分享:
分享到微信朋友圈
X
临床研究
原发性痛经患者自身不同状态下大脑低频振幅和功能连接的改变:一项基于静息态功能磁共振的研究
江林臻 张鹏飞 张静

Cite this article as: JIANG L Z, ZHANG P F, ZHANG J. Alterations in amplitude of low frequency fluctuation and functional connectivity of brain in primary dysmenorrhea patients under different self-states: A resting-state functional magnetic resonance imaging study[J]. Chin J Magn Reson Imaging, 2024, 15(6): 36-41.本文引用格式:江林臻, 张鹏飞, 张静. 原发性痛经患者自身不同状态下大脑低频振幅和功能连接的改变:一项基于静息态功能磁共振的研究[J]. 磁共振成像, 2024, 15(6): 36-41. DOI:10.12015/issn.1674-8034.2024.06.005.


[摘要] 目的 采用低频振幅(amplitude of low frequency fluctuation, ALFF)、比率低频振幅(fractional amplitude of low frequency fluctuations, fALFF)和功能连接(functional connectivity, FC)方法探究原发性痛经(primary dysmenorrhea, PDM)患者疼痛的中枢机制。材料与方法 纳入31例PDM患者,所有受试者均接受经期与围排卵期双期静息态功能磁共振成像检查。计算ALFF、fALFF值,提取ALFF和fALFF值都有差异的脑区作为感兴趣区(region of interest, ROI),计算ROI与全脑体素的FC值。采用配对样本t检验比较PDM患者疼痛与无痛状态下ALFF、fALFF、FC值,并采用皮尔逊相关分析探索PDM患者ALFF、fALFF值与临床指标的关系。结果 与非疼痛期比较,PDM患者在疼痛期显示左侧内侧额上回、右侧小脑Ⅱ区ALFF值显著升高,左侧岛叶ALFF值显著降低(双尾检验P<0.05,Alphasim校正,团块大小>176);PDM患者疼痛期的左侧背外侧额上回、左侧额下回三角部、右侧豆状核的fALFF值显著高于非疼痛期,左侧楔前叶的fALFF值显著低于非疼痛期(双尾检验P<0.05,Alphasim校正,团块大小>154)。随后,基于种子点的FC分析显示,左侧额上回为ALFF和fALFF值都有差异的脑区,相较于非疼痛期,疼痛期其与左侧小脑Ⅷ区的连接性降低(双尾检验P<0.05,Alphasim校正,团块水平>181);Pearson相关分析显示PDM患者疼痛期的左侧岛叶ALFF值与CMSS-t呈负相关(r=-0.400,P=0.026)。结论 本研究揭示了PDM存在ALFF与fALFF的异常改变,并涉及多个脑网络,为帮助理解PDM的中枢机制提供新见解。
[Abstract] Objective The central mechanisms of pain in patients with primary dysmenorrhea (PDM) were investigated using the amplitude of low frequency fluctuations (ALFF), fractional amplitude of low frequency fluctuations (fALFF), and functional connectivity (FC) methods.Materials and Methods Thirty-one patients with PDM were included, and all subjects underwent dual-phase resting-state functional magnetic resonance imaging during menstruation and periovulatory. ALFF and fALFF values were calculated, and brain regions with differences in both ALFF and fALFF values were extracted as regions of interest (ROI), and FC values of ROI versus whole-brain voxels were calculated. The paired-sample t-test was used to compare the ALFF, fALFF, and FC values of PDM patients in pain and pain-free states, and Pearson's correlation analysis was used to explore the relationship between the ALFF and fALFF values and the clinical indicators of PDM patients.Results Compared with the non-painful phase, PDM patients showed significantly higher ALFF values in the left medial superior frontal gyrus and right cerebellar area Ⅱ and significantly lower ALFF values in the left insula during the painful phase (two-tailed test P<0.05, Alphasim-corrected, cluster level>176); fALFF values in the left dorsolateral superior frontal gyrus, left inferior frontal gyrus delta, and right pedunculopontine nucleus during the painful phase of PDM patients were significantly higher than in the non-painful phase, and the fALFF values in the left precuneus were significantly lower than in the non-painful phase (two-tailed test P<0.05, Alphasim corrected, cluster level>154). Subsequently, seed-point-based FC analysis showed that the left superior frontal gyrus was the brain region that differed in both ALFF and fALFF values, and its connectivity with the left cerebellar area Ⅷ was reduced in the painful phase compared to the non-painful phase (two-tailed test P<0.05, Alphasim corrected, cluster level>181); Pearson correlation analysis showed that the left insula in the painful phase of PDM patients ALFF values were negatively correlated with CMSS-t (r=-0.400, P=0.026).Conclusions The present study reveals abnormal alterations of ALFF and fALFF in PDM and involves multiple brain networks, providing new insights to help understand the central mechanisms of PDM.
[关键词] 原发性痛经;静息态功能磁共振成像;磁共振成像;低频振幅;功能连接
[Keywords] primary dysmenorrhea;resting-state functional magnetic resonance imaging;magnetic resonance imaging;amplitude of low frequency fluctuation;functional connectivity

