XIANG Y Q, HUANG X J, BENITEZ MENDIETA J, et al. The need to shift from morphological to structural assessment for carotid plaque vulnerability[J/OL]. Biomedicines, 2022, 10(12): 3038 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776071. DOI: 10.3390/biomedicines10123038.
[14]
BROWN A J, TENG Z Z, CALVERT P A, et al. Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging[J/OL]. Circ Cardiovasc Imaging, 2016, 9(6): e004172 [2023-11-25]. https://doi.org/10.1161/circimaging.115.004172. DOI: 10.1161/CIRCIMAGING.115.004172.
[15]
KARAKASIS P, PATOULIAS D, PAMPORIS K, et al. Risk of subclinical atherosclerosis in primary Sjogren's syndrome: a systematic review and meta-analysis[J/OL]. Eur J Intern Med, 2023 [2023-11-25]. https://doi.org/10.1016/J.EJIM.2023.11.007. DOI: 10.1016/j.ejim.2023.11.007.
[16]
HAN N, MA Y R, LI Y, et al. Imaging and hemodynamic characteristics of vulnerable carotid plaques and artificial intelligence applications in plaque classification and segmentation[J/OL]. Brain Sci, 2023, 13(1): 143 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856903/. DOI: 10.3390/brainsci13010143.
[17]
MENDIETA J B, FONTANAROSA D, WANG J Q, et al. MRI-based mechanical analysis of carotid atherosclerotic plaque using a material-property-mapping approach: a material-property-mapping method for plaque stress analysis[J/OL]. Comput Methods Programs Biomed, 2023, 231: 107417 [2023-11-25]. https://doi.org/10.1016/J.CMPB.2023.107417. DOI: 10.1016/j.cmpb.2023.107417.
[18]
ZHANG G L, WANG Z X, ZHANG S, et al. Age and anatomical location related hemodynamic changes assessed by 4D flow MRI in the carotid arteries of healthy adults[J/OL]. Eur J Radiol, 2020, 128: 109035 [2023-11-25]. https://doi.org/10.1016/j.ejrad.2020.109035. DOI: 10.1016/j.ejrad.2020.109035.
[19]
SIA S F, ZHAO X H, LI R, et al. Evaluation of the carotid artery stenosis based on minimization of mechanical energy loss of the blood flow[J]. Proc Inst Mech Eng H, 2016, 230(11): 1051-1058. DOI: 10.1177/0954411916671752.
[20]
KAMEL H, NAVI B B, MERKLER A E, et al. Reclassification of ischemic stroke etiological subtypes on the basis of high-risk nonstenosing carotid plaque[J]. Stroke, 2020, 51(2): 504-510. DOI: 10.1161/STROKEAHA.119.027970.
[21]
SMITHA B, YADAV D, JOSEPH P K. Evaluation of carotid intima media thickness measurement from ultrasound images[J]. Med Biol Eng Comput, 2022, 60(2): 407-419. DOI: 10.1007/s11517-021-02496-7.
[22]
JOHRI A M, NAMBI V, NAQVI T Z, et al. Recommendations for the assessment of carotid arterial plaque by ultrasound for the characterization of atherosclerosis and evaluation of cardiovascular risk: from the American society of echocardiography[J]. J Am Soc Echocardiogr, 2020, 33(8): 917-933. DOI: 10.1016/j.echo.2020.04.021.
[23]
KIZHISSERI M, GHARAIE S, SCHLUTER J. An analytical method informed by clinical imaging data for estimating outlet boundary conditions in computational fluid dynamics analysis of carotid artery blood flow[J/OL]. Sci Rep, 2023, 13(1): 14973 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495450/. DOI: 10.1038/s41598-023-42004-5.
[24]
TOBA T, OTAKE H, CHOI G, et al. Wall shear stress and plaque vulnerability: computational fluid dynamics analysis derived from cCTA and OCT[J]. JACC Cardiovasc Imaging, 2021, 14(1): 315-317. DOI: 10.1016/j.jcmg.2020.07.034.
[25]
BANTWAL A, SINGH A, MENON A R, et al. Hemodynamic study of blood flow in the carotid artery with a focus on carotid sinus using fluid-structure interaction[J/OL]. J Fluids Eng, 2022, 144(2): 021403 [2023-11-25].https://doi.org/10.1115/1.4051902. DOI: 10.1115/1.4051902.
