分享:
分享到微信朋友圈
X
临床研究
基于4D Flow CMR技术评价心肌纤维化对肥厚型心肌病患者左室舒张功能障碍的影响
郑琰 马丽荣 郭家璇 张怀榕 孙潇 孙凯 王一帆 朱力

Cite this article as ZHENG Y, MA L R, GUO J X, et al. Evaluation of left ventricular diastolic dysfunction in hypertrophic cardiomyopathy using 4D Flow CMR: Impact of myocardial fibrosis[J]. Chin J Magn Reson Imaging, 2024, 15(5): 119-125.本文引用格式郑琰, 马丽荣, 郭家璇, 等. 基于4D Flow CMR技术评价心肌纤维化对肥厚型心肌病患者左室舒张功能障碍的影响[J]. 磁共振成像, 2024, 15(5): 119-125. DOI:10.12015/issn.1674-8034.2024.05.019.


[摘要] 目的 采用四维血流(four-dimensional flow, 4D Flow)心脏磁共振成像(cardiac magnetic resonance, CMR)技术对肥厚型心肌病(hypertrophic cardiomyopathy, HCM)患者是否存在左心室舒张功能障碍进行评估,探讨心肌纤维化对HCM患者左心室舒张功能的影响。材料与方法 前瞻性纳入44例HCM患者,根据患者是否合并晚期钆增强(late gadolinium enhancement, LGE)分为HCM LGE(+)组(25例)和HCM LGE(-)组(19例),同期纳入31例健康对照者。三组人群进行3.0 T磁共振稳态自由进动序列及4D Flow序列扫描。采用CVI42后处理软件进行分析,包括心功能参数、二尖瓣血流速度参数。使用单因素方差分析或Mann-Whitney U检验对三组受试者临床资料及影像学参数进行比较;并对二尖瓣水平舒张早期平均血流速度(E)与舒张期整体室壁峰值厚度(global peak wall thickness, GPWT)、左心室质量(left ventricular mass, LVmass)进行相关性分析。结果 HCM患者的LVmass及GPWT均大于健康对照组,且伴有心肌纤维化较不伴有心肌纤维化的HCM患者的GPWT增大更加明显[HCM LGE(+)组vs. HCM LGE(-)组vs.健康对照组];[LVmass:157.34(122.24,194.38)g vs. 148.29(131.79,189.83)g vs. 85.73(73.00,94.02)g;GPWT:20.04(16.76,24.99)mm vs. 17.46(16.19,19.99)mm vs. 9.47(8.35,10.92)mm](P<0.001);伴有心肌纤维化的HCM患者舒张早期平均血流速度峰值(E峰)低于不伴有心肌纤维化的HCM患者,且均较健康对照组低[HCM LGE(+)组vs. HCM LGE(-)组vs.健康对照组:(30.03±11.33)cm/s vs.(38.05±12.03)cm/s vs.(47.44±10.82)cm/s](P<0.001);而舒张晚期平均血流速度峰值(A峰)在三组间均无显著性差异;且伴有心肌纤维化的HCM患者较健康对照组的E/A值明显减低(1.10±0.61 vs. 1.74±0.85)(P<0.05)。舒张期早期二尖瓣水平的平均血流速度与GPWT和LVmass均呈负相关(r=-0.593/r=-0.371,P<0.001/P=0.001)。结论 基于4D Flow CMR不仅可以从三维角度对血流速度进行准确测量,同时能从血流动力学方面定量评估HCM患者的左室舒张功能障碍及心肌纤维化对HCM患者左心室舒张功能的影响。
[Abstract] Objective Four-dimensional flow (4D Flow) cardiac magnetic resonance (CMR) technology was used to evaluate the presence of left ventricular diastolic dysfunction in patients with hypertrophic cardiomyopathy (HCM), and the effect of myocardial fibrosis on left ventricular diastolic function in HCM patients was explored.Materials and Methods A total of 44 HCM patients were prospectively enrolled, and they were divided into HCM late gadolinium enhancement (LGE) (+) group (25 cases) and HCM LGE (-) group (19 cases) according to whether the patients had LGE, and 31 healthy controls were included in the same period. All three groups underwent 3.0 T magnetic resonance imaging, including steady-state free precession sequences and 4D Flow CMR scans. Analysis using CVI42 post-processing software included cardiac functional parameters and mitral valve blood flow velocity parameters. Clinical and imaging parameters were compared among the three groups using one-way analysis of variance or Mann-Whitney U test. Correlation analysis was performed between early diastolic mean blood flow velocity (E) and cardiac functional parameters.Results The left ventricular mass (LVmass) and global peak wall thickness (GPWT) of HCM patients were greater than those of healthy controls, and the GPWT of HCM patients with myocardial fibrosis increased more significantly than that of HCM patients without myocardial fibrosis [HCM LGE (+) group vs. HCM LGE (-) group vs. healthy control group]; [LVmass: 157.34 (122.24, 194.38) g vs. 148.29 (131.79, 189.83) g vs. 85.73 (73.00, 94.02) g; GPWT: 20.04 (16.76, 24.99) mm vs. 17.46 (16.19, 19.99) mm vs. 9.47 (8.35, 10.92) mm] (P<0.001); The peak early diastolic mean blood flow velocity (peak E) of HCM patients with myocardial fibrosis was lower than that of HCM patients without myocardial fibrosis, and was lower than that of healthy control group [HCM LGE (+) group vs. HCM LGE (-) group vs. healthy control group: (30.03±11.33) cm/s vs. (38.05±12.03) cm/s vs. (47.44±10.82) cm/s] (P<0.001), while there was no significant difference in the peak value of mean blood flow velocity (peak A) in late diastolic period between the three groups, and the E/A value of HCM patients with myocardial fibrosis was significantly lower than that of the healthy control group (1.10±0.61 vs. 1.74±0.85) (P<0.05). The mean blood flow velocity at the mitral valve level in early diastolic was negatively correlated with GPWT and LVmass (r=-0.593/r=-0.371, P<0.001/P=0.001).Conclusions Based on 4D Flow CMR, it can not only accurately measure the blood flow velocity from a three-dimensional perspective, but also quantitatively evaluate the effects of left ventricular diastolic dysfunction and myocardial fibrosis on the left ventricular diastolic function of HCM patients from the hemodynamic aspect.
[关键词] 肥厚型心肌病;心肌纤维化;左室舒张功能;四维血流心脏磁共振;磁共振成像
[Keywords] hypertrophic cardiomyopathy;myocardial fibrosis;left ventricular diastolic function;four-dimensional flow cardiac magnetic resonance;magnetic resonance imaging

