分享:
分享到微信朋友圈
X
临床研究
DCE-MRI联合IVIM-DWI预测早期宫颈癌盆腔淋巴结转移的价值
徐晓倩 刘凤海 康立清

Cite this article as XU X Q, LIU F H, KANG L Q. Value of DCE-MRI and IVIM-DWI in predicting pelvic lymph node metastasis from early cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(5): 141-147.本文引用格式徐晓倩, 刘凤海, 康立清. DCE-MRI联合IVIM-DWI预测早期宫颈癌盆腔淋巴结转移的价值[J]. 磁共振成像, 2024, 15(5): 141-147. DOI:10.12015/issn.1674-8034.2024.05.022.


[摘要] 目的 探讨动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)联合体素内不相干运动扩散加权成像(intravoxel incoherent motion diffusion-weighted imaging, IVIM-DWI)预测早期宫颈癌盆腔淋巴结转移(pelvic lymph node metastasis, PLNM)的价值。材料与方法 回顾性分析124例经病理证实为国际妇产科联盟(International Federation of Gynecology and Obstetrics, FIGO)ⅠB~ⅡA期宫颈癌患者的临床及影像资料,比较PLNM组与无PLNM组原发肿瘤DCE-MRI及IVIM-DWI定量参数的差异,采用多因素logistic回归分析确定独立危险因素,绘制受试者工作特征(receiver operating characteristic, ROC)曲线评估各参数诊断效能。结果 PLNM组容积转运常数(volume transfer constant, Ktranst=6.203,P<0.001)、灌注分数(perfusion fraction, f;t=3.944,P<0.001)、表观扩散系数(apparent diffusion coefficient, ADC;Z=4.393,P<0.001)、细胞外血管外间隙容积比(extravascular extracellular volume fraction, Ve;Z=2.312,P=0.021)低于无PLNM组,差异均有统计学意义,多因素logistic回归分析示KtransP<0.001)、f(P=0.003)、ADC(P=0.031)是宫颈癌PLNM的独立危险因素,ROC曲线示Ktrans、f、ADC预测PLNM的曲线下面积(area under the curve, AUC)分别为0.808、0.707、0.745;与单一参数相比,三者联合预测PLNM的诊断效能最高,AUC为0.893,敏感度和特异度分别为82.4%、86.8%。结论 早期宫颈癌原发肿瘤DCE-MRI的Ktrans、Ve及IVIM-DWI的f、ADC有助于鉴别PLNM。独立危险因素Ktrans、f、ADC具有较高的预测价值,三者联合应用可进一步提高诊断效能。
[Abstract] Objective To investigate the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in predicting pelvic lymph node metastasis (PLNM) of early cervical cancer.Materials and Methods Imaging and clinical data from 124 patients with FIGO ⅠB-ⅡA cervical cancer confirmed by pathology were retrospectively analyzed. The quantitative parameters obtained from DCE-MRI and IVIM-DWI of the primary tumor between the PLNM group and non-PLNM group were compared. Multivariate logistic analysis was used to determine the independent risk factors, and receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic performance of all parameters.Results The volume transfer constant (Ktrans; t=6.203, P<0.001), perfusion fraction (f; t=3.944, P<0.001), apparent diffusion coefficient (ADC; Z=4.393, P<0.001) and extravascular extracellular volume fraction (Ve; Z=2.312, P=0.021) in the PLNM group were significantly lower than those in the non-PLNM group. Multivariate analysis showed that Ktrans (P<0.001), f (P=0.003) and ADC (P=0.031) were the independent risk factors of PLNM in cervical cancer. The ROC curves showed that the area under curve (AUC) of Ktrans, f, and ADC for predicting PLNM were 0.808, 0.707 and 0.745, respectively. Compared with individual parameter, the combination of the three parameters achieved the highest diagnostic efficacy to predict PLNM with an AUC of 0.893, the sensitivity and specificity were 82.4% and 86.8%, respectively.Conclusions Ktrans, Ve from DCE-MRI, f and ADC from IVIM-DWI of primary tumor are helpful in evaluating PLNM of early cervical cancer. The three independent risk factors of Ktrans, f, ADC have high predicting value, and their combination can further improve diagnostic efficiency.
[关键词] 宫颈癌;淋巴结转移;磁共振成像;体素内不相干运动;动态对比增强
[Keywords] cervical cancer;lymph node metastasis;magnetic resonance imaging;intravoxel incoherent motion;dynamic contrast-enhanced

徐晓倩 1   刘凤海 1, 2*   康立清 1, 2  

1 河北医科大学附属沧州市中心医院磁共振成像科,沧州 061000

2 沧州市中心医院磁共振成像科,沧州 061000

通信作者:刘凤海,E-mail:lfh600@126.com

作者贡献声明::刘凤海确定本研究的具体方向,对稿件重要内容进行了指导及修改;徐晓倩起草和撰写稿件,获取、分析、解释本研究的数据;康立清设计本研究的方案,对稿件重要内容进行了指导及修改;刘凤海获得了沧州市重点研发计划指导项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 沧州市重点研发计划指导项目 183302016
收稿日期:2024-01-23
接受日期:2024-04-17
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.05.022
本文引用格式徐晓倩, 刘凤海, 康立清. DCE-MRI联合IVIM-DWI预测早期宫颈癌盆腔淋巴结转移的价值[J]. 磁共振成像, 2024, 15(5): 141-147. DOI:10.12015/issn.1674-8034.2024.05.022.

