分享:
分享到微信朋友圈
X
综述
定量磁化率成像在阿尔茨海默病诊断及病程进展跟踪中的应用研究
王瑞奇 詹逸珺 裴建

Cite this article as WANG R Q, ZHAN Y J, PEI J. Study on the application of quantitative susceptibility mapping in the diagnosis and progression tracking of Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(5): 187-191, 197.本文引用格式王瑞奇, 詹逸珺, 裴建. 定量磁化率成像在阿尔茨海默病诊断及病程进展跟踪中的应用研究[J]. 磁共振成像, 2024, 15(5): 187-191, 197. DOI:10.12015/issn.1674-8034.2024.05.030.


[摘要] 阿尔茨海默病(Aizheimer's disease, AD)是一种中枢神经系统的退行性疾病,脑内铁稳态失调被认为是AD重要的病理学特征之一。定量磁化率成像(quantitative susceptibility mapping, QSM)作为一种无创MRI技术,对铁的存在非常敏感,能够以高空间分辨率来量化局部组织磁化率。近年来,QSM技术已经对不同脑区的磁化率以及与其他病理生物标志物之间的关系进行了研究,本文旨在分析铁稳态失调对AD病理的影响以及QSM技术在AD早期诊断及病程跟踪方面的潜在应用价值,为AD的早期诊断及治疗提供客观的神经影像学依据。
[Abstract] Alzheimer's disease (AD) is a degenerative disease of the central nervous system, and dysregulation of iron homeostasis in the brain is one of the important pathological features of AD. Quantitative susceptibility mapping (QSM), a noninvasive magnetic resonance technique, is sensitive to the presence of iron and can quantify local tissue magnetization with high spatial resolution. In recent years, the QSM technique has been investigated on the magnetization rate of different brain regions and the relationship with other pathological biomarkers. The aim of this paper is to analyze the effect of iron homeostasis dysregulation on the pathology of AD as well as the potential value of the QSM technique in the early diagnosis of AD and tracking of the disease course, to provide objective neuroimaging basis for the early diagnosis and treatment of AD.
[关键词] 阿尔茨海默病;定量磁化率成像;磁共振成像;铁稳态失调;脑铁沉积
[Keywords] Alzheimer's disease;quantitative susceptibility mapping;magnetic resonance imaging;iron homeostasis disorder;brain iron deposition

王瑞奇    詹逸珺    裴建 *  

上海中医药大学附属龙华医院针灸科,上海 200032

通信作者:裴建,E-mail:longhuaacup@aliyun.com

作者贡献声明::裴建设计本综述的框架,对稿件重要内容进行了修改,获得了上海市科委重点科研项目、上海市卫健委海派中医流派传承研究项目和上海申康重大临床研究项目的资助;王瑞奇起草和撰写稿件,获取、分析和解释本研究的文献;詹逸珺分析本研究的文献,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 上海市科委重点科研项目 22Y11922900,18401970500 上海市卫健委海派中医流派传承研究项目 ZY (2021-2023)-0209-10、ZY (2018-2020)-CCCX-1006 上海申康重大临床研究项目 SHDC2020CR3091B
收稿日期:2023-12-21
接受日期:2024-04-30
中图分类号:R445.2  R749.16 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.05.030
本文引用格式王瑞奇, 詹逸珺, 裴建. 定量磁化率成像在阿尔茨海默病诊断及病程进展跟踪中的应用研究[J]. 磁共振成像, 2024, 15(5): 187-191, 197. DOI:10.12015/issn.1674-8034.2024.05.030.

0 引言

       针对脑科学展开的交叉学科已成为研究的前沿领域,随着神经影像学技术的不断发展与革新,脑效应的机制研究技术找到新的突破点。除了公认的β-淀粉样蛋白、神经纤维缠结、神经变性(amyloid-tau tangles-neurodegeneration, ATN)研究框架[1],研究证据表明,铁过量及铁稳态失调会导致阿尔茨海默病(Aizheimer's disease, AD)患者的神经退行性变[2]。最新研究利用一种新的成像探针技术首次证实,在大脑中与AD相关的淀粉样斑块出现的同一区域,铁的氧化还原也有所增加,进一步证实了铁与AD的关系[3]。目前,AD的诊断主要基于脑脊液分析或正电子发射断层扫描(positron emission computed tomography, PET)的结果,但脑脊液采集的有创性以及PET空间分辨率低、辐射暴露等弊端而应用受限。当前关于AD大脑变化的MRI技术多集中于结构或功能,相对较少的研究专门针对铁沉积的作用。定量磁化率成像(quantitative susceptibility mapping, QSM)技术以高空间分辨率来量化局部组织磁化率,可以评估与脱髓鞘、炎症、微出血和脑铁沉积相关的神经退行性疾病[4],而量化体内组织铁浓度是QSM在AD疾病中的最佳临床应用。QSM技术在神经退行性病变临床研究中的现有证据表明,QSM有助于更好地了解神经退行性疾病的潜在病理变化,为了更好地利用QSM技术为AD的早期筛查及诊疗提供支持,有必要对QSM技术在AD中的应用进行综合性的总结和评估。本文旨在分析铁稳态失调对AD病理学的影响以及QSM技术在AD早期诊断及病程跟踪方面的潜在应用价值,为进一步的AD中枢效应机制研究和临床应用提供参考。