郑琰 1   马丽荣 1   郭家璇 1   张怀榕 2   孙潇 2   孙凯 2   王一帆 2   朱力 2*  

1 宁夏医科大学第一临床医学院,银川 750004

2 宁夏医科大学总医院放射科,银川 750004

通信作者:朱力,E-mail:zhuli72@163.com

作者贡献声明::朱力设计本研究的方案,对稿件重要内容进行了修改;郑琰起草和撰写稿件,获取、分析和解释本研究数据;马丽荣、郭家璇、张怀榕、孙潇、孙凯、王一帆获取、分析本研究的数据,对稿件重要内容进行了修改;朱力获得了国家重点研发计划项目及中央引导地方科技发展资金项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家重点研发计划项目 2022YFC2010000 中央引导地方科技发展资金项目 2023FRD05010
收稿日期:2024-01-10
接受日期:2024-04-29
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.05.019
本文引用格式郑琰, 马丽荣, 郭家璇, 等. 基于4D Flow CMR技术评价心肌纤维化对肥厚型心肌病患者左室舒张功能障碍的影响[J]. 磁共振成像, 2024, 15(5): 119-125. DOI:10.12015/issn.1674-8034.2024.05.019.

0 引言

       肥厚型心肌病(hypertrophic cardiomyopathy, HCM)是一种具有心肌肥厚特征的遗传性心血管疾病,其发病率高达1/200[1],是年轻患者,尤其是年轻运动员发生心源性猝死(sudden cardiac death, SCD)的主要原因[2]。HCM患者早期的功能异常是左室舒张功能障碍[3, 4]。心肌纤维化是肥厚型心肌病的典型病理特征。在HCM患者中,约有70%的人存在一定程度的心肌纤维化[5, 6, 7]。这种心肌纤维化会使得心脏室壁变得僵硬,降低其顺应性,从而引发左心室舒张功能障碍,进而影响患者的预后[8, 9]

       目前,左心室舒张功能的评估是有创性心导管检测,然而由于其创伤性,在临床应用中并未得到广泛采纳[10]。临床最常用的血流测量方法包括超声心动图、传统的2D相位对比血流成像,但二者只能评估单个平面内单个方向的血流束[11, 12, 13, 14],缺乏对心腔内血流动力学全面的定量评估。四维血流(four-dimensional flow, 4D Flow)心脏磁共振(cardiac magnetic resonance, CMR)技术是一种近期用于可视化和定量化心脏和大血管内血流的工具,它能够进行三维血流编码,在观察心脏内部错综复杂血流运动路径同时,还能获取相应的血流动力学数据,如流体的速度、压力等相关参数[15]。但是,目前尚未见利用4D Flow CMR评价伴有心肌纤维化的HCM患者左心室舒张功能的相关报道。

       因此,本研究旨在利用4D Flow CMR技术,对舒张早期和晚期二尖瓣水平的血流动力学参数进行测量,以定量评估伴有心肌纤维化的HCM患者左心室的舒张功能。同时,将结果与不伴有心肌纤维化患者和健康对照组进行比较,初步探讨心肌纤维化对HCM患者左心室舒张功能的影响,为HCM患者危险分层及临床治疗的选择提供参考依据。