0 引言

       宫颈癌是世界范围内女性最常见的恶性肿瘤之一[1]。盆腔淋巴结转移(pelvic lymph node metastasis, PLNM)是宫颈癌生存预后的关键预测因素,PLNM患者5年生存率明显下降[2]。随着肿瘤筛查的推广,早期宫颈癌(early cervical cancer, ECC)的发现比例升高,其初始治疗策略的制订尤为重要。2018国际妇产科联盟(International Federation of Gynecology and Obstetrics, FIGO)指南推荐的标准术式为根治性全子宫切除联合盆腔淋巴结清扫,但ECC患者PLNM发生率不足30%[3, 4],执行此方案导致多数被过度治疗,增加手术风险并可能产生并发症。而对于PLNM的ECC患者,2017欧洲肿瘤内科学会(European Society for Medical Oncology,ESMO)临床实践指南建议选择同步放化疗作为首选治疗方式[5],其生存期及复发率相比于手术干预无明显差异[6]。因此术前准确判定盆腔淋巴结状态是优化ECC患者治疗方案的关键,也是临床实践中的难点。

       MRI是目前无创性评估PLNM的首选影像学方法。近期荟萃分析显示,常规MRI基于形态学标准诊断PLNM的合并特异度为89.2%,合并敏感度仅51.2%[7],炎性增生和微转移性淋巴结的存在使其鉴别效能受限[8]。功能性MRI技术体素内不相干运动扩散加权成像(intravoxel incoherent motion diffusion-weighted imaging, IVIM-DWI)及动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)可真实反映肿瘤增殖代谢、血管通透性、微循环灌注等信息[9, 10, 11],使病变微环境改变的量化分析成为可能,逐渐应用于宫颈癌的诊断及放化疗疗效评估[12, 13, 14]。既往研究表明这两种技术在宫颈癌PLNM的术前评价中具有一定的应用潜能[15],但二者定量参数随着淋巴结转移发生而出现升高或降低的变化趋势尚不明确,能否有效预测PLNM仍存在争议[16, 17]。进一步探究各参数在不同淋巴结状态下的改变情况,并正确认识其反映的微环境异常与肿瘤侵袭性的关系,有利于准确评价此两种功能性MRI技术能否作为预测PLNM的可靠工具。因此,本研究对ECC原发肿瘤DCE-MRI联合IVIM-DWI定量参数预测PLNM的价值进行探究。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经沧州市中心医院伦理委员会批准,免除受试者知情同意,批准文号:2023-194。回顾性分析2022年4月至2023年10月于沧州市中心医院诊断为FIGO ⅠB1~ⅡA2期宫颈癌的患者病历资料。纳入标准:(1)术前2周内行3.0 T MRI检查,扫描序列包括MR平扫、IVIM-DWI及DCE-MRI;(2)行根治性子宫切除联合盆腔淋巴结清扫术,病理证实为宫颈癌;(3)临床及病理资料完整。排除标准:(1)病理类型为非鳞癌;(2)同时合并急性盆腔炎性反应或其他恶性肿瘤;(3)由于运动伪影导致MRI图像质量不合格;(4)病灶直径<1 cm;(5)术前接受放化疗或行锥切术。

1.2 检查方法

       MRI扫描采用美国GE Discovery 750W 3.0 T扫描仪,搭配原机自带16通道相控阵线圈。检查前20 min肌注10 mg 654-2(盐酸消旋山莨菪碱注射液,金耀药业,天津,中国)以抑制肠道蠕动,嘱患者适当排空膀胱以减少尿液电解质伪影。患者取仰卧位,足先进。MRI扫描序列及参数包括:横断位压脂T2WI,TR 9091 ms,TE 98 ms,FOV 420 mm×420 mm,NEX为2,层厚7 mm,层间距1 mm;IVIM-DWI采用单激发自旋回波扩散加权成像序列,取11个b值(0、20、50、80、100、200、400、600、800、1000、1500 s/mm2),NEX分别为1、1、1、1、1、2、2、3、4、6、8,TR 2084 ms,TE minimum,FOV 380 mm×380 mm,矩阵128×128,层厚5 mm,层间距1 mm;DCE-MRI采用3D-LAVA Flex序列,TR 4.3 ms,TE 2.0 ms,NEX为1,FOV 400 mm×400 mm,矩阵256×160,层厚4 mm,层间距0 mm,自由呼吸状态下行40期不间断扫描,单个时相扫描时间为9 s,第2期开始以3.5 mL/s的流速、0.1 mmol/kg的剂量经肘静脉注射Gd-DTPA(马根维显,拜耳公司,韦恩,美国),并以相同速率注入生理盐水15 mL冲管。