1 QSM的基本成像原理

       QSM是基于梯度回波相位成像检测组织磁化率的技术,在经过相位解缠绕、背景场去除和磁化率反演等步骤重建QSM图像后,反映活体组织磁敏感物质分布情况及沉积量变化[5]。脑内不同物质依据其磁化率的不同可以分为正值的顺磁性物质(铁蛋白或脱氧血红素中的铁)和负值的抗磁性物质(如钙)[6],然而QSM测量的磁化率是非特异性的,可能来源于铁、钙、脂质、血红蛋白和髓鞘等物质。铁是影响大脑组织磁化率的主要贡献因素[7],大脑中铁主要以强顺磁性物质铁蛋白的形式储存,在外加磁场作用下会产生较强的局部磁场,组织中含铁量越多,则相位改变越显著,QSM信号越强。与其他MRI技术相比,QSM受其他因素影响较小,能够更好地反映脑区铁元素的变化,因此,在神经退行性疾病的研究中QSM主要用于监测脑铁含量的变化,有望成为研究AD的影像学生物标记物。

2 AD与铁稳态失调

2.1 AD铁异常沉积的来源

       组织化学和组织病理学研究表明,AD脑组织中铁代谢和积累发生改变,铁沉积与β-淀粉样蛋白(amyloid β-protein, Aβ)斑块和tau蛋白神经纤维缠结有关[8]。Aβ斑块形成后铁蛋白的聚集增加,tau蛋白功能障碍和错误折叠可能导致铁沉积,进一步增加氧化应激和神经元丢失[9]。神经胶质细胞活化和神经炎症已被证明是AD病理的一个显著特征,铁可能通过核因子-κB(nuclear factor kappa-B, NF-κB)介导的促炎细胞因子激活小胶质细胞,促进铁蛋白的表达,而导致细胞内铁沉积[10]。在AD铁积累的机制中,血脑屏障通透性增加和神经炎症是重要原因,大脑中的铁离子往往会随着年龄的增长而积累,血脑屏障的通透性在炎症刺激下发生改变,细胞膜上的铁转运蛋白上调,导致大脑中铁摄取和铁积累增加。

       铁沉积与AD或许是个双向的过程,铁异常沉积受Aβ和tau病理的影响,而过量铁沉积会加剧神经炎症,导致神经毒性,影响AD的发生、发展和预后。因此,铁沉积在AD发病机制中起着重要作用,AD大脑中铁积累的靶向治疗可能具有广阔的应用前景。

2.2 铁稳态失调对AD病理学的影响

       铁过载导致神经胶质细胞激活、Aβ斑块和tau蛋白缠结的形成,甚至神经元丢失,推动疾病的进展和加速认知能力下降[11]。淀粉样蛋白前体蛋白(amyloid precursor protein, APP)被定义为一种参与铁稳态的金属蛋白,在可溶性tau蛋白的帮助下,APP被运输到细胞膜上稳定膜铁转运蛋白1(ferroportin 1, FPN1),并促进铁的外排。用于切割APP的α-分泌酶和β-分泌酶受弗林蛋白酶调控,而弗林蛋白酶的转录受细胞内铁水平调控[12],在铁水平升高的情况下,α分泌酶活性被抑制,β分泌酶被激活,上调的APP被更多的β-分泌酶切割为Aβ40/42,加速了Aβ的沉积[13];同时,APP无法稳定FPN1,导致铁外排受损和铁沉积加重。铁稳态失调可能导致tau蛋白的错误折叠和其他神经毒性事件,相关体外研究证实,铁能够诱导tau蛋白磷酸化和tau蛋白聚集[14]。激活的小胶质细胞分泌乳铁蛋白(lactoferrin, LF)与APP相互作用,促进Aβ的形成[15];在铁水平升高时,Aβ的形成诱导小胶质细胞中促炎因子表达,进一步加剧神经炎症,形成恶性循环。另外,铁离子的过度积累增加了血脑屏障的通透性,增强了炎症反应,并影响了铁离子在脑中的再分配,进而改变脑铁代谢[16]。由此可见,AD脑内铁病理性沉积和AD的其他典型病理过程是相互促进的。

       了解AD复杂的病理生理学是发现AD新的治疗靶点和开发新药物的重点,既往研究证实铁稳态失调可能是AD治疗的潜在靶点,而QSM技术有望揭示与AD认知功能损害相关的病理性铁沉积,未来的研究应更深入探讨铁稳态失调的机制,以及在AD发展中的作用。

3 QSM可作为AD诊断的影像学标志物

3.1 QSM技术测定认知相关脑区的铁含量

       神经病理学研究进一步证实了脑铁沉积与AD患者认知能力加速下降之间的联系,特定大脑区域(如基底神经节[17])中的铁水平随着年龄的增长而增加,参与运动、认知和视觉功能的前中央皮层、前额叶皮层、枕叶皮层[18]及海马[19]也会随着年龄的增长而出现铁沉积,而QSM能够敏感测量不同脑区的铁含量,高磁化率脑区与AD的解剖异质性密切相关。

