分享:
分享到微信朋友圈
X
综述
磁共振T1 mapping及ECV技术在扩张型心肌病中的应用进展
赵凯迪 曹新山

Cite this article as ZHAO K D, CAO X S. Research progress of T1 mapping MRI in dilated cardiomyopathy[J]. Chin J Magn Reson Imaging, 2024, 15(5): 204-208.本文引用格式赵凯迪, 曹新山. 磁共振T1 mapping及ECV技术在扩张型心肌病中的应用进展[J]. 磁共振成像, 2024, 15(5): 204-208. DOI:10.12015/issn.1674-8034.2024.05.033.


[摘要] 扩张型心肌病(dilated cardiomyopathy, DCM)是由心室腔扩张或者扩大而导致心肌收缩功能受损,这种病症属于一种常见的、有明显家族史的心血管系统疾病。心肌磁共振钆对比剂延迟强化(late gadolinium enhancement, LGE)可被广泛用作无创心肌纤维化诊断的有效手段,但其对弥漫性心肌纤维化诊断的精确程度有所欠缺,因此在临床应用中存在一定的局限性。近年来,T1 mapping技术的临床应用为医学影像学带来了巨大的变革,特别是对于弥漫性心肌纤维化的诊断、识别、预后判断等,它可以以极高的精确度检测出T1值以及细胞外容积(extracellular volume, ECV),对DCM进行全方位评估。本文就T1 mapping及ECV在DCM患者的早期诊断、相关疾病鉴别、风险分层及预后评估和治疗疗效评估中的最新应用进展予以总结,旨在提高DCM的早期检出率,对患者的病情进展进行更加准确的判断,从而为患者制订出最佳的治疗策略,改善患者的预后,并有望为将来的研究提供参考。
[Abstract] Dilated cardiomyopathy (DCM) is a common disease of the cardiovascular system with a strong family history of impaired systolic function caused by the expansion or enlargement of the ventricular cavity. Late gadolinium enhancement (LGE) can be widely used as an effective means for the diagnosis of noninvasive myocardial fibrosis, but its accuracy in the diagnosis of diffuse myocardial fibrosis is lacking, so it has certain limitations in clinical application. In recent years, the clinical application of T1 mapping technology has brought great changes to medical imaging, especially for the diagnosis, recognition and prognosis of diffuse myocardial fibrosis. It can detect T1 value and extracellular volume (ECV) with high accuracy. Conduct a comprehensive evaluation of DCM. This paper summarized the latest progress in the application of T1 mapping and ECV in the early diagnosis, identification of related diseases, risk stratification, prognosis assessment and therapeutic efficacy assessment of DCM patients, aiming to improve the early detection rate of DCM and make more accurate judgment on the progression of patients' disease, so as to formulate the best treatment strategy for patients. It is expected to improve the prognosis of patients and provide a reference direction for future research.
[关键词] 扩张型心肌病;心肌弥漫纤维化;T1 mapping;细胞外体积分数;磁共振成像;早期诊断
[Keywords] dilated cardiomyopathy;myocardial diffuse fibrosis;T1 mapping;extracellular volume fraction;magnetic resonance imaging;early diagnosis

赵凯迪    曹新山 *  

滨州医学院附属医院放射科,滨州 256600

通信作者:曹新山,E-mail:byfycxs@126.com

作者贡献声明::曹新山设计本研究方案,对稿件重要内容进行了修改;赵凯迪起草和撰写稿件,获取、分析、解释本研究的数据;曹新山获得了山东省科技发展计划项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 山东省科技发展计划项目 2010GSF10265
收稿日期:2024-01-24
接受日期:2024-04-23
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.05.033
本文引用格式赵凯迪, 曹新山. 磁共振T1 mapping及ECV技术在扩张型心肌病中的应用进展[J]. 磁共振成像, 2024, 15(5): 204-208. DOI:10.12015/issn.1674-8034.2024.05.033.

0 引言

       扩张型心肌病(dilated cardiomyopathy, DCM)是以左心室扩张和心肌收缩力减弱为主要特征的心脏疾病,其病理特征为心肌细胞严重坏死及纤维化[1, 2],这些坏死会导致心肌功能受损,从而影响心肌的正常功能,并可能合并多种心血管系统的病变。流行病学研究显示,普通人群DCM患病率为0.25%~0.4%[3]。遗传和各种其他因素对DCM的发展有很大影响,心肌纤维蛋白、肌节蛋白和细胞骨架蛋白的基因突变导致DCM的发生。然而,很大一部分DCM患者本质上是特发性的,其病因既复杂又多样,机制尚未完全明确[4]。DCM晚期可能会导致严重的后果,包括严重的心力衰竭、严重的心律失常、血栓形成以及心源性猝死,其中在导致心力衰竭的所有病因中,DCM排第3名[5]。据相关报道该病一年的死亡率为25%~30%,五年的死亡率高达50%[6]。如果能够早期准确地识别DCM,就可以根据病情采取最佳的治疗策略,从而有效地改善患者的预后。