1.3 图像分析及数据测量

       MRI数据导入GE AW 4.7工作站,由两名分别具有3年和15年影像诊断经验的放射科住院医师和副主任医师采用双盲法进行图像分析及参数测量。感兴趣区(region of interest, ROI)参考横断位T2WI,在功能图像肿瘤最大层面沿病变边缘手动勾画不规则ROI,避开出血、坏死、囊变及宫颈管区域。IVIM-DWI图像采用Functool软件(9.4.05, GE,美国)测量表观扩散系数(apparent diffusion coefficient, ADC)、纯扩散系数(diffusion coefficient, D)、伪扩散系数(pseudo diffusion coefficient, D*)以及灌注分数(perfusion fraction, f),DCE-MRI图像采用Gen IQ软件(13.0 Ext.4,GE,美国)测量容积转运常数(volume transfer constant, Ktrans)、细胞外血管外间隙容积比(extravascular extracellular volume fraction, Ve)及速率常数(rate constant, Kep)(图1~2)。

图1  女,57岁,FIGO ⅠB3期伴盆腔淋巴结转移的宫颈癌患者。1A:轴位T2WI图像;1B~1H:IVIM-DWI及DCE-MRI各定量参数的伪彩图,ADC值为0.85×10-3 mm2/s(1B),D值为0.52×10-3 mm2/s(1C),D*值为16.30×10-3 mm2/s(1D),f值为0.27(1E),Ktrans值为0.31 min-1(1F),Ve值为0.43(1G),Kep值为1.20 min-1(1H)。
图2  女,62岁,FIGO ⅡA1期无盆腔淋巴结转移的宫颈癌患者。2A:轴位T2WI图像,2B~2H:IVIM-DWI及DCE-MRI各定量参数的伪彩图,ADC值为0.82×10-3 mm2/s(2B),D值为0.71×10-3 mm2/s(2C),D*值为41.80×10-3 mm2/s(2D),f值为0.28(2E),Ktrans值为0.85 min-1(2F),Ve值为0.28(2G),Kep值为2.98 min-1(2H)。FIGO:国际妇产科联盟;IVIM-DWI:体素内不相干运动扩散加权成像;DCE:动态对比增强;ADC:表观扩散系数;D:纯扩散系数;D*:伪扩散系数;f:灌注分数;Ktrans:容积转运常数;Ve:细胞外血管外间隙容积比;Kep:速率常数。
Fig. 1  Female, 57 years old, FIGO ⅠB3 cervical cancer with PLNM. 1A: Axial T2WI image; 1B-1H: Pseudo-color images of each quantitative parameter of DCE-MRI and IVIM-DWI, ADC value is 0.85×10-3 mm2/s (1B), D value is 0.52×10-3 mm2/s (1C), D* value is 16.30×10-3 mm2/s (1D), f value is 0.27 (1E), Ktrans value is 0.31 min-1 (1F), Ve value is 0.43 (1G), Kep value is 1.20 min-1 (1H).
Fig. 2  Female, 62 years old, FIGO ⅡA1 cervical cancer without PLNM. 2A: Axial T2WI image; 2B-2H: Pseudo-color images of each quantitative parameter of DCE-MRI and IVIM-DWI, ADC value is 0.82×10-3 mm2/s (2B), D value is 0.71×10-3 mm2/s (2C), D* value is 41.80×10-3 mm2/s (2D), f value is 0.28 (2E), Ktrans value is 0.85 min-1 (2F), Ve value is 0.28 (2G), Kep value is 2.98 min-1 (2H). FIGO: International Federation of Gynecology and Obstetrics; PLNM: pelvic lymph node metastasis; DCE: dynamic contrast-enhanced; IVIM-DWI: intravoxel incoherent motion diffusion-weighted imaging; ADC: apparent diffusion coefficient: D: diffusion coefficient; D*: Pseudo diffusion coefficient; f:Perfusion fraction; Ktrans: volume transfer constant; Ve: extravascular extracellular volume fraction; Kep: rate constant.