       基于体素的QSM分析显示,与年龄匹配的认知正常对照组相比,AD患者的海马体磁化率增加[20],在不同研究中也发现了额叶[21]、颞叶[22]磁化率的异常增加。有研究探索了磁化率与皮层厚度之间的相关性,发现AD患者皮层带磁化率广泛增加,非对称地覆盖了左侧大脑皮层、深部灰质核以及部分小脑皮层;同时,AD患者的右顶叶皮层和外侧枕叶皮层的磁化率增加,并与认知缺陷明显相关[23]。在一项关于皮质铁浓度的QSM研究中证实扣带回和岛叶是校正年龄、性别、受教育程度、区域体积等状态后,简易精神状态检查表(Minimum Mental State Examination, MMSE)评分的显著独立预测因子[24]。AD患者尾状核和壳核中的铁沉积明显增加[25],整体Aβ负荷和壳核磁化率值显著相关[26],不同深部灰质核团中壳核随着年龄的增长而增长最为明显[27]。有研究亦得出相同结论,在包括的所有认知障碍受试者中,AD组双侧尾状核和右侧壳核的QSM值变化最大,在疾病早期阶段,右尾状核的QSM值变化最强[28]。其他相关研究也支持壳核铁含量和海马萎缩一样可以作为早期诊断AD的影像学标志物[29, 30]

       因此,QSM技术为理解AD的发病机制提供了新的见解,通过评估AD患者的认知功能以及认知相关脑区铁含量的定量分析,提供对认知能力和疾病进展的评估,对于AD患者的精确诊断与疾病管理有重要意义。

3.2 QSM与公认的AD诊断性生物标记物相关联

       当前研究已证实QSM与脑脊液生物标志物(Aβ和tau)呈高度正相关[22, 31],与神经心理学评分呈负相关[32]。结合多模态成像研究相继开展,将QSM与PET相结合的研究表明,即使在健康成年人中,增加的脑铁也倾向于与Aβ共定位[33]。在一项使用Aβ PET的QSM研究显示,皮质磁化率增加与Aβ PET信号呈正相关[34],海马、颞叶和额叶的QSM越高,Aβ PET阳性的受试者的认知能力下降得越快[35]。一项横断面研究在进行全脑QSM检测时发现铁水平升高与Aβ和tau可能首先积累的皮质区域高度重合,特别是在颞叶,而且铁含量增加与脑萎缩和认知表现变化显著相关[23]。苍白球和壳核的磁化率与Aβ PET标准化摄取值比(standard uptake value ratio, SUVR)呈正相关,苍白球磁化率与tau PET SUVR呈强正相关[31]。有研究开发了一种基于QSM多元回归分析的Aβ PET阳性预测方法,在内侧前额叶、顶叶和颞叶皮质的QSM值可以较准确地预测Aβ PET阳性[36]。当前,QSM与tau病理学之间的相关性研究较少,然而,一项使用tau蛋白病小鼠模型的研究发现,胼胝体、纹状体、海马体和丘脑的磁化率存在差异,这些区域表现出较低的神经纤维缠结负荷,但反应性小胶质细胞和星形胶质细胞的标志物增加,再次证实了铁积累与AD病理学相关的观点[37]

       有少数研究将扩散加权成像(diffusion weighted imaging, DWI)与QSM相结合,重点研究深部灰质核团及白质的扩散特性与磁化率之间的相关性,发现纹状体中的扩散率和磁化率之间存在正相关[38],额顶叶白质中较低的神经突密度与相邻额顶叶灰质区域的较高磁化率相关[39]。一些QSM研究也纳入了功能MRI(functional MRI, fMRI),研究磁化率与皮质激活或功能连接测量之间的关系,顶叶中较高的皮质铁浓度与该额顶叶网络内的激活较低和较差的工作记忆性能有关,高皮质铁浓度会破坏额顶叶网络内的交流[40]

       将QSM技术与其他AD神经影像学标志物相结合,不仅可以从分子层面同时反映AD患者不同脑区的铁沉积以及AD的生理病理学信息,同时可以更敏感地捕捉AD患者脑部结构和功能的细微异常变化,有助于全面认识铁失调在AD病理生理学中作用,进一步阐明QSM在AD病理评估中的潜在应用。然而,考虑到铁可能反映了与Aβ、tau相关的神经认知功能障碍相关的过程,需要进一步研究降低脑Aβ斑块负荷和tau聚集减缓AD进展的治疗策略是否受局部铁积累程度的影响。

3.3 深部灰质核团磁化率受载脂蛋白E ɛ4等位基因影响

       越来越多的证据表明了受载脂蛋白E(apolipoprotein E, ApoE)在AD和年龄相关认知能力下降的发病机制中的重要性[41],目前广泛认为携带至少一个ApoE ɛ4等位基因是晚发型AD的最强遗传风险因素[42]。而APOE ɛ4等位基因加速了脑铁的积累[43],导致默认模式网络功能障碍,这先于Aβ病理。由于铁和ApoE ε4都与认知能力下降相关[17],ApoE ɛ4和皮质铁可能与AD进展中的认知能力障碍协同作用,另一方面,铁的异常可能部分是由于ApoE ɛ4表达的缺失所致[44],APOE ɛ4等位基因能够通过大脑中的铁积累增加患AD的风险。