       伴随着心脏磁共振(cardiac magnetic resonance, CMR)设备、扫描序列及新技术不断地涌现,MRI越来越多地应用于评估心脏疾病,对心脏疾病的早期诊断、个性化治疗决策制定、风险分层及了解潜在病理生理过程[7]均具有重要意义,已逐渐成为心脏病变的重要检查手段。心肌磁共振钆对比剂延迟强化(late gadolinium enhancement, LGE)技术可以准确地检测心脏的结构、功能和心肌组织特征的变化,从而为患者提供个体化的治疗方案,极大地改善患者的预后[8]。由于LGE技术需长时间的前期准备工作,且需要对比瘢痕组织与邻近正常组织之间信号强度的差异,因此在评估弥漫性纤维化方面能力有限[9]。此外,由于LGE技术需要在注射对比剂之后才能显示出心脏病变区域与正常组织区域的影像对比[10],所以不适用于儿童和肾功能不全的患者。近年来,T1 mapping技术在DCM方面得到了一系列的临床应用,克服了LGE技术的局限性[11],可以检测更加细微的弥漫性心肌纤维化,是常规CMR检查的重要补充[12]。曾有研究[13]结果表明,在DCM组中,初始的T1值显著的上升,而增强T1值和ECV值都显著的下降,通过对患者的受试者工作特征(receiver operating characteristic, ROC)曲线进行分析,ROC曲线的下降幅度达到了0.84(P=0.015),这说明T1 mapping和ECV可以有效地提升DCM的诊断准确性。目前,对于T1 mapping及ECV技术在DCM心肌纤维化的诊断应用、危险分层及预后评估最为广泛,但对于区分临床症状及CMR影像表现与DCM相似的疾病及DCM治疗后T1值及ECV与重大不良心血管事件的相关性研究等仍有进一步优化的空间。因此,本文阐述了T1 mapping及ECV技术的原理及常用序列,且着重就T1 mapping及ECV在DCM患者的早期诊断、相关疾病鉴别、风险分层及预后评估和治疗疗效评估中的最新应用进展进行综述,对未来的科研方向提出展望,希望能够提高DCM 的早期检出率,更好地服务于临床,提高患者的预后及生存质量。

1 T1 mapping技术的原理及常用序列

       目前临床使用的心脏T1 mapping技术最早是由1970年开发的原始Look-Locker光谱方法发展而来[14],可无创性评估心肌组织特征。利用反转恢复(inversion recovery, IR)和饱和恢复(saturation recovery, SR)技术,在不同时间采集信号,经过一系列复杂的公式计算和相应的后处理得到心肌组织T1值[15]。为了更准确地获取DCM患者的T1值,可以使用复杂的数学模型和后期处理技术,测量出精确的数据,然后把这些测量值赋予每个像素,最后生成图像[16]。通过T1 mapping技术能够准确地诊断出心肌梗死、弥漫性纤维化、心力衰竭以及心肌淀粉样变等疾病。然而由于该方法的准确度取决于许多复杂的环境条件,如序列、场强以及其他相关因素,使得它的结果缺乏可比性。细胞外容积分数(extracellular volume, ECV)是一个衡量心肌组织结构和功能的重要指标,并且其受到外界影像影响变化较小[17],因此近几年T1值及ECV的检查方法得到了广泛应用。初始T1值不需对比剂就可评价心肌的特性[18],能够精确地衡量心肌纤维化的状态,增强前后的T1值结合患者的血细胞比容,通过复杂的公式或者ECV map得到具体的ECV值,从而有助于诊断出疾病的严重程度[19]。T1值增高常见于心肌纤维化、心肌水肿、淀粉样物质沉积[20]等相关疾病,T1值减低常见于Fabry病[21]、脂肪浸润、铁沉积[22]等相关疾病。同时心肌水肿、心肌纤维化、淀粉样沉积[23]等相关疾病也可使ECV升高。