1 材料与方法

1.1 研究对象

       本研究为前瞻性研究,遵守《赫尔辛基宣言》,经过宁夏医科大学总医院科研伦理委员会批准(批准文号:KYLL-2023-0486),所有受试者均签署知情同意书。收集2020年6月至2022年12月在宁夏医科大学总医院心内科HCM诊断证据充分的患者资料及同期来医院体检的健康对照者。根据磁共振增强扫描结果将HCM患者分为HCM LGE(+)组和HCM LGE(-)组。

       HCM组纳入标准:(1)符合《中国成人肥厚型心肌病诊断与治疗指南2023》的诊断标准[1],并且完成了超声心动图和心电图检查以及完整的CMR检查后,经超声心动图认定为舒张功能障碍[16];(2)左室射血分数(left ventricular ejection fraction, LVEF)≥50%;(3)CMR采集的电影图像、首过灌注及延迟图像、4D Flow图像质量良好。排除标准:(1)合并有高血压、先天性心脏病、中度瓣膜病、心肌病患者;(2)合并有糖尿病、甲亢、甲减等全身代谢性疾病;(3)合并慢性阻塞性肺疾病、间质性肺疾病等、胸部肿瘤史;(4)对钆喷酸葡胺过敏者及不能配合做CMR检查者;(5)CMR图像质量不佳,不能满足测量者。健康对照组纳入标准:通过CMR、心脏超声和心电图检测未发现任何异常。排除标准:严重心律失常、原发性或继发性高血压、瓣膜性心脏病、糖尿病以及恶性肿瘤等疾病。

1.2 扫描方法

       采用3.0 T超导磁共振扫描仪(Ingenia, Philips Healthcare, Nertherlands)对所有受试者进行心脏扫描。受试者扫描前去除随身携带金属类物品,仰卧位,8通道心脏专用阵列线圈置于受试者前胸部及背部,进行呼气末屏气训练,同时监测心电门控和呼吸门控。在常规轴位、矢状位、冠状位确定心脏位置。

       扫描序列:(1)稳态自由进动序列。标准化选取短轴两腔心、左室长轴两腔心、长轴四腔心、三腔心切面,扫描参数为TE 1.28 ms,TR 2.6 ms,翻转时间200 ms,翻转角45°,FOV 350 mm×350 mm,层厚8 mm。静脉注射0.2 mmol/kg钆双胺(马根维显,德国拜尔公司)10~15 min后采用分段相位敏感翻转恢复涡轮快速小角度激发序列(280~350 ms)采集舒张期四腔心及左心室短轴切面LGE图像。(2)4D Flow序列。标准化选取三腔心切面,时间分辨率通常为50~55 ms,根据心率不同可呈现20~25个相位,并重建为20个心脏相位。TE shortest,TR shortest,翻转角8°,FOV 300 mm×300 mm,层厚10 mm,层间距0 mm,采集和重建体素大小2.5 mm×2.5 mm×2.5 mm,根据研究[15, 17]和本研究情况流速编码VENC值选取200 cm/s。

1.3 图像处理

       使用CVI42分析软件(Version5.14.3, Circle Cardiovascular Imaging Inc, Calgary, Alberta, Canada)进行图像后处理分析:(1)心功能分析。在短轴两腔心电影序列上,软件自动勾画各个时期左心室心内、外膜边界,并进行手动校正,统一不勾画乳头肌轮廓,软件自动生成LVEF、左室舒张末期容积(left ventricular end diastolic volume, LVEDV)、左心室收缩末期容积(left ventricular end-systolic volume, LVESV)、每搏输出量(stroke volume, SV)、左心室质量(left ventricular mass, LVmass)、舒张期整体室壁峰值厚度(global peak wall thickness, GPWT)等参数。(2)血流动力学参数测量。①将4D Flow CMR数据导入模块后,选取感兴趣区;②图像预处理,首先手动调节蒙版,常规进行偏移校正及信号混叠校正;③分割图像,采用3D渲染的方式渲染出标准左心室流入流出道层面并保存图像;④分析血流,将取样容积置于二尖瓣瓣口水平,取样框与血流方向保持垂直,软件生成心动周期内血流平均速度-时间曲线图,观察血流迹线图并记录舒张早期二尖瓣口平均血流速度(E)、舒张晚期二尖瓣口平均血流速度(A),然后计算得出E/A。测量过程由两名至少2年软件使用经验的临床医生分别完成,其中一名医师于2个月后再进行一次后处理(图1, 2, 3)。