       研究发现,在认知障碍患者中APOE ɛ4携带者深部灰质(苍白球、尾状核和壳核)的磁化率值明显高于APOE ɛ4非携带者,而APOE ɛ4携带状态与苍白球的磁化率值高度相关,尾状核和壳核的磁化率也受到ApoE ɛ4基因、年龄等其他因素的调节[45]。同时,有研究发现,ApoE ɛ4基因携带者海马和杏仁核具有更高的磁化率,可能与较高的铁沉积相关[46]。在一项基于中国AD患者脑铁水平调查的研究中发现,仅在APOE ɛ4携带者中,AD组左侧红核的QSM值与神经精神病学量表评分之间存在弱相关性,而在APOE ɛ4非携带者中,AD组左侧壳核的QSM值与神经精神量表评分之间存在很强的相关性[28]。携带APOE ε4等位基因的个体后扣带皮层、楔前叶和顶叶外侧皮层存在显著铁效应[47],且伴随着有效血脑屏障清除率降低[48],QSM和PET显示这与脑铁沉积及Aβ积累相关,APOE ɛ4载体本身的血脑屏障清除功能障碍可能与过量的铁负荷发挥协同作用,从而刺激导致AD病理的关键病理生理过程。

       上述研究表明APOE ɛ4基因可能对AD患者的脑铁水平有潜在影响,未来的研究应基于是否携带APOE ɛ4基因进行亚组分析,分析APOE ɛ4携带状态与不同脑区磁化率的相关性,进一步提高对AD的诊断特异性和诊断效能。

3.4 QSM技术可鉴别早发型AD的不同亚型

       QSM多用于报道晚发型AD(late-onset AD, LOAD)患者的深部灰质核团铁超载,并被提出作为AD病理的替代标志物[49],而与LOAD相比,早发型AD(early-onset AD, EOAD)患者的认知结局较差,QSM在较难诊断的EOAD中也具有优势。一项初步的T2*WI研究证实,铁的积累在EOAD患者中可能更为明显,除颞叶外,额叶、顶叶和枕叶也显著受累,脑萎缩在EOAD患者中更为普遍,除颞叶以外主要累及后顶叶和额顶叶区域[50]

       有研究对68例EOAD患者进行了QSM评估,发现与年龄匹配的高危受试者相比,所有EOAD亚型的深部灰质核团中铁负荷均增加,同时根据海马与皮质体积(HV:CTV)的比例将AD分为边缘主导型(LPMRI)、海马疏散型(HpSpMRI)和典型AD型(tADMRI)三类亚型,发现在EOAD亚型之间的脑铁分布有显著差异:HpSpMRI在深部灰质核团中磁化率值最高,而在LPMRI中,边缘结构中磁化率值最高,深部灰质核团能够有效鉴别HpSpMRI和认知正常(cognitive normal, CN)组。HpSpMRI患者在纹状体和丘脑的铁负荷较高,同时铁的积累并不涉及整个灰质核,而是局限于那些参与执行和视觉空间功能并与后顶叶和前额叶皮质相连的核的细分,也是受萎缩影响最大的部位;而在LPMRI患者中,铁负荷在边缘结构中更为明显[51]

       HpSp患者由于发病年龄早、临床表现不典型、结构MRI没有内侧颞叶萎缩经常导致诊断延迟,QSM技术对铁沉积的定量分析有助于EOAD患者的分类和非典型HpSp患者的识别。HpSp患者的认知能力下降更快,从临床角度来看,EOAD患者的准确分类也与预测疾病进展相关,而QSM将可能成为监测铁靶向治疗效果的有效工具。

4 QSM技术监测脑铁沉积水平变化及跟踪AD病程进展

       根据2021年国际工作组(International Working Group, IWG)制订的AD诊断标准,提出了“前驱期AD(prodromal Alzheimer's disease, pAD)”的新概念,这一阶段包括Aβ阳性的认知功能正常人群、主观认知下降(subjective cognitive decline, SCD)及轻度认知损害(mild cognitive impairment, MCI)患者,在pAD阶段,临床症状尚不明显,神经病理改变却已经形成,及时干预可能阻止或延缓进展到AD阶段[52]

       QSM技术可用于定量评估脑的氧代谢水平,磁化率值越高表示静脉血氧水平越低,认知评分越低,认知水平越差;左侧齿状核静脉的磁化率值与病程呈正相关,表明病程越长,左侧齿状核静脉的氧水平越低[53]。有研究发现AD患者双侧海马的平均脑血流量和脑耗氧代谢率值与MMSE评分呈正相关,认为海马中的脑耗氧代谢率可能是监测认知障碍的有用工具[54]。苍白球、壳核和黑质的磁化率值随着年龄的增长和认知能力下降而增加,每增加10年,则上述区域磁化率值提升0.001 7~0.005 3 ppm[32]。有研究发现,海马、杏仁核、楔前叶和丘脑的QSM值从CN、MCI到AD显著升高[55],而且随着AD的发展,苍白球和丘脑的QSM值能区分SCD与AD受试者以及MCI与AD受试者[30]。与MCI组相比,AD组在左侧海马区观察到的铁水平更高,QSM用于区别MCI和AD时敏感度为86.4%,特异度为68.8%[56]