       关于T1 mapping技术最经典的序列是基于改良的Look-Locker反转恢复(modified look-locker inversion recovery, MOLLI)系列。这种序列利用心电图门控来实现间歇性图像采集,从而能够准确定位心动周期的指定阶段,并且可以一次性采集17个心动活动周期[24]。由于屏气时间太长,在实际临床应用中并非所有患者都可以很好配合。缩短MOLLI(shortened MOLLI, SHMOLLI)序列进一步解决了基于MOLLI的一些临床局限性[25],其优势包括屏气时间短、心率独立性、灵活性、实用性等[26, 27],使病情较重的患者更容易完成检查。通过饱和恢复单次采集(saturation recovery single shot acquisition, SASHA)可以一次屏气进行10个心动周期的饱和恢复单次采集,以便更加准确地观察患者的心脏功能变化。SASHA的优势是不需要对T1值进行校正,不受心率影像,准确度高[27]。尽管SHMOLLI、SASHA序列有短成像时间、心率独立性以及精确度高等优点,但是MOLLI的序列仍然是最常用和最主要的序列[2]

2 T1 mapping及ECV在DCM的应用

2.1 T1 mapping对DCM的早期诊断

       T1 mapping可以在像素基础上量化T1值,对DCM的心肌纤维化进行早期诊断[28]。生物组织有固定的T1值,不同T1 mapping都有其定量特性,得到的T1值各不相同[29]。DCM患者普遍有弥漫性心肌纤维化的现象,纤维化会造成心肌细胞T1值的增高,且其T1均值与心肌纤维化程度呈正比例关系[30],所以近几年研究人员大多使用T1 mapping的检查方法对DCM进行早期诊断,尤其是弥漫性心肌纤维化,并可以在病理结果公布之前开始接受治疗[31]。GAO等[32]研究纳入41名LGE阴性的DCM患者和79名健康对照者,结果发现虽然早期心肌纤维化在LEG中没有发现异常,但是通过检测初始T1值和ECV的升高可以发现病变区,因此,T1 mapping和ECV是检测早期心肌纤维化有效方法。AUS等[33]的研究结果与GAO等[32]的研究结果相似,他们进行T1 mapping技术检查以计算ECV值,发现ECV在DCM早期阶段就已经升高,但他们还对伴有轻度左心室功能障碍的早期DCM患者(射血分数45%~55%)进行研究,结果发现31%的早期DCM患者ECV值高于健康志愿者组,其研究结果较GAO等[32]的研究更全面。同时T1 mapping技术也可以评估反映儿童DCM患者弥漫性心肌纤维化的ECV值,并分析不同左心室致密化不全心肌病表型儿童和青少年的临床和功能数据的相关性。AL-WAKEEL-MARQUARD等[34]前瞻性纳入33例DCM、肥厚性心肌病患者以及健康对照进行比较,受试者接受了标准化CMR和MOLLI序列检查,结果发现在小儿DCM中,ECV升高与年龄更小有关。上述一系列研究表明DCM患者的T1值及ECV随心肌纤维化程度的增加而增加,T1值与心肌纤维化程度呈现出正相关,即使传统LGE的影像图像并没有显现出异常强化灶,但大部分T1 mapping的影像图像也可以显示出与健康对照组的显著差异,同时发现LEG对DCM的早期的诊断准确性、敏感性和特异性较T1 mapping及ECV技术早期诊断效果略差。因此T1 mapping和ECV是诊断早期心肌弥漫性纤维化的重要方法。

2.2 T1 mapping用于鉴别DCM与其他心肌疾病

       研究表明T1 mapping技术能用于DCM与缺血性心脏疾病的诊断鉴别。THONGSONGSANG等[35]回顾性分析缺血性心脏病患者及DCM患者,发现DCM组心肌纤维化的位置、形态及面积均不同于缺血性心脏病组,对鉴别缺血性心脏病与DCM具有较高的临床意义。T1 mapping还可用于鉴别DCM与HCM。EL-REWAIDY等[36]应用CMR MOLLI序列进行T1 mapping扫描,得到T1值及ECV的均值,并将其初步应用于评价DCM及HCM患者心肌纤维化情况,从而发现心肌病组心肌T1值大于正常组,DCM组大于HCM组,但是该研究并没有对图像质量差异的具体原因进行分析,需要学者们进一步研究。该技术还具有区分早期DCM患者和运动员心脏的能力,一项纳入21例有规律有氧运动史的男性和16例没有运动史且确诊为DCM患者的研究[37]结果显示,DCM患者的初始T1值、ECV和T2弛豫时间显著增加,且该研究发现T1值是运动员和DCM患者之间唯一的独立鉴别参数。用ROC曲线分析运动员与DCM患者鉴别的AUC为0.91(P<0.001)。该研究还发现T1值及ECV可用于识别有突发死亡风险的运动员。但是该研究纳入的样本量较少,T1值有重叠,所以不能较准确地计算出有突发死亡风险的患者的相关T1值、ECV的阈值,因此后续应增加新的病例,从而提供更多的信息,进而对该阈值进行准确预测。