图1  男,53岁,健康对照。1A:流入流出道电影图像;1B:基于左心室流入流出道获取舒张早期4D Flow血流径线图;1C:基于左心室流入流出道获取舒张晚期4D Flow血流径线图;1D:舒张早晚期的血流平均速度-时间曲线图。E峰:52.0 cm/s;A峰:28.1 cm/s;E峰:舒张早期二尖瓣平均血流速度峰值;A峰:舒张晚期二尖瓣平均血流速度峰值。
Fig. 1  Male, 53 years old, healthy control. 1A: Inflow and outflow tract movie images; 1B: Early diastolic 4D Flow blood flow path map based on left ventricular inflow and outflow tract; 1C: Late diastolic 4D Flow blood flow path map based on left ventricular inflow and outflow tract; 1D: Mean velocity-time plot of blood flow in early and late diastole. Peak E: 52.0 cm/s; Peak A: 28.1 cm/s. Peak E: Peak of mean mitral valve velocity in early diastolic valve; Peak A: Peak of mean mitral valve velocity in late diastole.
图2  男,50岁,不伴有心肌纤维化的HCM患者。2A:流入流出道电影图像;2B:基于左心室流入流出道获取舒张早期4D Flow血流径线图;2C:基于左心室流入流出道获取舒张晚期4D Flow血流径线图;2D:舒张早晚期的血流平均速度-时间曲线图。E峰:40.2 cm/s;A峰:23.0 cm/s;E峰:舒张早期二尖瓣平均血流速度峰值;A峰:舒张晚期二尖瓣平均血流速度峰值。
Fig. 2  Male, 50 years old, patient with HCM without myocardial fibrosis. 2A: Inflow and outflow tract movie images; 2B: Early diastolic 4D Flow blood flow path map based on left ventricular inflow and outflow tract; 2C: Late diastolic 4D Flow blood flow path map based on left ventricular inflow and outflow tract; 2D: Mean velocity-time plot of blood flow in early and late diastole. Peak E: 40.2 cm/s; Peak A: 23.0 cm/s. Peak E: Peak of mean mitral valve velocity in early diastolic; Peak A: Peak of mean mitral velocity in late diastole.
图3  男,52岁,伴有心肌纤维化的HCM患者。3A:流入流出道电影图像;3B:基于左心室流入流出道获取舒张早期4D Flow血流径线图;3C:基于左心室流入流出道获取舒张晚期4D Flow血流径线图;3D:舒张早晚期的血流平均速度-时间曲线图。E峰:27.0 cm/s;A峰:31.7 cm/s;E峰:舒张早期二尖瓣平均血流速度峰值;A峰:舒张晚期二尖瓣平均血流速度峰值。伴有心肌纤维化的HCM患者其E峰的速度显著低于不伴有心肌纤维化的HCM患者,并且伴有心肌纤维化HCM患者的E峰显著低于A峰。
Fig. 3  Male, 52 years old, patient with HCM with myocardial fibrosis. 3A: Inflow and outflow tract movie images; 3B: Early diastolic 4D Flow blood flow path map based on left ventricular inflow and outflow tract; 3C: Late diastolic 4D Flow blood flow path map based on left ventricular inflow and outflow tract; 3D: Mean velocity-time plot of blood flow in early and late diastole. Peak E: 27.0 cm/s, Peak A: 31.7 cm/s. Peak E: Peak of average mitral valve velocity in early diastolic; Peak A: Peak of mean mitral valve velocity in late diastole. The rate of E peak in HCM patients with myocardial fibrosis is significantly lower than that in HCM patients without myocardial fibrosis, and the E peak in HCM patients with myocardial fibrosis is significantly lower than that of A peak.

1.4 统计学分析

       使用SPSS 26.0统计软件对数据进行分析。在定量数据的描述中,使用均值±标准差来代表正态分布以及接近正态分布的数据;偏态分布的定量资料用中位数[四分位距]表示,定性资料以频数表示。使用单因素方差分析比较符合正态分布的定量数据,若方差不齐则用Mann-Whitney U检验对三组受试者临床资料及影像学参数进行两两比较;使用卡方检验比较分类变量。采用Spearman对舒张早期平均血流速度(E)与心功能参数与(LVmass、GPWT)进行相关性分析,其中|r|<0.4表示相关程度较弱,0.4~0.7表示中等程度相关,>0.7表示相关程度较强。一致性检验采用组内相关系数(intra-class correlation coefficient, ICC)分析,ICC>0.75认为一致性较好。采用双侧检验,P<0.05认为差异具有统计学意义。

2 结果

2.1 临床基本资料及CMR左心室功能参数

       HCM组最终纳入HCM患者44例,25例为HCM LGE(+)[年龄23~73(52.16±14.76)岁,44%为男性],19例为HCM LGE(-)[年龄26~75(50.74±12.45)岁,21%为男性];健康对照组共纳入31例,年龄25~73(47.58±11.95)岁,39%为男性。关于HCM组与健康对照组的基本资料以及MRI左心室功能参数见表1图1, 2, 3。需要指出的是,HCM组的LVmass和GPWT数值均超过了健康对照组,差异具有统计学意义(P均<0.05);且伴有心肌纤维化较不伴有心肌纤维化的HCM患者的GPWT明显增大(P<0.05);其余心功能参数未见明显差异。

表1  基本资料及左心基本功能参数
Tab. 1  Clinical data and basic left ventricular function parameters