       随着AD的病程进展,不同的大脑区域磁化率存在显著变化,通过QSM技术对SCD及MCI患者脑铁含量的研究可实现其在AD早期诊断中的价值。QSM技术以调节脑铁稳态为靶点,了解AD患者大脑铁沉积部位,定量评估患者的病损程度,可以为AD患者的早期筛查、诊断、精准个性化的治疗提供客观的影像学依据。但目前仍需要前瞻性、大样本、亚型分析研究来提供更为稳定和特异的结果,确定QSM技术是否可以作为AD疾病进展或治疗监测的生物标志物。

5 总结与展望

       监测铁沉积的空间分布和时间动态有助于更好地了解疾病的发病机制,既往研究也已证实AD病程演进不同阶段与脑铁含量的相关性,在疾病诊断、病情严重程度评估及治疗后疗效随访中均有很大潜力[57]。QSM可以预测Aβ相关的铁沉积,它可能比神经元密度或髓鞘形成的变化更早地检测到病理变化,因此铁沉积可以在其他神经元变化尚未表现时被检测到,提高对AD早期阶段的预测性能。与T2*WI[58]、磁敏感加权成像(susceptibility weighted imaging, SWI)[59]等方法捕捉组织局部磁化率的变化相比,QSM技术能够消除目标区域周围组织的干扰,更准确、更清晰、更具特异性地反映脑部结构的形状,提供生物组织内在特性信息。但目前QSM研究也具有一定的局限性:(1)非特异性,在AD脑研究中,脑组织磁化率的改变被认为主要是由铁沉积引起的;然而,它也可以由其他物质引起,如钙、脂质和髓磷脂等[60],目前的QSM方法无法识别异常静磁行为背后的化学结构。(2)多种含铁物质可能与Aβ和tau蛋白发生相互作用,目前尚不清楚QSM是否对不同状态下的铁同样敏感[61]。QSM技术的这些复杂性可能解释不同人群中看似矛盾的发现,在未来的研究当中,应该联合超高场MRI[62]和机器学习[63]算法等技术,进一步阐明QSM和已建立的AD生物标记物之间的精确关系。