       在DCM的鉴别诊断中,因为冠状动脉疾病、瓣膜疾病、左心室致密化不全心肌病和围产期心肌病与DCM具有相似的左室功能扩张和收缩功能障碍[37],所以应该最先被鉴别排除。但是笔者仅检索到上述疾病与健康对照组对比,并没有分别与DCM患者对照组相比较的临床研究,因此需要在未来进一步探索研究,使该技术更好地服务于临床。

2.3 T1 mapping及ECV在DCM风险分层中的应用

       DCM的预后可以促进风险分层并指导临床决策[38],T1值可以有效预测患者的治疗效果[39]、临床风险、长期生存率[40]和肌肉功能[41]等指标,从而为临床治疗提供更全面的信息,对DCM患者进行更综合、全面的治疗。T1 mapping及ECV技术可以评估左心室逆转重构(left ventricular reverse remodeling, LVRR),是DCM患者尤其是LGE阴性患者危险分层的理想参数[42]。LI等[43]通过对年龄、家族史、LVEF、LAVI和LGE%的筛选与整合,建立并验证一个DCM-LEG阴性患者五年SCD风险预测模型。多因素分析显示初始T1值及ECV与心源性猝死显著相关,可以评估心脏的参数,并从病理层面评估心脏的生理情况;同时,该研究对659例DCM患者通过医院记录、诊所就诊和电话访谈获得随访数据,发现LGE程度、初始心肌T1 max和ECV max均与LGE阳性DCM患者的预后相关,尤其是对于LGE阴性的DCM患者。但他们的研究是回顾性的并且数据来自单一研究中心,希望以后能够使用新的数据对模型的泛化能力加以验证。ZHOU等[44]在一项前瞻性研究中提出了一种新的DCM风险算法,包括NYHA功能分级、LVEF、LGE和ECV,均有助于DCM的预后评估,并认为ECV分数可能是DCM患者中期结局的最佳独立危险因素。YOUN等[45]的研究共纳入117例DCM患者以及19名健康志愿者,结果发现ECV发生心血管疾病的危险比分别为1.80和1.22,表明ECV可独立预测DCM患者的临床结局,但是该研究并没有验证DCM患者T1值与其预后的关系,后续需要进一步研究。此外,WANG等[46]研究发现肝脏ECV是一种独立的预后预测因子,可作为DCM风险分层的创新方法,该研究对依据ESC指南要求确诊的356名DCM患者评估临床特征、常规MRI参数(心室体积、功能、质量)、初始心肌和肝脏T1值、肝脏ECV和心肌LGE参数,Cox回归显示肝脏ECV是一个独立的预后预测因子,与传统的CMR参数相比,对主要终点和长期心力衰竭再入院显示出独立的预后价值。以上这些研究均阐明了T1 mapping及ECV技术在DCM危险分层及预后评估中的潜在作用。早期DCM之间ECV值有重叠,表明在现阶段T1 mapping及ECV还无法精确地区分个体健康心肌和病变区心肌,在未来需要进一步研究T1 mapping及ECV技术对临床结果和预后的影响,以证明这一技术的临床价值和意义。

2.4 T1 mapping及ECV在监测DCM治疗疗效中的应用

       近几十年来,通过指南指导的药物治疗,DCM患者的预后有了显著改善,LVRR是主要的治疗目标之一[47]。在药物治疗后,LVRR患者的心肌T1、基质和细胞体积显著下降,提示该药物的治疗是有效的。XU等[48] 随访了235名DCM患者,通过描绘心内膜和心外膜心肌轮廓,在同一心室中短轴切片上测量初始T1值、T2值和ECV值,结果表明在DCM患者接受治疗后,心肌纤维化逆转、LVRR的DCM患者心肌T1值显著下降,LVEF和T1 mapping的改善有可能代表重大不良心血管事件风险降低。INUI等[49]对33例DCM患者的随访,评估了初始和增强后T1值/ECV之间的相关性以及基线和随访超声心动图确定的ΔLVEF差异。ΔLVEF和ECV之间存在显著相关性(P=0.043,r=-0.355)。ECV较高组的心衰相关住院发生率较高(P=0.0159),ECV可能是心力衰竭相关住院的预测因素。然而,目前只有少数研究将临床随访中的T1 mapping及ECV作为治疗监测手段。由于初始T1值及ECV能够反映心肌脂质沉积,且有耗时更短、对DCM患者心肌组织特征的变化更敏感的优势[50],因此通过患者初始T1值和ECV数值的改变评估疾病进展程度以及治疗效果是可行的。在未来的研究中,使用T1 mapping及ECV技术进行DCM分级和效果监测具有较大潜力。