2.2 二尖瓣水平舒张早期(E峰)及晚期(A峰)平均血流速度峰值及比值

       HCM伴心肌纤维化组和HCM不伴有心肌纤维化组与健康对照组人群的二尖瓣水平舒张早期及晚期平均血流速度参数详见表2图1, 2, 3。HCM组舒张早期二尖瓣平均血流速度峰值(E峰)小于健康对照组;并且伴有心肌纤维化的HCM患者的舒张早期二尖瓣平均血流速度峰值(E峰)小于不伴有心肌纤维化的HCM患者;HCM患者中不论伴或不伴有心肌纤维化其舒张晚期二尖瓣平均血流速度峰值(A 峰)与健康对照组差异无统计学意义(P=0.728);伴有心肌纤维化的HCM中E/A值较健康对照组明显减低(P=0.009)。

表2  二尖瓣水平舒张期平均血流速度
Tab. 2  Mean diastolic blood flow velocity at mitral valve level

2.3 血流参数与心功能参数的相关分析

       在进一步的相关性分析中,二尖瓣水平舒张早期平均血流速度与GPWT、LVmass呈负相关(r=-0.593,P<0.001;r=-0.371,P=0.001),其中与GPWT相关性较大(图4)。

图4  相关性分析散点图。舒张期早期二尖瓣水平的平均血流速度(E)与舒张期整体室壁峰值厚度(4A)和舒张期左心室质量(4B)均呈负相关。GPWT:舒张期整体室壁峰值厚度;LVmass:左心室心肌质量。
Fig. 4  Correlation analysis scatter plots. Correlation analysis scatter plot. The mean blood flow velocity (E) at the mitral valve level in early diastolic is inversely correlated with diastolic left ventricular mass (4A) and diastolic global peak wall thickness (4B). GPWT: global peak wall thickness; LVmass: left ventricular myocardial mass.
图5  伴或不伴有心肌纤维化HCM患者与健康对照者心功能参数及血流参数组内及组间的差异比较。***表示P<0.001,**表示P<0.05。LVmass:左心室心肌质量;GPWT:舒张期整体室壁峰值厚度;E:舒张早期平均血流速度峰值;E/A:舒张早期平均血流速度峰值/舒张晚期平均血流速度峰值。
Fig. 5  Comparative analysis of cardiac and hemodynamic parameters. This figure illustrates the comparative analysis of cardiac and hemodynamic parameters among individuals with or without myocardial fibrosis in hypertrophic cardiomyopathy (HCM) and their respective comparisons with healthy controls. *** indicates P<0.001, and ** indicates P<0.05. LVmass: left ventricular myocardial mass; GPWT: global peak wall thickness, E: early diastolic average blood flow velocity; E/A: ratio of early to late diastolic average blood flow velocity.

2.4 血流动力学参数一致性检验

       随机选择其中15例受试者,测量二尖瓣水平舒张早期(E峰)及晚期(A峰)平均血流速度峰值及计算比值,结果发现各项指标均具有良好的重复性,E峰、A峰、E/A的组内ICC分别为0.901、0.921、0.903,组间ICC分别为0.979、0.955、0.969,ICC均>0.75,P<0.05(表3)。

表3  血流参数重复性检验
Tab. 3  Repeatability test of blood flow parameters

3 讨论

       本研究基于4D Flow CMR技术测量健康对照组、HCM患者伴有心肌纤维化、不伴有心肌纤维化三组人群的舒张早晚期二尖瓣水平平均血流速度并进行比较。结果表明:(1)三组人群的心功能参数不存在显著性差异,仅GPWT之间存在明显差异性;(2)二尖瓣水平舒张早期平均血流速度在三组人群中存在显著性差异,但舒张晚期平均血流速度峰值在三组人群中未发现显著的差别;(3)GPWT和LVmass与二尖瓣水平舒张早期平均血流速度的关系呈现出显著的负相关特点。4D Flow CMR技术能定量评估心肌纤维化对HCM患者左心室的舒张功能的影响,对HCM患者危险分层及临床治疗的选择提供参考依据,从而改善HCM患者的预后。

3.1 HCM患者左室舒张功能障碍机制

       HCM患者的广泛心肌肥厚可引起左室舒张运动受限和心室虹吸作用减弱[18],导致继发血流动力学紊乱,最终引起舒张功能障碍。而左心舒张功能障碍与心脏不良事件(如心源性猝死、室性心律失常和心力衰竭等)发生具有很高的相关性,并且难治性进行性心力衰竭正成为非梗阻性肥厚型心肌病死亡的主要原因[19]。心肌纤维化是肥厚型心肌病的显著病理特征,这一过程将导致室壁变得坚硬,降低心肌的顺应性。如果心肌纤维化持续过度发展,将会进一步加剧舒张功能障碍[17]。有研究表明,延迟强化范围与左室充盈压及慢性舒张期负荷增加呈中度正相关[20]。在舒张功能进一步受损的情况下,HCM病患的左心房压力会逐步上升,进而诱发肺动脉高压,对病患的预后产生重大影响[21]。因此对伴有心肌纤维化HCM患者左心舒张功能的全面评估有重要的临床意义。