[1]
JACK C J, BENNETT D A, BLENNOW K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. DOI: 10.1016/j.jalz.2018.02.018.
[2]
PENG Y, CHANG X, LANG M. Iron homeostasis disorder and Alzheimer's disease[J/OL]. Int J Mol Sci, 2021, 22(22): 12443 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/34830326/. DOI: 10.3390/ijms222212442.
[3]
WU Y, TORABI S F, LAKE R J, et al. Simultaneous Fe2+/Fe3+ imaging shows Fe3+ over Fe2+ enrichment in Alzheimer's disease mouse brain[J/OL]. Sci Adv, 2023, 9(16): eade7622 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/37075105/. DOI: 10.1126/sciadv.ade7622.
[4]
HAACKE E M, LIU S, BUCH S, et al. Quantitative susceptibility mapping: current status and future directions[J]. Magn Reson Imaging, 2015, 33(1): 1-25. DOI: 10.1016/j.mri.2014.09.004.
[5]
LIU J, LIU T, DE ROCHEFORT L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map[J]. Neuroimage, 2012, 59(3): 2560-2568. DOI: 10.1016/j.neuroimage.2011.08.082.
[6]
WANG Y, LIU T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker[J]. Magn Reson Med, 2015, 73(1): 82-101. DOI: 10.1002/mrm.25358.
[7]
LANGKAMMER C, SCHWESER F, KREBS N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study[J]. Neuroimage, 2012, 62(3): 1593-1599. DOI: 10.1016/j.neuroimage.2012.05.049.
[8]
AILLAUD I, FUNKE S A. Tau aggregation inhibiting peptides as potential therapeutics for Alzheimer disease[J]. Cell Mol Neurobiol, 2023, 43(3): 951-961. DOI: 10.1007/s10571-022-01230-7.
[9]
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
[10]
STREIT W J, ROTTER J, WINTER K, et al. Droplet degeneration of hippocampal and cortical neurons signifies the beginning of neuritic plaque formation[J]. J Alzheimers Dis, 2022, 85(4): 1701-1720. DOI: 10.3233/JAD-215334.
[11]
WANG F, WANG J, SHEN Y, et al. Iron dyshomeostasis and ferroptosis: a new Alzheimer's disease hypothesis?[J/OL]. Front Aging Neurosci, 2022, 14: 830569 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/35391749/. DOI: 10.3389/fnagi.2022.830569.
[12]
ZHANG Y, GAO X, BAI X, et al. The emerging role of furin in neurodegenerative and neuropsychiatric diseases[J/OL]. Transl Neurodegener, 2022, 11(1): 39 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/35996194/. DOI: 10.1186/s40035-022-00313-1.
[13]
GREENOUGH M A. The role of presenilin in protein trafficking and degradation-implications for metal homeostasis[J]. J Mol Neurosci, 2016, 60(3): 289-297. DOI: 10.1007/s12031-016-0826-4.
[14]
LEI P, AYTON S, FINKELSTEIN D I, et al. Tau deficiency induces Parkinsonism with dementia by impairing APP-mediated iron export[J]. Nat Med, 2012, 18(2): 291-295. DOI: 10.1038/nm.2613.
[15]
TSATSANIS A, MCCORKINDALE A N, WONG B X, et al. The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Aβ burden through induction of APP amyloidogenic processing[J]. Mol Psychiatry, 2021, 26(10): 5516-5531. DOI: 10.1038/s41380-021-01248-1.
[16]
CHIOU B, NEAL E H, BOWMAN A B, et al. Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier[J]. J Cereb Blood Flow Metab, 2019, 39(11): 2117-2131. DOI: 10.1177/0271678X18783372.
[17]
AYTON S, WANG Y, DIOUF I, et al. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology[J]. Mol Psychiatry, 2020, 25(11): 2932-2941. DOI: 10.1038/s41380-019-0375-7.
[18]
BURGETOVA R, DUSEK P, BURGETOVA A, et al. Age-related magnetic susceptibility changes in deep grey matter and cerebral cortex of normal young and middle-aged adults depicted by whole brain analysis[J]. Quant Imaging Med Surg, 2021, 11(9): 3906-3919. DOI: 10.21037/qims-21-87.
[19]
BLACK E, RASCH A, WIMMER T, et al. The effects of age, genotype and diet on hippocampal subfield iron dysregulation and Alzheimer's disease biomarkers in an ApoE mouse model[J]. Eur J Neurosci, 2023, 57(6): 1033-1047. DOI: 10.1111/ejn.15933.
[20]
KAN H, UCHIDA Y, ARAI N, et al. Simultaneous voxel-based magnetic susceptibility and morphometry analysis using magnetization-prepared spoiled turbo multiple gradient echo[J/OL]. NMR Biomed, 2020, 33(5): e4272 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/32043682/. DOI: 10.1002/nbm.4272.
[21]
BULK M, ABDELMOULA W M, GEUT H, et al. Quantitative MRI and laser ablation-inductively coupled plasma-mass spectrometry imaging of iron in the frontal cortex of healthy controls and Alzheimer's disease patients[J/OL]. Neuroimage, 2020, 215: 116808 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/32289451/. DOI: 10.1016/j.neuroimage.2020.116808.
[22]
SACCHI L, CONTARINO V E, SIGGILLINO S, et al. Banks of the superior temporal sulcus in Alzheimer's disease: a pilot quantitative susceptibility mapping study[J]. J Alzheimers Dis, 2023, 93(3): 1125-1134. DOI: 10.3233/JAD-230095.
[23]
YANG A, DU L, GAO W, et al. Associations of cortical iron accumulation with cognition and cerebral atrophy in Alzheimer's disease[J]. Quant Imaging Med Surg, 2022, 12(9): 4570-4586. DOI: 10.21037/qims-22-7.
[24]
KIM H W, LEE S, YANG J H, et al. Cortical iron accumulation as an imaging marker for neurodegeneration in clinical cognitive impairment spectrum: a quantitative susceptibility mapping study[J]. Korean J Radiol, 2023, 24(11): 1131-1141. DOI: 10.3348/kjr.2023.0490.