3 总结与展望

       CMR已经广泛应用于心脏疾病的检查,目前T1 mapping及ECV在DCM的早期诊断、危险分层及预后评估相关疾病鉴别和治疗疗效评估等方面表现出巨大的潜力及临床价值,通过测定T1值及ECV可以更加准确地明确弥漫性心肌纤维化的早期诊断[51],其临床价值远远高于传统LGE技术。但仍有一些问题亟需解决:(1)对于T1 mapping及ECV新技术的研究大多是回顾性的研究,前瞻性的研究较少,不能很好地贯穿预测模型和生物学意义,延缓了预测模型的临床转化;(2)DCM研究对象很少,需要进行更大规模的研究,以发现T1和ECV测量与DCM之间在不同采集技术之间的潜在细微差异;(3)T1 mapping技术的临床应用仍有待加强,以期望在不使用对比剂的情况下,能够更准确地诊断心血管疾病,并且可以更有效地分层和评估治疗效果。

4 总结

       综上所述,尽管T1 mapping及ECV技术在评估DCM病因方面存在局限性,但随着现代医疗不断的研究与新技术的不断涌现,在不久的将来T1 mapping及ECV技术有望以其可无创性、非侵入性的优势,在对DCM疾病进行早期诊断、危险分层及预后评估、相关疾病鉴别和治疗效果评估等相关领域发挥重要作用,对DCM进行全面的分析,提高对该疾病的认识,以便更有效地应用于临床,提高护理质量,协助临床早日完成对DCM的个性化诊断和治疗,使广大患者从中获益。