[26]
LEE U Y, KWAK H S. Evaluation of plaque vulnerability via combination of hemodynamic analysis and simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) sequence for carotid intraplaque hemorrhage[J/OL]. J Pers Med, 2021, 11(9): 856 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465016. DOI: 10.3390/jpm11090856.
[27]
MOERMAN A M, KORTELAND S, DILBA K, et al. The correlation between wall shear stress and plaque composition in advanced human carotid atherosclerosis[J/OL]. Front Bioeng Biotechnol, 2021, 9: 828577 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831262. DOI: 10.3389/fbioe.2021.828577.
[28]
HAMEED M S, AHMAD SHAH A, KHAN M I, et al. Comparison of blood flow analysis in stenosed and stented carotid artery bifurcation models[J/OL]. Cogent Eng, 2023, 10(1) [2023-11-25]. https://doi.org/10.1080/23311916.2022.2158624. DOI: 10.1080/23311916.2022.2158624.
[29]
胥巧丽, 张健康, 刘亚, 等. 相位对比磁共振成像技术的原理及应用[J]. 生物医学工程研究, 2017, 36(4): 387-391. DOI: 10.19529/j.cnki.1672-6278.2017.04.23.
XU Q L, ZHANG J K, LIU Y, et al. The principles and applications of phase-contrast magnetic resonance imaging[J]. J Biomed Eng Res, 2017, 36(4): 387-391. DOI: 10.19529/j.cnki.1672-6278.2017.04.23.
[30]
VAN TUIJL R J, RUIGROK Y M, VELTHUIS B K, et al. Velocity pulsatility and arterial distensibility along the internal carotid artery[J/OL]. J Am Heart Assoc, 2020, 9(16): e016883 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660833. DOI: 10.1161/JAHA.120.016883.
[31]
PRADELLA M, SCOTT M B, OMER M, et al. Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI[J]. Eur Radiol, 2023, 33(3): 1707-1718. DOI: 10.1007/s00330-022-09179-3.
[32]
ZARRINKOOB L, MYRNÄS S, WÅHLIN A, et al. Cerebral blood flow patterns in patients with low-flow carotid artery stenosis, a 4D-PCMRI assessment[J/OL]. J Magn Reson Imaging, 2024 [2024-03-09]. https://doi.org/10.1002/jmri.29216. DOI: 10.1002/jmri.29216.
[33]
NALLAMOTHU T, PRADELLA M, MARKL M, et al. Robust and fast stochastic 4D flow vector-field signature technique for quantifying composite flow dynamics from 4D flow MRI: application to left atrial flow in atrial fibrillation[J/OL]. Med Image Anal, 2024, 92: 103065 [2024-03-09]. https://doi.org/10.1016/j.media.2023.103065. DOI: 10.1016/j.media.2023.103065.
[34]
SAYED R E, SHARIFI A, PARK C C, et al. Optimization of 4D flow MRI spatial and temporal resolution for examining complex hemodynamics in the carotid artery bifurcation[J]. Cardiovasc Eng Technol, 2023, 14(3): 476-488. DOI: 10.1007/s13239-023-00667-1.
[35]
STRECKER C, KRAFFT A J, KAUFHOLD L, et al. Carotid geometry and wall shear stress independently predict increased wall thickness-a longitudinal 3D MRI study in high-risk patients[J/OL]. Front Cardiovasc Med, 2021, 8: 723860 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576112. DOI: 10.3389/fcvm.2021.723860.
[36]
ELHFNAWY A, ABDEL GALEEL A, ABDELKHALEK H. Carotid atherosclerosis in a sample of Egyptian patients with or without ischemic vascular events[J/OL]. Egypt J Neurol Psychiatry Neurosurg, 2023, 59(1): 144 [2023-11-25]. https://doi.org/10.1186/S41983-023-00740-5. DOI: 10.1186/s41983-023-00740-5.
[37]
HOLMGREN M, HENZE A, WÅHLIN A, et al. Diagnostic separation of conventional ≥50% carotid stenosis and near-occlusion with phase-contrast MRI[J]. Eur Stroke J, 2024, 9(1): 135-143. DOI: 10.1177/23969873231215634.
[38]
ZARRINKOOB L, WÅHLIN A, AMBARKI K, et al. Quantification and mapping of cerebral hemodynamics before and after carotid endarterectomy, using four-dimensional flow magnetic resonance imaging[J/OL]. J Vasc Surg, 2021, 74(3): 910-920.e1 [2023-11-25]. https://doi.org/10.1016/j.jvs.2021.01.074IF. DOI: 10.1016/j.jvs.2021.01.074.