[25]
GUAN X, GUO T, ZHOU C, et al. Altered brain iron depositions from aging to Parkinson's disease and Alzheimer's disease: a quantitative susceptibility mapping study[J/OL]. Neuroimage, 2022, 264: 119683 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/36243270/. DOI: 10.1016/j.neuroimage.2022.119683.
[26]
TIEPOLT S, RULLMANN M, JOCHIMSEN T H, et al. Quantitative susceptibility mapping in β-Amyloid PET-stratified patients with dementia and healthy controls-A hybrid PET/MRI study[J/OL]. Eur J Radiol, 2020, 131: 109243 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/32916411/. DOI: 10.1016/j.ejrad.2020.109243.
[27]
LI G, TONG R, ZHANG M, et al. Age-dependent changes in brain iron deposition and volume in deep gray matter nuclei using quantitative susceptibility mapping[J/OL]. NeuroImage, 2023, 269: 119923 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/36739101/. DOI: 10.1016/j.neuroimage.2023.119923.
[28]
HUANG C, LI J, LIU C, et al. Investigation of brain iron levels in Chinese patients with Alzheimer's disease[J/OL]. Front Aging Neurosci, 2023, 15: 1168845 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/37284016/. DOI: 10.3389/fnagi.2023.1168845.
[29]
VINAYAGAMANI S, SHEELAKUMARI R, SABARISH S, et al. Quantitative susceptibility mapping: technical considerations and clinical applications in neuroimaging[J]. J Magn Reson Imaging, 2021, 53(1): 23-37. DOI: 10.1002/jmri.27058.
[30]
LI D, LIU Y, ZENG X, et al. Quantitative study of the changes in cerebral blood flow and iron deposition during progression of Alzheimer's disease[J]. J Alzheimers Dis, 2020, 78(1): 439-452. DOI: 10.3233/JAD-200843.
[31]
SATO R, KUDO K, YAMAGUCHI A, et al. Correlation analysis between magnetic susceptibility in MRI and amyloid β in PET[J/OL]. Alzheimer's & Dementia, 2020, 16(S4): e40064 [2023-12-21]. https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.040064. DOI: https://doi.org/10.1002/alz.040064.
[32]
COGSWELL P M, WISTE H J, SENJEM M L, et al. Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers[J/OL]. Neuroimage, 2021, 224: 117433 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/33035667/. DOI: 10.1016/j.neuroimage.2020.117433.
[33]
COGSWELL P M, FAN A P. Multimodal comparisons of QSM and PET in neurodegeneration and aging[J/OL]. NeuroImage, 2023, 273: 120068 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/37003447/. DOI: https://doi.org/10.1016/j.neuroimage.2023.120068.
[34]
VAN BERGEN J, LI X, QUEVENCO F C, et al. Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age[J/OL]. Neuroimage, 2018, 174: 308-316 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/29548847/. DOI: 10.1016/j.neuroimage.2018.03.021.
[35]
AYTON S, FAZLOLLAHI A, BOURGEAT P, et al. Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline[J]. Brain, 2017, 140(8): 2112-2119. DOI: 10.1093/brain/awx137.
[36]
IKEBE Y, SATO R, AMEMIYA T, et al. Prediction of amyloid positron emission tomography positivity using multiple regression analysis of quantitative susceptibility mapping[J]. Magn Reson Imaging, 2023, 103: 192-197. DOI: 10.1016/j.mri.2023.08.002.
[37]
O'CALLAGHAN J, HOLMES H, POWELL N, et al. Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease[J]. Neuroimage, 2017, 159: 334-345. DOI: 10.1016/j.neuroimage.2017.08.003.
[38]
YANG L, CHENG Y, SUN Y, et al. Combined application of quantitative susceptibility mapping and diffusion kurtosis imaging techniques to investigate the effect of iron deposition on microstructural changes in the brain in Parkinson's disease[J/OL]. Front Aging Neurosci, 2022, 14: 792778 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/35370619/. DOI: 10.3389/fnagi.2022.792778.
[39]
ZACHARIOU V, BAUER C E, PAPPAS C, et al. High cortical iron is associated with the disruption of white matter tracts supporting cognitive function in healthy older adults[J]. Cerebral Cortex, 2023, 33(8): 4815-4828. DOI: 10.1093/cercor/bhac382.
[40]
ZACHARIOU V, BAUER C E, SEAGO E R, et al. Cortical iron disrupts functional connectivity networks supporting working memory performance in older adults[J/OL]. NeuroImage, 2020, 223: 117309 [2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/32861788/. DOI: https://doi.org/10.1016/j.neuroimage.2020.117309.
[41]
FRISONI G B, ALTOMARE D, THAL D R, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised[J]. Nat Rev Neurosci, 2022, 23(1): 53-66. DOI: 10.1038/s41583-021-00533-w.
[42]
SERRANO-POZO A, DAS S, HYMAN B T. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. Lancet Neurol, 2021, 20(1): 68-80. DOI: 10.1016/S1474-4422(20)30412-9.
[43]
AYTON S, FAUX N G, BUSH A I. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE[J/OL]. Nat Commun, 2015, 6: 6760 [2023-11-28]. https://pubmed.ncbi.nlm.nih.gov/25988319/. DOI: 10.1038/ncomms7760.
[44]
MA J, QIAN C, BAO Y, et al. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice[J/OL]. Redox Biology, 2021, 40: 101865 [2023-11-28]. https://pubmed.ncbi.nlm.nih.gov/33493903/. DOI: 10.1016/j.redox.2021.101865.
[45]