1.4 统计学方法

       采用SPSS 26.0(IBM, USA)软件进行统计学分析。以组内相关系数(intra-class correlation coefficient, ICC)评价两位观察者测量结果的一致性,ICC>0.75表示一致性较好。采用Shapiro-Wilk检验评估IVIM-DWI及DCE-MRI各定量参数是否符合正态分布,其中Ktrans、Kep、D、D*、f符合正态分布,组间比较采用独立样本t检验,以(x¯±s)描述;Ve、ADC不符合正态分布,组间比较采用秩和检验,以MP25,P75)描述。采用向前逐步分析法对差异有统计学意义的参数进行多因素logistic回归分析,确定PLNM的独立危险因素,采用受试者工作特征(receiver operator characteristic, ROC)曲线评估各单一参数及联合预测的诊断效能。P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料及两位观察者之间测量结果的一致性

       本研究共纳入124例FIGO ⅠB1~ⅡA2期宫颈癌患者,其中PLNM组38例,无PLNM组86例。年龄31~81岁,平均年龄55.57岁,ⅠB1期23例,ⅠB2期25例,ⅠB3期14例,ⅡA1期22例,ⅡA2期40例。两位观察者所测量原发肿瘤DCE-MRI和IVIM-DWI定量参数的一致性检验结果发现一致性较好,ICC值均>0.75(表1)。

表1  两位观察者测量DCE-MRI和IVIM-DWI定量参数的一致性检验
Tab. 1  Consistency test of the quantitative parameters from DCE-MRI and IVIM-DWI measured by two observers

2.2 两组原发肿瘤DCE-MRI及IVIM-DWI定量参数值比较

       PLNM组原发肿瘤Ktranst=6.203,P<0.001)、Ve(Z=2.312,P=0.021)、ADC(Z=4.393,P<0.001)、f(t=3.944,P<0.001)低于无PLNM组,差异有统计学意义,Kep(t=0.730,P>0.05)高于无PLNM组,D(t=1.600,P>0.05)、D*t=0.048,P>0.05)低于无PLNM组,差异均无统计学意义(表2)。

表2  两组原发肿瘤DCE-MRI定量参数值比较
Tab. 2  Comparison of DCE-MRI parameters of primary tumor in two groups

2.3 原发肿瘤DCE-MRI、IVIM-DWI定量参数预测PLNM的诊断效能分析

       将单因素回归分析中差异有统计学意义的MRI定量参数(Ktrans、f、ADC、Ve)纳入多因素logistic回归分析,KtransP<0.001)、f(P=0.003)、ADC(P=0.031)是宫颈癌PLNM的独立危险因素(表3)。ROC曲线分析示Ktrans、f、ADC预测PLNM的AUC分别为0.808、0.707、0.745,敏感度和特异度分别为74.1%、61.2%、62.4%,81.6%、84.2%、84.2%。三者联合预测PLNM的AUC达到0.893,敏感度和特异度分别为82.4%、86.8%,诊断效能高于各单一参数(表4图3)。

图3  Ktrans、f、ADC及三者联合预测宫颈癌PLNM的ROC曲线。Ktrans:容积转运常数;f:灌注分数;ADC:表观扩散系数;PLNM:盆腔淋巴结转移;ROC:受试者工作特征。
Fig. 3  ROC curve of Ktrans, f, ADC and their combination for predicting PLNM in cervical cancer. ROC: receiver operating characteristic; Ktrans: volume transfer constant; f: perfusion fraction; ADC: apparent diffusion coefficient; PLNM: pelvic lymph node metastasis.
表3  FIGO ⅠB1~ⅡA2期宫颈癌PLNM的独立危险因素分析
Tab. 3  Independent risk factors analysis of PLNM in FIGO ⅠB1-ⅡA2 cervical cancer
表4  Ktrans、f、ADC及三者联合应用的诊断效能
Tab. 4  Diagnostic efficiency of Ktrans, f, ADC and their combined prediction

3 讨论

       PLNM的发生与ECC的不良预后密切相关,术前准确评估盆腔淋巴结状态是实现宫颈癌个性化精准治疗的关键。本研究基于ECC原发肿瘤DCE-MRI及IVIM-DWI定量参数分析,首次探讨了此两种功能性技术联合预测PLNM的应用价值。结果示DCE-MRI的Ktrans、Ve及IVIM-DWI的f、ADC组间差异均有统计学意义,其中Ktrans、f、ADC是PLNM的独立危险因素,三者联合应用具有较高的PLNM预测价值,AUC值为0.893,敏感度和特异度分别为82.4%、86.8%,诊断效能优于各参数单独预测,为术前无创性评估PLNM提供了更准确的影像方法,有利于辅助临床医生制订最佳的宫颈癌治疗方案。

3.1 DCE-MRI各定量参数预测PLNM的价值

       DCE-MRI是一种非侵入性灌注成像技术,可通过数学模型计算出多个灌注参数,对肿瘤血管与细胞外间隙之间的对比剂交换信息进行定量分析,进而评价病变微循环与毛细血管通透性[18]。其中,Ktrans反映对比剂由血管腔内至血管外细胞外间隙的流动速率,Kep反映对比剂回流入毛细血管的速率,二者大小取决于微血管的通透性;Ve代表血管外-细胞外间隙所占的体积分数,可反映细胞坏死及细胞化程度[19]