       本研究发现,伴或不伴有心肌纤维化的HCM患者与健康对照者的LVEDV、LVESV、LVEF差异无统计学意义。但是伴或不伴有心肌纤维化的HCM患者其GPWT不仅与健康对照组具有显著差异,两组间也存在显著差异。有研究表明纤维化程度较高的HCM患者室壁最大厚度显著高于纤维化程度低的患者[22, 23]。此外,本研究显示,伴或者不伴有心肌纤维化的HCM患者的LVmass无显著差异,这可能与HCM患者两亚组的不均等分型有关。在心肌细胞肥大的伴随下,HCM患者的心肌整体质量常呈现不同程度的增长[24]。然而,在非对称型HCM患者中,可能只有1~2个节段的肥厚现象,此时,左室质量的测定通常会在正常范围内[25]。这表明,GPWT、LVmass等参数虽然可以一定程度反映HCM患者的心肌受累程度,但是往往受到累及范围的影响,对于受累较局限的HCM患者不能正确反映患者病情。此外,这些常规的心功能结构参数往往对舒张功能的评价有限,不能准确反映患者心脏功能的损伤。

3.2 4D Flow CMR对HCM患者左室舒张功能评价

       既往研究表明,跨二尖瓣血流速度是评估心室顺应性的重要参数[26],左室舒张顺应性降低时跨瓣膜压力梯度降低,跨瓣膜血流速度减小[27]。HCM患者通常表现为左心室非对称性[28]肥厚、心肌顺应性降低,舒张期心肌运动的速度与幅度均发生一定程度的降低,导致舒张早期平均血流速度减低,所以舒张早期平均血流速度一定程度上间接反映了HCM患者左心室松弛活动的受限状况[29]。然而在舒张期末,血流速度的产生源于左心房的主动收缩,其速度受到左心室顺应性以及左房收缩性能两个因素的影响。因此本研究针对HCM患者二尖瓣水平血流分析结果显示:HCM患者E峰平均速度不仅相较健康人群明显减低,而且伴有心肌纤维化的HCM患者二尖瓣舒张早期平均血流速度峰值(E峰)较不伴有心肌纤维化的HCM患者E峰存在明显的减低,并且,GPWT与二尖瓣水平舒张早期平均血流速度均存在中等的负相关,这提示肥厚、纤维化的心肌节段越多,左室松弛运动受损也更为严重[30, 31];而舒张晚期平均血流速度峰值(A峰)在三组人群中未见明显差异,说明左房的收缩功能损伤可能在左室舒张功能障碍显著时才显著;此外,与健康对照相比,E/A值在伴有心肌纤维化的HCM患者明显地降低。这表明4D Flow CMR不仅可以通过二尖瓣水平舒张期血流来定量评价HCM患者左室舒张功能障碍,并且间接反映出心肌纤维化会加重左室舒张功能障碍。

3.3 局限性与展望

       本研究存在以下局限性和未来可能性:(1)本研究仅探讨了有无心肌纤维化与左心室整体功能的关系,并没有探讨局部纤维化的程度与HCM患者血流参数的关系;(2)由于样本量较小,本研究没有针对左心室整体心肌纤维化比例与舒张功能障碍的程度进行血流的探究,这可能对于预后不良HCM患者的危险分层不够完善,今后本课题组将随着样本量的积累进一步深入研究。

4 结论

       基于4D Flow CMR技术有助于从血流动力学角度定量评价HCM患者的左心室舒张功能状态;通过二尖瓣水平舒张早期平均血流速度(E峰)及E/A值降低来提示HCM患者存在左心室舒张功能障碍,并且在一定程度上间接反映心肌纤维化导致左室舒张功能障碍的进一步加重。