YIM Y, CHOI J D, CHO J H, et al. Magnetic susceptibility in the deep gray matter may be modulated by apolipoprotein E4 and age with regional predilections: a quantitative susceptibility mapping study[J]. Neuroradiology, 2022, 64(7): 1331-1342. DOI: 10.1007/s00234-021-02859-9.
[46]
NIR T M, ZHU A H, GARI I B, et al. Effects of ApoE4 and ApoE2 genotypes on subcortical magnetic susceptibility and microstructure in 27, 535 participants from the UK Biobank[J]. Pac Symp Biocomput, 2022, 27: 121-132. DOI: 10.1142/9789811250477_0012.
[47]
KAGERER S M, VAN BERGEN J, LI X, et al. APOE4 moderates effects of cortical iron on synchronized default mode network activity in cognitively healthy old-aged adults[J/OL]. Alzheimers Dement (Amst), 2020, 12(1): e12002 [2023-11-28]. https://pubmed.ncbi.nlm.nih.gov/32211498/. DOI: 10.1002/dad2.12002.
[48]
UCHIDA Y, KAN H, SAKURAI K, et al. APOE ɛ4 dose associates with increased brain iron and β-amyloid via blood-brain barrier dysfunction[J]. J Neurol Neurosurg Psychiatry, 2022, 93: 772-778. DOI: 10.1136/jnnp-2021-328519.
[49]
SPOTORNO N, ACOSTA-CABRONERO J, STOMRUD E, et al. Relationship between cortical iron and tau aggregation in Alzheimer's disease[J]. Brain, 2020, 143(5): 1341-1349. DOI: 10.1093/brain/awaa089.
[50]
BULK M, KENKHUIS B, van der GRAAF L M, et al. Postmortem T2*-Weighted MRI imaging of cortical iron reflects severity of Alzheimer's disease[J]. J Alzheimers Dis, 2018, 65(4): 1125-1137. DOI: 10.3233/JAD-180317.
[51]
KUCHCINSKI G, PATIN L, LOPES R, et al. Quantitative susceptibility mapping demonstrates different patterns of iron overload in subtypes of early-onset Alzheimer's disease[J]. Eur Radiol, 2023, 33(1): 184-195. DOI: 10.1007/s00330-022-09014-9.
[52]
中华医学会神经病学分会痴呆与认知障碍学组, 中国医师协会神经内科医师分会认知障碍疾病专业委员会. 前驱期阿尔茨海默病的简易筛查中国专家共识(2023年版)[J]. 中华神经医学杂志, 2023, 22(5): 433-444. DOI: 10.3760/cma.j.cn115354-20230330-00191.
Dementia and Cognitive Impairment Group of Chinese Society of Neurology, Cognitive Disorders Committee of Neurology Branch of Chinese Medical Doctor Association. Chinese expert consensus on brief screening of prodromal Alzheimer's disease (2023)[J]. Chin J Neuromed, 2023, 22(5): 433-444. DOI: 10.3760/cma.j.cn115354-20230330-00191.
[53]
LIU Y, DONG J, SONG Q, et al. Correlation between cerebral venous oxygen level and cognitive status in patients with Alzheimer's disease using quantitative susceptibility mapping[J/OL]. Front Neurosci, 2020, 14: 570848 [2023-11-28]. https://pubmed.ncbi.nlm.nih.gov/33536866/. DOI: 10.3389/fnins.2020.570848.
[54]
YANG A, ZHUANG H, DU L, et al. Evaluation of whole-brain oxygen metabolism in Alzheimer's disease using QSM and quantitative BOLD[J/OL]. Neuroimage, 2023, 282: 120381 [2024-3-28]. https://pubmed.ncbi.nlm.nih.gov/37734476/. DOI: 10.1016/j.neuroimage.2023.120381.
[55]
KIM H G, PARK S, RHEE H Y, et al. Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease[J]. Neuroimage Clin, 2017, 16: 429-438. DOI: 10.1016/j.nicl.2017.08.019.
[56]
MANDAL P K, GOEL A, BUSH A I, et al. Hippocampal glutathione depletion with enhanced iron level in patients with mild cognitive impairment and Alzheimer's disease compared with healthy elderly participants[J/OL]. Brain Commun, 2022, 4(5): fcac215 [2023-11-28]. https://pubmed.ncbi.nlm.nih.gov/36072647/. DOI: 10.1093/braincomms/fcac215.
[57]
UCHIDA Y, KAN H, SAKURAI K, et al. Quantitative susceptibility mapping as an imaging biomarker for Alzheimer's disease: The expectations and limitations[J/OL]. Front Neurosci, 2022, 16: 938092 [2023-11-28]. https://pubmed.ncbi.nlm.nih.gov/35992906/. DOI: 10.3389/fnins.2022.938092.
[58]
WANG D, LI Y Y, LUO J H, et al. Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging[J]. Arch Gerontol Geriatr, 2014, 59(2): 439-449. DOI: 10.1016/j.archger.2014.04.002.
[59]
PARK M, MOON Y, HAN S H, et al. Motor cortex hypointensity on susceptibility-weighted imaging: a potential imaging marker of iron accumulation in patients with cognitive impairment[J]. Neuroradiology, 2019, 61(6): 675-683. DOI: 10.1007/s00234-019-02159-3.
[60]
DEISTUNG A, SCHÄFER A, SCHWESER F, et al. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength[J]. Neuroimage, 2013, 65: 299-314. DOI: 10.1016/j.neuroimage.2012.09.055.
[61]
EVERETT J, CÉSPEDES E, SHELFORD L R, et al. Evidence of redox-active iron formation following aggregation of ferrihydrite and the Alzheimer's disease peptide β-amyloid[J]. Inorg Chem, 2014, 53(6): 2803-2809. DOI: 10.1021/ic402406g.
[62]
TUZZI E, BALLA D Z, LOUREIRO J, et al. Ultra-High field MRI in Alzheimer's disease: effective transverse relaxation rate and quantitative susceptibility mapping of human brain in vivo and ex vivo compared to histology[J]. J Alzheimers Dis, 2020, 73(4): 1481-1499. DOI: 10.3233/JAD-190424.
[63]
KIM H G, PARK S, RHEE H Y, et al. Evaluation and prediction of early Alzheimer's disease using a machine learning-based optimized combination-feature set on gray matter volume and quantitative susceptibility mapping[J]. Curr Alzheimer Res, 2020, 17(5): 428-437. DOI: 10.2174/1567205017666200624204427.

上一篇 磁共振3D-T1WI及扩散成像在阿尔茨海默病中的研究进展
下一篇 DTI-ALPS在脑类淋巴系统相关神经系统疾病中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2