       本研究PLNM组原发肿瘤Ktrans显著低于无PLNM组,提示病灶血流灌注相对降低,与ØVREBØ等[20]的动物实验研究所得结果类似。另外,多项研究表明DCE-MRI可用来显示肿瘤中的缺氧等不利微环境[21, 22, 23],Ktrans在低氧肿瘤细胞中明显降低,是评估HIF-1α表达最稳健、最敏感的参数[24]。因此,Ktrans与PLNM倾向之间的关联性可能反映了淋巴扩散由原发肿瘤缺氧所驱动的潜在机制。由于血管新生过程复杂、紊乱,常导致微血管网形态异常与功能障碍,如血管扭曲、间距增加、延长扩张等,从而使血流转运至细胞外间隙的速度下降,氧气、葡萄糖和其他营养物质供应不足,进而上调淋巴管生成因子促进淋巴转移扩散[25]。BAI等[26]发现原发肿瘤Kep也可用于预测PLNM,认为高间质液压力促进回流,同时引导携带淋巴管生成因子等不良因素的肿瘤间质液进入周围正常组织,因此较高的Kep与PLNM的高风险相关是合理的。本研究也显示出PLNM组原发肿瘤Kep高于无PLNM组的趋势,但组间差异无统计学意义,笔者推测这可能与各研究所纳入病例不同分期所占比例的差异有关。另外,本研究中原发肿瘤Ve的组间差异亦有统计学意义,PLNM组Ve降低反映了肿瘤细胞异常增殖导致细胞外间隙减小,这与高Kep反映的间质液高压力及低Ktrans反映的血流灌注相对减少相一致。但Ve未被纳入logistic回归方程,有文献认为其变化可能是细胞增殖与微坏死的综合结果[27],即使勾画ROI时避开了坏死区域,仍无法排除肿瘤内部肉眼无法分辨的微坏死所致Ve值升高对结果的影响,因此,Ve对肿瘤微环境状态及侵袭性的反映存在不稳定性的缺陷。

3.2 IVIM-DWI各定量参数预测PLNM的价值

       IVIM-DWI基于双指数模型,即DWI信号的衰减受水分子自由扩散及毛细血管灌注的双重影响,b值较低(0~200 s/mm2范围内)时对局部微血管血流引起的灌注效应更敏感,高b值范围内主要反映单纯水分子的扩散运动[28]。IVIM-DWI通过设置不少于3个不同b值实现水分子扩散与微循环灌注分离及定量评价,弥补了传统单一b值DWI扩散精度方面的局限性[29, 30]。其中,ADC、D反映水分子运动的慢速扩散成分,D*和f则反映微循环内分子运动引起的伪扩散信息[31]

       本研究中,PLNM组原发肿瘤ADC、f值显著低于无PLNM组,侵袭性强的肿瘤以细胞异常增殖、细胞外间隙缩小等为特征[32],ADC值降低,与既往大多研究所得结果基本一致[33, 34]。从病理学角度来讲,恶性肿瘤中细胞增殖依赖于大量新生微血管形成,血流灌注会相应增高[35]。而本研究PLNM组f值低于无PLNM组,与上述理论存在差异。PERUCHO等[36]也得出了类似发现:从无恶性累及发展到亚厘米再到显著增大的淋巴结转移,原发肿瘤f值渐次降低。笔者推测类似结果的原因可能是,宫颈癌发生早期,血供需求增加,微血管密度增高,f值也增高;但在新生毛细血管网提供的充足氧气和营养物质条件下,肿瘤生长增殖加快、体积增大,同时癌细胞可侵入血管、增加流体黏度进而影响血流[35],导致灌注不良、缺氧等改变,进一步发生淋巴转移等侵袭行为,此时f值可能会减低。因此病变的微环境状态是一个动态演变的过程,依据不同FIGO分期、不同大小范围内肿瘤径线或体积亚分组对宫颈癌的病理特征进行细化探究,有助于进一步明确病变各阶段的真实微循环状态。

       本研究还发现,PLNM组原发肿瘤D及D*均有下降趋势,但组间差异均无统计学意义。D值是反映细胞密度和细胞外基质组成的重要指标,与细胞化程度及核-质比呈负相关[25],其预测PLNM的能力可能取决于局部细胞密集区而非病变整体的细胞密集度,因此与ROI勾画的范围及精确程度密切相关[37];D*值为血液微循环产生的伪扩散系数,同样可反映灌注特点,其与血流平均速度和毛细血管段平均长度成正比,但研究显示D*的可重复性不如f[38]。IVIM-DWI参数测量的稳定性还受到b值大小的影响,既往不同研究中b值的设定均未达成一致,所报道的结果间存在较大差异。MENG等[39]得出正常宫颈组织D*为(10.338±1.078)×10-3 mm2/s,而SONG等[29]的研究显示正常宫颈组织D*值为(17.35±8.92)×10-3 mm2/s,不同b值组合下IVIM-DWI所得到的各参数的稳定性、一致性以及最佳b值的选取等问题需要深入探究。