[1]
国家心血管病中心心肌病专科联盟, 中国医疗保健国际交流促进会心血管病精准医学分会"中国成人肥厚型心肌病诊断与治疗指南"专家组. 中国成人肥厚型心肌病诊断与治疗指南2023[J]. 中国循环杂志, 2023, 38(1): 1-33. DOI: 10.3969/j.issn.1000-3614.2023.01.001.
Joint Committee of Cardiomyopathy Specialty Alliance, National Center for Cardiovascular Diseases/Cardiovascular Precision Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care. 2023 guideline for diagnosis and treatment of patients with hypertrophic cardiomyopathy[J]. Chin Circ J, 2023, 38(1): 1-33. DOI: 10.3969/j.issn.1000-3614.2023.01.001.
[2]
D'ASCENZI F, VALENTINI F, PISTORESI S, et al. Causes of sudden cardiac death in young athletes and non-athletes: systematic review and meta-analysis: sudden cardiac death in the young[J]. Trends Cardiovasc Med, 2022, 32(5): 299-308. DOI: 10.1016/j.tcm.2021.06.001.
[3]
MARON B J, SPIRITO P, ACKERMAN M J, et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2013, 61(14): 1527-1535. DOI: 10.1016/j.jacc.2013.01.037.
[4]
中华医学会心血管病学分会中国成人肥厚型心肌病诊断与治疗指南编写组, 中华心血管病杂志编辑委员会. 中国成人肥厚型心肌病诊断与治疗指南[J]. 中华心血管病杂志, 2017, 45(12): 1015-1032. DOI: 10.3760/cma.j.issn.0253-3758.2017.12.005.
Chinese Guidelines for the diagnosis and treatment of adult hypertrophic cardiomyopathy, Chinese Society of Cardiology, Editorial Committee of Chinese Journal of Cardiology. Guidelines for diagnosis and treatment of adult hypertrophic cardiomyopathy in China[J]. Chin J Cardiol, 2017, 45(12): 1015-1032. DOI: 10.3760/cma.j.issn.0253-3758.2017.12.005.
[5]
WENG Z, YAO J L, CHAN R H, et al. Prognostic value of LGE-CMR in HCM: a meta-analysis[J]. JACC Cardiovasc Imaging, 2016, 9(12): 1392-1402. DOI: 10.1016/j.jcmg.2016.02.031.
[6]
CHOUDHURY L, MAHRHOLDT H, WAGNER A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2002, 40(12): 2156-2164. DOI: 10.1016/s0735-1097(02)02602-5.
[7]
GREEN J J, BERGER J S, KRAMER C M, et al. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2012, 5(4): 370-377. DOI: 10.1016/j.jcmg.2011.11.021.
[8]
RAIKER N, VULLAGANTI S, COLLINS J D, et al. Myocardial tissue characterization by gadolinium-enhanced cardiac magnetic resonance imaging for risk stratification of adverse events in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2020, 36(6): 1147-1156. DOI: 10.1007/s10554-020-01808-6.
[9]
CHAN R H, MARON B J, OLIVOTTO I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy[J]. Circulation, 2014, 130(6): 484-495. DOI: 10.1161/CIRCULATIONAHA.113.007094.
[10]
ONG K C, GESKE J B, HEBL V B, et al. Pulmonary hypertension is associated with worse survival in hypertrophic cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(6): 604-610. DOI: 10.1093/ehjci/jew024.
[11]
中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2018[J]. 中华心血管病杂志, 2018, 46(10): 760-789. DOI: 10.3760/cma.j.issn.0253-3758.2018.10.004.
Heart Failure Group of Chinese Society of Cardiology of Chinese Medical Association, Chinese Heart Failure Association of Chinese Medical Doctor Association, Editorial Board of Chinese Journal of Cardiology. China guidelines for diagnosis and treatment of heart failure 2018[J]. Chin J Cardiol, 2018, 46(10): 760-789. DOI: 10.3760/cma.j.issn.0253-3758.2018.10.004.
[12]
ASHKIR Z, MYERSON S, NEUBAUER S, et al. Four-dimensional flow cardiac magnetic resonance assessment of left ventricular diastolic function[J/OL]. Front Cardiovasc Med, 2022, 9: 866131 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/35935619/. DOI: 10.3389/fcvm.2022.866131.
[13]
中华医学会超声医学分会超声心动图学组, 中国医师协会心血管分会超声心动图专业委员会. 超声心动图评估心脏收缩和舒张功能临床应用指南[J]. 中华超声影像学杂志, 2020, 29(6): 461-477. DOI: 10.3760/cma.j.cn131148-20200227-00115.
Echocardiography Group of Chinese Medical Association of Ultrasound Medicine, Professional Committee of Echocardiography of Cardiovascular Branch of Chinese Medical Doctor Association. Guidelines for clinical application of echocardiography in evaluating cardiac systolic and diastolic function[J]. Chin J Ultrason, 2020, 29(6): 461-477. DOI: 10.3760/cma.j.cn131148-20200227-00115.
[14]
ZHUANG B Y, SIRAJUDDIN A, ZHAO S H, et al. The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives[J]. Quant Imaging Med Surg, 2021, 11(9): 4193-4210. DOI: 10.21037/qims-20-1234.
[15]
BISSELL M M, RAIMONDI F, AIT ALI L, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 40 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37474977/. DOI: 10.1186/s12968-023-00942-z.
[16]
NAGUEH S F, SMISETH O A, APPLETON C P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(12): 1321-1360. DOI: 10.1093/ehjci/jew082.