[39]
LIU M Y, LI S, YIN M, et al. Pinacidil ameliorates cardiac microvascular ischemia-reperfusion injury by inhibiting chaperone-mediated autophagy of calreticulin[J]. Basic Res Cardiol, 2024, 119(1): 113-131. DOI: 10.1007/s00395-023-01028-8.
[40]
CHENG L, YUE H Y, ZHANG H Y, et al. The influence of microenvironment stiffness on endothelial cell fate: implication for occurrence and progression of atherosclerosis[J/OL]. Life Sci, 2023, 334: 122233 [2023-11-25]. https://doi.org/10.1016/j.lfs.2023.122233. DOI: 10.1016/j.lfs.2023.122233.
[41]
NIKIFOROV N G, KIRICHENKO T V, KUBEKINA M V, et al. Macrophages derived from LPS-stimulated monocytes from individuals with subclinical atherosclerosis were characterized by increased pro-inflammatory activity[J/OL]. Cytokine, 2023, 172: 156411 [2023-11-25].https://doi.org/10.1016/j.cyto.2023.156411. DOI: 10.1016/j.cyto.2023.156411.
[42]
LIN C, MCCARTHY C P, MOHEBI R, et al. Sex differences in coronary artery disease characteristics among patients with type 2 myocardial infarction[J/OL]. JACC Adv, 2024, 3(2): 100795 [2024-03-09].https://doi.org/10.1016/j.jacadv.2023.100795. DOI: 10.1016/j.jacadv.2023.100795.
[43]
SAVASTANO L, MOUSAVI H, LIU Y, et al. Unifying theory of carotid plaque disruption based on structural phenotypes and forces expressed at the lumen/wall interface[J]. Stroke Vasc Neurol, 2022, 7(6): 465-475. DOI: 10.1136/svn-2021-001451.
[44]
WANG Y, QIU J H, LUO S S, et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis[J]. Regen Biomater, 2016, 3(4): 257-267. DOI: 10.1093/rb/rbw021.
[45]
ZHOU H, MENG L, ZHOU W, et al. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque[J/OL]. Biomed Eng Online, 2017, 16(1): 92 [2023-11-25]. https://doi.org/10.1186/s12938-017-0386-z. DOI: 10.1186/s12938-017-0386-z.
[46]
DAI Y Y, QIAN Y, ZHANG M Z, et al. Associations between local haemodynamics and carotid intraplaque haemorrhage with different stenosis severities: a preliminary study based on MRI and CFD[J]. J Clin Neurosci, 2019, 66: 220-225. DOI: 10.1016/j.jocn.2019.05.041.
[47]
ZHANG G L, ZHANG S, QIN Y Y, et al. Differences in wall shear stress between high-risk and low-risk plaques in patients with moderate carotid artery stenosis: a 4D flow MRI study[J/OL]. Front Neurosci, 2021, 15: 678358 [2023-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385133. DOI: 10.3389/fnins.2021.678358.
[48]
TUENTER A, SELWANESS M, ARIAS LORZA A, et al. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques[J]. Atherosclerosis, 2016, 251: 348-354. DOI: 10.1016/j.atherosclerosis.2016.05.018.
[49]
陈威宇, 肖晗, 郭丽君. 易损斑块的病理组织学特征和机制研究现状[J]. 中国心血管杂志, 2021, 26(1): 74-77. DOI: 10.3969/j.issn.1007-5410.2021.01.019.
CHEN W Y, XIAO H, GUO L J. Current research status on pathological characteristics and mechanisms of vulnerable plaque[J]. Chin J Cardiovasc Med, 2021, 26(1): 74-77. DOI: 10.3969/j.issn.1007-5410.2021.01.019.
[50]
ZHANG Y W, LUO Q, LU K N, et al. Subclinical atherosclerosis in primary Sjögren's syndrome: comparable risk with diabetes mellitus[J]. Clin Rheumatol, 2023, 42(6): 1607-1614. DOI: 10.1007/s10067-023-06538-3.

上一篇 增强T2 FLAIR序列在颅内肿瘤影像诊断中的研究进展
下一篇 影像检查对早期检测及评估乳腺癌患者化疗后相关心功能障碍的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2