[1]
ELMING M B, HAMMER-HANSEN S, VOGES I, et al. Myocardial fibrosis and the effect of primary prophylactic defibrillator implantation in patients with non-ischemic systolic heart failure-DANISH-MRI[J/OL]. Am Heart J, 2020, 221: 165-176 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/31955812/. DOI: 10.1016/j.ahj.2019.10.020.
[2]
HEIDENREICH J F, WENG A M, DONHAUSER J, et al. T1- and ECV-mapping in clinical routine at 3 T: differences between MOLLI, ShMOLLI and SASHA[J/OL]. BMC Med Imaging, 2019, 19(1): 59 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/31370821/. DOI: 10.1186/s12880-019-0362-0.
[3]
FRUTOS F D, OCHOA J P, NAVARRO-PEÑALVER M, et al. Natural history of MYH7-related DilatedCardiomyopathy[J]. J Am Coll Cardiol, 2022, 80(15): 1447-1461. DOI: 10.1016/j.jacc.2022.07.023.
[4]
SAROHI V, SRIVASTAVA S, BASAK T. A comprehensive outlook on dilated cardiomyopathy (DCM): state-of-the-art developments with special emphasis on OMICS-based approaches[J/OL]. J Cardiovasc Dev Dis, 2022, 9(6): 174 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/35735803/. DOI: 10.3390/jcdd9060174.
[5]
COSTA M C, CALDERON-DOMINGUEZ M, MANGAS A, et al. Circulating circRNA as biomarkers for dilated cardiomyopathy etiology[J]. J Mol Med, 2021, 99(12): 1711-1725. DOI: 10.1007/s00109-021-02119-6.
[6]
PENG C, ZHANG Y X, LANG X Y, et al. Role of mitochondrial metabolic disorder and immune infiltration in diabetic cardiomyopathy: new insights from bioinformatics analysis[J/OL]. J Transl Med, 2023, 21(1): 66 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/36726122/. DOI: 10.1186/s12967-023-03928-8.
[7]
GASPAR A S, MALTÊS S, MARQUES H, et al. Myocardial T1 mapping with magnetic resonance imaging - a useful tool to understand the diseased heart[J]. Rev Port Cardiol, 2022, 41(1): 61-69. DOI: 10.1016/j.repc.2021.04.005.
[8]
FANG Q M, HUANG K Y, YAO X Y, et al. The application of radiology for dilated cardiomyopathy diagnosis, treatment, and prognosis prediction: a bibliometric analysis[J]. Quant Imaging Med Surg, 2023, 13(10): 7012-7028. DOI: 10.21037/qims-23-34.
[9]
LIANG K T, BARITUSSIO A, PALAZZUOLI A, et al. Cardiovascular magnetic resonance of myocardial fibrosis, edema, and infiltrates in heart failure[J]. Heart Fail Clin, 2021, 17(1): 77-84. DOI: 10.1016/j.hfc.2020.08.013.
[10]
DONG Z X, YIN G, YANG K, et al. Endogenous assessment of late gadolinium enhancement grey zone in patients with non-ischaemic cardiomyopathy with T1ρ and native T1 mapping[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(4): 492-502. DOI: 10.1093/ehjci/jeac128.
[11]
PUNTMANN V O, VOIGT T, CHEN Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2013, 6(4): 475-484. DOI: 10.1016/j.jcmg.2012.08.019.
[12]
XU J, ZHUANG B, SIRAJUDDIN A, et al. MRI T1 Mapping in Hypertrophic Cardiomyopathy: Evaluation in Patients Without Late Gadolinium Enhancement and Hemodynamic Obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
[13]
CUI Q, YU J, GE X H, et al. T1 mapping and late gadolinium enhancement for the diagnosis of dilated cardiomyopathy[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2020, 32(12): 1506-1510. DOI: 10.3760/cma.j.cn121430-20200413-00287.
[14]
HEALTHCARE ENGINEERING J O. Retracted: modified look-locker inverse-recovery (MOLLI) sequence of quantitative imaging in dirty magnetic resonance longitudinal relaxation time diagnostic value of GE combined with longitudinal relaxation time quantitative imaging for myocardial amyloidosis[J/OL]. J Healthc Eng, 2023, 2023: 9897527 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/37860311/. DOI: 10.1155/2023/9897527.
[15]
刘雅文, 牛海军, 尹红霞, 等. 合成MRI与传统定量方法对T1、T2弛豫值测定的模体验证对比研究[J]. 磁共振成像, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
LIU Y W, NIU H J, YIN H X, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imag, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
[16]
HAYASE J, BRADFIELD J. T1 mapping: a complementary tool for substrate visualization[J]. JACC Clin Electrophysiol, 2023, 9(6): 749-750. DOI: 10.1016/j.jacep.2023.01.038.
[17]
SU M Y, HUANG Y S, NIISATO E, et al. Is a timely assessment of the hematocrit necessary for cardiovascular magnetic resonance-derived extracellular volume measurements?[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 77 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/33250055/. DOI: 10.1186/s12968-020-00689-x.
[18]
MINEGISHI S, KATO S, TAKASE-MINEGISHI K, et al. Native T1 time and extracellular volume fraction in differentiation of normal myocardium from non-ischemic dilated and hypertrophic cardiomyopathy myocardium: a systematic review and meta-analysis[J/OL]. Int J Cardiol Heart Vasc, 2019, 25: 100422 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/31517037/. DOI: 10.1016/j.ijcha.2019.100422.