[17]
GESKE J B, OMMEN S R, GERSH B J. Hypertrophic cardiomyopathy: clinical update[J]. JACC Heart Fail, 2018, 6(5): 364-375. DOI: 10.1016/j.jchf.2018.02.010.
[18]
SOULAT G, MCCARTHY P, MARKL M. 4D flow with MRI[J/OL]. Annu Rev Biomed Eng, 2020, 22: 103-126 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/32155346/. DOI: 10.1146/annurev-bioeng-100219-110055.
[19]
SUZUKI M, KOTOOKA N, SAKUMA M, et al. Validity and reliability of three-chamber-view three-directional encoded phase-contrast magnetic resonance velocity-vector mapping for transmitral velocity measurements: comparison with Doppler echocardiography and intra- and inter-observer variability[J]. Magn Reson Med Sci, 2017, 16(2): 152-158. DOI: 10.2463/mrms.mp.2015-0172.
[20]
AUTHORS/TASK FORCE MEMBERS, ELLIOTT P M, ANASTASAKIS A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[21]
ZHU Y S, PARK E A, LEE W, et al. Extent of late gadolinium enhancement at right ventricular insertion points in patients with hypertrophic cardiomyopathy: relation with diastolic dysfunction[J]. Eur Radiol, 2015, 25(4): 1190-1200. DOI: 10.1007/s00330-014-3390-8.
[22]
RIZA DEMIR A, CELIK Ö, SEVINÇ S, et al. The relationship between myocardial fibrosis detected by cardiac magnetic resonance and Tp-e interval, 5-year sudden cardiac death risk score in hypertrophic cardiomyopathy patients[J/OL]. Ann Noninvasive Electrocardiol, 2019, 24(5): e12672 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/31152489/. DOI: 10.1111/anec.12672.
[23]
韩自强, 刘婕, 陆敏杰, 等. 中青年肥厚型心肌病患者心肌纤维化与临床表型和预后的关系[J]. 中国分子心脏病学杂志, 2023, 23(2): 5259-5263. DOI: 10.16563/j.cnki.1671-6272.2023.04.004.
HAN Z Q, LIU J, LU M J, et al. Correlation between cardiac fibrosis and clinical features of hypertrophic cardiomyopathy in young and middle-aged patients[J]. Mol Cardiol China, 2023, 23(2): 5259-5263. DOI: 10.16563/j.cnki.1671-6272.2023.04.004.
[24]
STEEN H, MONTENBRUCK M, KALLIFATIDIS A, et al. Multi-parametric non-contrast cardiac magnetic resonance for the differentiation between cardiac amyloidosis and hypertrophic cardiomyopathy[J]. Clin Res Cardiol, 2024, 113(3): 469-480. DOI: 10.1007/s00392-023-02348-4.
[25]
李湘, 师轲, 杨志刚. 心脏磁共振多模态成像在肥厚性心肌病中的临床应用[J]. 西部医学, 2020, 32(3): 460-464. DOI: 10.3969/j.issn.1672-3511.2020.03.035.
LI X, SHI K, YANG Z G. Clinical application of multimodality cardiac magnetic resonance imaging in hypertrophic cardiomyopathy[J]. Med J West China, 2020, 32(3): 460-464. DOI: 10.3969/j.issn.1672-3511.2020.03.035.
[26]
XU L J, YAN J C, ZHANG F, et al. Use of inflammatory biomarkers and real-time cardiac catheterisation to evaluate the left ventricular diastolic function in patients with diastolic heart failure[J]. Heart Lung Circ, 2021, 30(3): 396-403. DOI: 10.1016/j.hlc.2020.06.017.
[27]
邓巧, 岳文军, 孙家瑜. 心脏磁共振对左室舒张功能的评估及其研究进展[J]. 磁共振成像, 2021, 12(7): 110-113. DOI: 10.12015/issn.1674-8034.2021.07.026.
DENG Q, YUE W J, SUN J Y. Progress in evaluation of left ventricular diastolic function by cardiac magnetic resonance[J]. Chin J Magn Reson Imag, 2021, 12(7): 110-113. DOI: 10.12015/issn.1674-8034.2021.07.026.
[28]
CASTELLETTI S, MENACHO K, DAVIES R H, et al. Hypertrophic cardiomyopathy: insights from extracellular volume mapping[J/OL]. Eur J Prev Cardiol, 2022, 28(18): e39-e41 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/33693514/. DOI: 10.1093/eurjpc/zwaa083.
[29]
曹媛, 张薇. 左室舒张功能障碍评估[J]. 心血管病学进展, 2017, 38(6): 692-696. DOI: 10.16806/j.cnki.issn.1004-3934.2017.06.016.
CAO Y, ZHANG W. Evaluation of left ventricular diastolic dysfunction[J]. Adv Cardiovasc Dis, 2017, 38(6): 692-696. DOI: 10.16806/j.cnki.issn.1004-3934.2017.06.016.
[30]
陈君美, 戴丽雅, 艾慧俊, 等. 超声心动图预判肥厚型心肌病患者心肌纤维化及左心室舒张功能的价值[J]. 心电与循环, 2021, 40(4): 380-383, 388, 455. DOI: 10.12124/j.issn.2095-3933.2021.4.2020-4175.
CHEN J M, DAI L Y, AI H J, et al. The value of ultrasonic cardiogram in predicting myocardial fibrosis and evaluating left ventricular diastolic function in hypertrophic cardiomyopathy[J]. J Electrocardiol Circ, 2021, 40(4): 380-383, 388, 455. DOI: 10.12124/j.issn.2095-3933.2021.4.2020-4175.
[31]
KRÄMER J, NIEMANN M, LIU D, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease[J]. Eur Heart J, 2013, 34(21): 1587-1596. DOI: 10.1093/eurheartj/eht098.

上一篇 基于术前MRI特征及定量参数列线图预测乳腺癌患者淋巴血管侵犯
下一篇 多参数心脏磁共振在低龄儿童急性心肌炎中的诊断和短期随访价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2