3.3 Ktrans、f、ADC联合预测PLNM的价值

       鉴于单一参数可能受到多方面因素影响,无法全面准确反映病变特征,本研究比较了经回归分析筛选出的Ktrans、f、ADC及三者联合应用预测PLNM的价值,其AUC值分别为0.707、0.808、0.745和0.893。IVIM-DWI可反映微观分子扩散信息,进而揭示肿瘤增殖及细胞密集度情况[31]。DCE-MRI则主要表征病变微循环灌注及血管通透性[40]。两种功能性技术定量参数Ktrans、f、ADC的联合预测代表了对肿瘤细胞密度特征和微环境灌注特征的综合分析,其诊断效能优于各单一参数,说明多参数MRI的联合应用对肿瘤侵袭性的评价更为全面,可在一定程度上克服单一方法具有局限性造成的结果偏倚及效能不足。

3.4 本研究的局限性

       本研究存在以下局限性:(1)为了保证感兴趣区勾画的可行性及所测功能参数的有效性,病灶直径小于1 cm的病例被排除,可能会导致结果出现偏差;(2)只纳入了最常见的宫颈鳞癌患者,预测模型是否适用于腺癌等其他组织学类型尚需进一步探究;(3)由于样本量较少,未进一步分析不同FIGO分期肿瘤各参数的变化。