[19]
张华莹, 朱乐怡, 赵世华, 等. 2022年心脏磁共振研究进展[J]. 磁共振成像, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
[20]
ZHANG Y, ZHANG X N, WANG Y L, et al. Relationship between diffuse fibrosis assessed by CMR and depressed myocardial strain in different stages of heart failure[J/OL]. Eur J Radiol, 2023, 164: 110848 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/37156180/. DOI: 10.1016/j.ejrad.2023.110848.
[21]
WILSON H C, AMBACH S, MADUEME P C, et al. Comparison of native T1, strain, and traditional measures of cardiovascular structure and function by cardiac magnetic resonance imaging in patients with anderson-fabry disease[J]. Am J Cardiol, 2018, 122(6): 1074-1078. DOI: 10.1016/j.amjcard.2018.06.007.
[22]
KRITTAYAPHONG R, ZHANG S, SAIVIROONPORN P, et al. Assessment of cardiac iron overload in thalassemia with MRI on 3.0-T: high-field T1, T2, and T2* quantitative parametric mapping in comparison to T2* on 1.5-T[J]. JACC Cardiovasc Imaging, 2019, 12(4): 752-754. DOI: 10.1016/j.jcmg.2018.08.032.
[23]
THAVENDIRANATHAN P, SHALMON T, FAN C S, et al. Comprehensive cardiovascular magnetic resonance tissue characterization and cardiotoxicity in women with breast cancer[J]. JAMA Cardiol, 2023, 8(6): 524-534. DOI: 10.1001/jamacardio.2023.0494.
[24]
XANTHIS C G, NORDLUND D, JABLONOWSKI R, et al. Comparison of short axis and long axis acquisitions of T1 and extracellular volume mapping using MOLLI and SASHA in patients with myocardial infarction and healthy volunteers[J/OL]. BMC Med Imaging, 2019, 19(1): 18 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/30795746/. DOI: 10.1186/s12880-019-0320-x.
[25]
BURRAGE M K, SHANMUGANATHAN M, ZHANG Q, et al. Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods[J/OL]. Sci Rep, 2021, 11(1): 13568 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/34193894/. DOI: 10.1038/s41598-021-92923-4.
[26]
GEZMIŞ E, PEEBLES C, FLETT A, et al. Comparison of MOLLI and ShMOLLI in terms of T1 reactivity and the relationship between T1 reactivity and conventional signs of response during adenosine stress perfusion CMR[J]. Balkan Med J, 2020, 37(5): 260-268. DOI: 10.4274/balkanmedj.galenos.2020.2019.12.161.
[27]
BOHNEN S, RADUNSKI U K, LUND G K, et al. T1 mapping cardiovascular magnetic resonance imaging to detect myocarditis-Impact of slice orientation on the diagnostic performance[J/OL]. Eur J Radiol, 2017, 86: 6-12 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/28027767/. DOI: 10.1016/j.ejrad.2016.10.031.
[28]
YANAGISAWA F, AMANO Y, TACHI M, et al. Non-contrast-enhanced T1 mapping of dilated cardiomyopathy: comparison between native T1 values and late gadolinium enhancement[J]. Magn Reson Med Sci, 2019, 18(1): 12-18. DOI: 10.2463/mrms.mp.2017-0136.
[29]
BURKHARDT B E U, MENGHINI C, RÜCKER B, et al. Normal myocardial native T1 values in children using single-point saturation recovery and modified look-locker inversion recovery (MOLLI)[J]. J Magn Reson Imaging, 2020, 51(3): 897-903. DOI: 10.1002/jmri.26910.
[30]
SHAO X N, JIN Y N, SUN Y J, et al. Evaluation of the correlation between myocardial fibrosis and ejection fraction in dilated cardiomyopathy using magnetic resonance T1 mapping[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12300-12305. DOI: 10.26355/eurrev_202012_24022.
[31]
YAZAKI M, NABETA T, TAKIGAMI Y, et al. Native T1 high region and left ventricular ejection fraction recovery in patients with dilated cardiomyopathy[J]. Int J Cardiovasc Imaging, 2023, 39(9): 1785-1793. DOI: 10.1007/s10554-023-02888-w.
[32]
GAO Y, WANG H P, LIU M X, et al. Early detection of myocardial fibrosis in cardiomyopathy in the absence of late enhancement: role of T1 mapping and extracellular volume analysis[J]. Eur Radiol, 2023, 33(3): 1982-1991. DOI: 10.1007/s00330-022-09147-x.
[33]
DEM SIEPEN F AUS, BUSS S J, MESSROGHLI D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(2): 210-216. DOI: 10.1093/ehjci/jeu183.
[34]
AL-WAKEEL-MARQUARD N, SEIDEL F, HERBST C, et al. Diffuse myocardial fibrosis by T1 mapping is associated with heart failure in pediatric primary dilated cardiomyopathy[J/OL]. Int J Cardiol, 2021, 333: 219-225 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/33737165/. DOI: 10.1016/j.ijcard.2021.03.023.
[35]
THONGSONGSANG R, SONGSANGJINDA T, TANAPIBUNPON P, et al. Native T1 mapping and extracellular volume fraction for differentiation of myocardial diseases from normal CMR controls in routine clinical practice[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 270 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/34082703/. DOI: 10.1186/s12872-021-02086-3.
[36]