4 结论

       ECC原发肿瘤DCE-MRI的Ktrans、Ve及IVIM-DWI的f、ADC均有助于鉴别PLNM。其中独立危险因素Ktrans、f、ADC具有较高的预测价值,三者联合应用可进一步提高诊断效能。功能性技术DCE-MRI和IVIM-DWI可实现肿瘤微环境改变的定量分析,有望成为ECC术前无创性评估PLNM的可靠手段,为临床医生制订宫颈癌精准治疗决策提供影像指导。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
GUO Q H, ZHU J, WU Y, et al. Validation of the prognostic value of various lymph node staging systems for cervical squamous cell carcinoma following radical surgery: a single-center analysis of 3, 732 patients[J/OL]. Ann Transl Med, 2020, 8(7): 485 [2023-06-03]. https://pubmed.ncbi.nlm.nih.gov/32395529/. DOI: 10.21037/atm.2020.03.27.
[3]
LI X L, YIN Y J, SHENG X, et al. Distribution pattern of lymph node metastases and its implication in individualized radiotherapeutic clinical target volume delineation of regional lymph nodes in patients with stage ⅠA to ⅡA cervical cancer[J/OL]. Radiat Oncol, 2015, 10: 40 [2023-07-27]. https://pubmed.ncbi.nlm.nih.gov/25886535/. DOI: 10.1186/s13014-015-0352-5.
[4]
YAHATA H, KODAMA K, OKUGAWA K, et al. Long-term follow up after sentinel node biopsy alone for early-stage cervical cancer[J]. Gynecol Oncol, 2022, 165(1): 149-154. DOI: 10.1016/j.ygyno.2022.01.031.
[5]
MARTH C, LANDONI F, MAHNER S, et al. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J/OL]. Ann Oncol, 2017, 28: iv72-iv83 [2024-01-27]. https://pubmed.ncbi.nlm.nih.gov/28881916/. DOI: 10.1093/annonc/mdx220.
[6]
WENZEL H H B, OLTHOF E P, BEKKERS R L M, et al. Primary or adjuvant chemoradiotherapy for cervical cancer with intraoperative lymph node metastasis - A review[J/OL]. Cancer Treat Rev, 2022, 102: 102311 [2023-10-16]. https://pubmed.ncbi.nlm.nih.gov/34773774/. DOI: 10.1016/j.ctrv.2021.102311.
[7]
XIAO M L, YAN B C, LI Y, et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis[J]. Eur Radiol, 2020, 30(3): 1405-1418. DOI: 10.1007/s00330-019-06461-9.
[8]
LUO L, LUO Q, TANG L. Diagnostic value and clinical significance of MRI and CT in detecting lymph node metastasis of early cervical cancer[J]. Oncol Lett, 2020, 19(1): 700-706. DOI: 10.3892/ol.2019.11180.
[9]
冉仪婷, 卑贵光. 体素内不相干运动成像及微血管密度与宫颈癌病理分级的相关性研究[J]. 磁共振成像, 2021, 12(7): 72-76. DOI: 10.12015/issn.1674-8034.2021.07.015.
RAN Y T, BEI G G. The correlation between intravoxel incoherent motion and microvessel density and pathological differentiation of cervical cancer[J]. Chin J Magn Reson Imag, 2021, 12(7): 72-76. DOI: 10.12015/issn.1674-8034.2021.07.015.
[10]
OLTHOF E P, VAN DER AA M A, ADAM J A, et al. The role of lymph nodes in cervical cancer: incidence and identification of lymph node metastases-a literature review[J]. Int J Clin Oncol, 2021, 26(9): 1600-1610. DOI: 10.1007/s10147-021-01980-2.
[11]
康立清, 郭素引, 赵梦, 等. IVIM-DWI联合DCE-MRI诊断直肠癌盆腔淋巴结转移的价值[J]. 磁共振成像, 2019, 10(8): 583-588. DOI: 10.12015/issn.1674-8034.2019.08.005.
KANG L Q, GUO S Y, ZHAO M, et al. Diagnostic value of the combination of IVIM-DWI and DCE-MRI in pelvic lymphatic metastasis of rectal cancer[J]. Chin J Magn Reson Imag, 2019, 10(8): 583-588. DOI: 10.12015/issn.1674-8034.2019.08.005.
[12]
MATANI H, PATEL A K, HORNE Z D, et al. Utilization of functional MRI in the diagnosis and management of cervical cancer[J/OL]. Front Oncol, 2022, 12: 1030967 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/36439416/. DOI: 10.3389/fonc.2022.1030967.
[13]
ZHENG X M, GUO W Q, DONG J N, et al. Prediction of early response to concurrent chemoradiotherapy in cervical cancer: value of multi-parameter MRI combined with clinical prognostic factors[J]. Magn Reson Imaging, 2020, 72: 159-166. DOI: 10.1016/j.mri.2020.06.014.
[14]
QIN F Y, PANG H T, MA J T, et al. Combined dynamic contrast enhanced MRI parameter with clinical factors predict the survival of concurrent chemo-radiotherapy in patients with 2018 FIGO ⅢCr stage cervical cancer[J/OL]. Eur J Radiol, 2021, 141: 109787 [2023-09-08]. https://pubmed.ncbi.nlm.nih.gov/34051683/. DOI: 10.1016/j.ejrad.2021.109787.
[15]
DAPPA E, ELGER T, HASENBURG A, et al. The value of advanced MRI techniques in the assessment of cervical cancer: a review[J]. Insights Imaging, 2017, 8(5): 471-481. DOI: 10.1007/s13244-017-0567-0.
[16]
XU J, MA Y L, MEI H B, et al. Diagnostic value of multimodal magnetic resonance imaging in discriminating between metastatic and non-metastatic pelvic lymph nodes in cervical cancer[J]. Int J Gen Med, 2022, 15: 6279-6288. DOI: 10.2147/IJGM.S372154.
[17]
ZHANG Y, ZHANG K Y, JIA H D, et al. Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer[J]. Acad Radiol, 2022, 29(7): 1048-1057. DOI: 10.1016/j.acra.2021.08.026.
[18]
LAOTHAMATAS I, MUBARAK H AL, REDDY A, et al. Multiparametric MRI of solid renal masses: principles and applications of advanced quantitative and functional methods for tumor diagnosis and characterization[J]. J Magn Reson Imaging, 2023, 58(2): 342-359. DOI: 10.1002/jmri.28718.
[19]
ALAREER H S N, JASIM TAHER H, DINAR ABDULLAH A. Dynamic contrast enhanced-MRI and apparent diffusion coefficient quantitation for differentiate hepatocellular carcinoma from hepatocellular adenoma[J]. Asian Pac J Cancer Prev, 2024, 25(3): 931-937. DOI: 10.31557/APJCP.2024.25.3.931.
[20]
ØVREBØ K M, GULLIKSRUD K, MATHIESEN B, et al. Assessment of tumor radioresponsiveness and metastatic potential by dynamic contrast-enhanced magnetic resonance imaging[J]. Int J Radiat Oncol Biol Phys, 2011, 81(1): 255-261. DOI: 10.1016/j.ijrobp.2011.04.008.
[21]
ELLINGSEN C, WALENTA S, HOMPLAND T, et al. The microenvironment of cervical carcinoma xenografts: associations with lymph node metastasis and its assessment by DCE-MRI[J]. Transl Oncol, 2013, 6(5): 607-617. DOI: 10.1593/tlo.13313.
[22]
HILLESTAD T, HOMPLAND T, FJELDBO C S, et al. MRI distinguishes tumor hypoxia levels of different prognostic and biological significance in cervical cancer[J]. Cancer Res, 2020, 80(18): 3993-4003. DOI: 10.1158/0008-5472.CAN-20-0950.
[23]
HAUGE A, WEGNER C S, GAUSTAD J V, et al. DCE-MRI of patient-derived xenograft models of uterine cervix carcinoma: associations with parameters of the tumor microenvironment[J/OL]. J Transl Med, 2017, 15(1): 225 [2023-11-09]. https://pubmed.ncbi.nlm.nih.gov/29100521/. DOI: 10.1186/s12967-017-1331-4.
[24]
ZHOU Y, LIU J Y, LIU C R, et al. Intravoxel incoherent motion diffusion weighted MRI of cervical cancer-Correlated with tumor differentiation and perfusion[J]. Magn Reson Imaging, 2016, 34(8): 1050-1056. DOI: 10.1016/j.mri.2016.04.009.
[25]
WONG B W. Lymphatic vessels in solid organ transplantation and immunobiology[J]. Am J Transplant, 2020, 20(8): 1992-2000. DOI: 10.1111/ajt.15806.
[26]
BAI Z Q, SHI J, YANG Z H, et al. Quantitative kinetic parameters of primary tumor can be used to predict pelvic lymph node metastasis in early-stage cervical cancer[J]. Abdom Radiol, 2021, 46(3): 1129-1136. DOI: 10.1007/s00261-020-02762-6.
[27]
ZHANG X M, DONG Y, SONG Q L, et al. The role of multiparametric magnetic resonance imaging in the study of primary tumor and pelvic lymph node metastasis in stage ⅠB1-ⅡA1 cervical cancer[J]. J Comput Assist Tomogr, 2020, 44(5): 750-758. DOI: 10.1097/RCT.0000000000001084.
[28]
VIDIĆ I, EGNELL L, JEROME N P, et al. Modeling the diffusion-weighted imaging signal for breast lesions in the b = 200 to 3000 s/mm2 range: quality of fit and classification accuracy for different representations[J]. Magn Reson Med, 2020, 84(2): 1011-1023. DOI: 10.1002/mrm.28161.
[29]
SONG J, LU Y, WANG X, et al. A comparative study of four diffusion-weighted imaging models in the diagnosis of cervical cancer[J]. Acta Radiol, 2022, 63(4): 536-544. DOI: 10.1177/02841851211002017.
[30]
GE Y X, HU S D, WANG Z, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer[J]. Eur Radiol, 2021, 31(5): 3347-3354. DOI: 10.1007/s00330-020-07359-7.
[31]
CHEN F J, YANG H P, ZHU R. Analysis of IVIM DWI for the clinical diagnosis of cervical cancer[J]. Panminerva Med, 2022, 64(3): 409-410. DOI: 10.23736/S0031-0808.20.03907-5.
[32]
SONG Q L, YU Y Y, ZHANG X M, et al. Value of MRI and diffusion-weighted imaging in diagnosing normal-sized pelvic lymph nodes metastases in patients with cervical cancer[J/OL]. Br J Radiol, 2022, 95(1138): 20200203 [2023-12-14]. https://pubmed.ncbi.nlm.nih.gov/33095657/. DOI: 10.1259/bjr.20200203.
[33]
HE X Q, WEI L N. Diagnostic value of lymph node metastasis by diffusion-weighted magnetic resonance imaging in cervical cancer[J]. J Cancer Res Ther, 2016, 12(1): 77-83. DOI: 10.4103/0973-1482.148726.
[34]
WANG Y, CHEN X, PU H, et al. Roles of DWI and T2-weighted MRI volumetry in the evaluation of lymph node metastasis and lymphovascular invasion of stage ⅠB-ⅡA cervical cancer[J]. Clin Radiol, 2022, 77(3): 224-230. DOI: 10.1016/j.crad.2021.12.011.
[35]
SHI B, DONG J N, ZHANG L X, et al. A combination analysis of IVIM-DWI biomarkers and T2WI-based texture features for tumor differentiation grade of cervical squamous cell carcinoma[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 2837905 [2023-12-19]. https://pubmed.ncbi.nlm.nih.gov/35360261/. DOI: 10.1155/2022/2837905.
[36]
PERUCHO J A U, CHIU K W H, WONG E M F, et al. Diffusion-weighted magnetic resonance imaging of primary cervical cancer in the detection of sub-centimetre metastatic lymph nodes[J/OL]. Cancer Imaging, 2020, 20(1): 27 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/32252829/. DOI: 10.1186/s40644-020-00303-4.
[37]
MI H L, SUO S T, CHENG J J, et al. The invasion status of lymphovascular space and lymph nodes in cervical cancer assessed by mono-exponential and bi-exponential DWI-related parameters[J]. Clin Radiol, 2020, 75(10): 763-771. DOI: 10.1016/j.crad.2020.05.024.
[38]
ANDREOU A, KOH D M, COLLINS D J, et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases[J]. Eur Radiol, 2013, 23(2): 428-434. DOI: 10.1007/s00330-012-2604-1.
[39]
MENG H, GUO X, ZHANG D. Multimodal magnetic resonance imaging in the diagnosis of cervical cancer and its correlation with the differentiation process of cervical cancer[J/OL]. BMC Med Imaging, 2023, 23(1): 144 [2023-12-09]. https://pubmed.ncbi.nlm.nih.gov/37773061/. DOI: 10.1186/s12880-023-01104-4.
[40]
KIM S H, CHO S H. Assessment of pelvic lymph node metastasis in FIGO ⅠB and ⅡA cervical cancer using quantitative dynamic contrast-enhanced MRI parameters[J]. Diagn Interv Radiol, 2020, 26(5): 382-389. DOI: 10.5152/dir.2020.19365.

上一篇 基于双参数MRI评估直肠磁敏感伪影对前列腺癌诊断影响的研究
下一篇 合成MRI在O-RADS MRI 3~5分卵巢附件肿物良恶性鉴别中的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2