EL-REWAIDY H, NEISIUS U, NAKAMORI S, et al. Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T1 mapping[J/OL]. PLoS One, 2020, 15(6): e0233694 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/32479518/. DOI: 10.1371/journal.pone.0233694.
[37]
MORDI I, CARRICK D, BEZERRA H, et al. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(7): 797-803. DOI: 10.1093/ehjci/jev216.
[38]
ZHANG J, XU Y W, LI W H, et al. The predictive value of myocardial native T1 mapping radiomics in dilated cardiomyopathy: a study in a Chinese population[J]. J Magn Reson Imaging, 2023, 58(3): 772-779. DOI: 10.1002/jmri.28527.
[39]
KIAOS A, ANTONAKAKI D, BAZMPANI M A, et al. Prognostic value of cardiovascular magnetic resonance T1 mapping techniques in non-ischemic dilated cardiomyopathy: a systematic review and meta-analysis[J/OL]. Int J Cardiol, 2020, 312: 110-116 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/32320782/. DOI: 10.1016/j.ijcard.2020.04.052.
[40]
LI Y J, XU Y W, LI W H, et al. Cardiac MRI to predict sudden cardiac death risk in dilated cardiomyopathy[J/OL]. Radiology, 2023, 307(3): e222552 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/36916890/. DOI: 10.1148/radiol.222552.
[41]
张新娜, 蒋雨琦, 赵玲玲, 等. 心脏磁共振T1 mapping和组织追踪技术在左心室肥厚相关疾病中的鉴别诊断价值[J]. 磁共振成像, 2022, 13(12): 32-37. DOI: 10.12015/issn.1674-8034.2022.12.006.
ZHANG X N, JIANG Y Q, ZHAO L L, et al. Differential diagnostic value of T1 mapping and tissue tracking techniques in diseases associated with left ventricular hypertrophy[J]. Chin J Magn Reson Imag, 2022, 13(12): 32-37. DOI: 10.12015/issn.1674-8034.2022.12.006.
[42]
VITA T, GRÄNI C, ABBASI S A, et al. Comparing CMR mapping methods andMyocardial patterns toward HeartFailure outcomes in NonischemicDilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1659-1669. DOI: 10.1016/j.jcmg.2018.08.021.
[43]
LI S, ZHOU D, SIRAJUDDIN A, et al. T1 mapping and extracellular volume fraction in dilated cardiomyopathy: a prognosis study[J]. JACC Cardiovasc Imaging, 2022, 15(4): 578-590. DOI: 10.1016/j.jcmg.2021.07.023.
[44]
ZHOU D, ZHU L Y, WU W C, et al. A novel cardiac magnetic resonance-based personalized risk stratification model in dilated cardiomyopathy: a prospective study[J/OL]. Eur Radiol, 2023 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/37950081/. DOI: 10.1007/s00330-023-10415-7.
[45]
YOUN J C, HONG Y J, LEE H J, 等. 基于增强T1 mapping的细胞外容积分数独立预测非缺血性扩张型心肌病病人的临床结局: 一项前瞻性队列研究[J]. 国际医学放射学杂志, 2017, 40(6): 737.
YOUN J C, HONG Y J, LEE H J, et al. Contrast-enhanced T1 mapping-based extracellular volume fraction independently predicts clinical outcome in patients with non-ischemic dilated cardiomyopathy: a prospective cohort study[J]. Int J Med Radiol, 2017, 40(6): 737.
[46]
WANG J Q, DIAO Y K, XU Y W, et al. Liver T1 mapping derived from cardiac magnetic resonance imaging: a potential prognostic marker in idiopathic dilated cardiomyopathy[J/OL]. J Magn Reson Imaging, 2024 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/38174826/. DOI: 10.1002/jmri.29223.
[47]
XU Y W, LI W H, WAN K, et al. Myocardial tissue reverse remodeling after guideline-directed medical therapy in idiopathic dilated cardiomyopathy[J/OL]. Circ Heart Fail, 2021, 14(1): e007944 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/33185117/. DOI: 10.1161/CIRCHEARTFAILURE.120.007944.
[48]
XU Y W, LI Y J, WANG S Q, et al. Prognostic value of mid-term cardiovascular magnetic resonance follow-up in patients with non-ischemic dilated cardiomyopathy: a prospective cohort study[J/OL]. J Cardiovasc Magn Reson, 2024, 26(1): 101002 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/38237899/. DOI: 10.1016/j.jocmr.2024.101002.
[49]
INUI K, ASAI K, TACHI M, et al. Extracellular volume fraction assessed using cardiovascular magnetic resonance can predict improvement in left ventricular ejection fraction in patients with dilated cardiomyopathy[J]. Heart Vessels, 2018, 33(10): 1195-1203. DOI: 10.1007/s00380-018-1154-0.
[50]
张天悦, 冯钰玲, 吴兴强, 等. 心脏磁共振在扩张型心肌病危险分层及预后评估中的应用进展[J]. 磁共振成像, 2021, 12(3): 95-97, 101. DOI: 10.12015/issn.1674-8034.2021.03.023.
ZHANG T Y, FENG Y L, WU X Q, et al. The application of cardiovascular magnetic resonance in risk stratification and prognosis evaluation in dilated cardiomyopathy[J]. Chin J Magn Reson Imag, 2021, 12(3): 95-97, 101. DOI: 10.12015/issn.1674-8034.2021.03.023.
[51]
MCDIARMID A K, SWOBODA P P, ERHAYIEM B, et al. Single bolus versus split dose gadolinium administration in extra-cellular volume calculation at 3 Tesla[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 6 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/25638228/. DOI: 10.1186/s12968-015-0112-6.

上一篇 影像学预测缺血性脑卒中复发的研究进展
下一篇 影像学评估局部进展期结直肠癌新辅助治疗后肿瘤退缩分级的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2