江林臻 1, 2, 3   张鹏飞 1, 2, 3   张静 1, 3*  

1 兰州大学第二医院核磁共振科,兰州 730030

2 兰州大学第二临床医学院,兰州 730030

3 甘肃省功能及分子影像临床医学研究中心,兰州 730030

通信作者:张静,E-mail:ery_zhangjing@lzu.edu.cn

作者贡献声明::张静设计本研究的方案,对稿件的重要内容进行了修改,获得了甘肃省科技计划项目的资助;江林臻起草和撰写稿件,获取、分析和解释本研究的数据/文献;张鹏飞分析和解释本研究的数据/文献,对稿件的重要内容进行了修改;全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 甘肃省科技计划项目 21JR7RA438
收稿日期:2023-10-31
接受日期:2024-06-05
中图分类号:R445.2  R711.51 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.06.005
本文引用格式:江林臻, 张鹏飞, 张静. 原发性痛经患者自身不同状态下大脑低频振幅和功能连接的改变:一项基于静息态功能磁共振的研究[J]. 磁共振成像, 2024, 15(6): 36-41. DOI:10.12015/issn.1674-8034.2024.06.005.

0 引言

       原发性痛经(primary dysmenorrhea, PDM)指没有盆腔的原发性病变情况下,在经期出现的下腹部痉挛性疼痛,是目前非常常见的一种妇科疾病[1]。流行病学显示,PDM全球发病率极高,影响超过1/3的女性。PDM引起的剧烈疼痛和其他伴随症状(如腹泻、恶心、乏力、头痛等)严重影响患者的日常工作和学习,平添巨大的生理心理负担[2]。然而,尽管PDM具有普遍性与严重性,但其病因现今并无统一共识,广泛认为其发病机制与前列腺素、白三烯等内分泌因素相关。目前,原发性痛经已被国际疾病分类第十一次修订本(International Classification of Diseases 11th Revision, ICD-11)归入慢性疼痛疾病[3, 4],是研究大脑中疼痛状态和特征相关变化的良好临床模型[5, 6]。近年来,神经影像学高速发展,静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)技术为探索PDM的中枢机制提供了有力的工具。该技术通过评估大脑在静息状态下的活动模式,可以揭示与疼痛感知和调控相关的神经机制,对于PDM的早期诊断、机理机制的理解以及潜在的治疗靶点识别具有重要价值。已有研究表明中枢神经系统在PDM疼痛产生与调控中也同样发挥重要作用,但目前揭示PDM中枢神经机制的研究仍存在不足之处,主要表现在研究多聚焦在PDM患者与健康人群之间的对比上[8, 9, 10, 11],鲜少有研究着眼于患者自身疼痛期与非疼痛期的变化上,缺少对患者病理和非病理状态下大脑活动的比对。针对上述问题,本研究采用静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)作为研究手段,结合低频振幅(amplitude of low frequency fluctuation, ALFF)、比率低频振幅(fractional amplitude of low frequency fluctuations, fALFF)[7]和功能连接(functional connectivity, FC)等分析方法,以揭示PDM患者在不同状态下,即疼痛期与非疼痛期的大脑活动变化,以弥补现下研究的不足之处。本研究为PDM的中枢机制提供新的神经影像学证据,通过明确PDM患者大脑活动的状态依赖性变化,为进一步的临床诊断和治疗提供重要的理论基础,对理解疼痛机制和改善女性健康具有重要意义。

1 材料与方法

1.1 研究对象

       本研究属于前瞻性研究,通过广告招募PDM患者,招募时间为2023年3月至2023年8月,共计53例。PDM的纳入标准为:(1)年龄为16至30岁的未育女性,右利手;(2)符合2017年由加拿大妇产科学会发布的PDM诊断标准[12];(3)月经周期规律(28±7天);(4)PDM病程>6个月;(5)近1个月内未针对痛经使用任何治疗手段;(6)回顾近3个月经周期的经期痛程度,给出的视觉模拟疼痛评分(Visual Analogue Scale for Pain, VAS-P)≥4分(范围为0~10分)。排除标准:(1)盆腔MRI或量表问卷提示存在可能导致继发性痛经的原发性疾病(子宫内膜异位症、腺肌症、盆腔炎症等);(2)其他疼痛相关疾病(如慢性腰痛、偏头痛、纤维肌痛等);(3)颅内器质性病变及精神类疾病;(4)MRI扫描禁忌证。本研究遵守《赫尔辛基宣言》,并通过了兰州大学第二医院伦理委员会的审查批准(编号2022A-458),所有受试者本人和(或)家属参与研究前均知情且书面签署知情同意书。

1.2 方法

1.2.1 临床症状评估

       本研究的流程图如图1所示。在对PDM患者进行MRI扫描前都完成了临床症状评估。采用VAS-P对PDM患者近3个月的疼痛程度进行评估;采用疼痛灾难化评分(Pain Catastrophizing Scale, PCS)对PDM患者的疼痛敏感性进行评估;焦虑自评量表(Self-Rating Anxiety Scale, SAS)及抑郁自评量表(Self-Rating Depression Scale, SDS)被用来评估PDM患者的焦虑抑郁程度;采用COX痛经症状量表(Cox Menstrual Symptom Scale, CMSS)[13][严重程度用s代表(CMSS-s);持续时间用t代表(CMSS-t)]对伴随症状进行评估;其中SAS和SDS在两期MRI扫描前均进行评估,其余疼痛相关量表仅于经期扫描前进行评估。

图1  研究流程图。PDM:原发性痛经;ALFF:低频振幅;fALFF:比率低频振幅;ROI:感兴趣区;FC:功能连接。
Fig. 1  Study flow chart. PDM: primary dysmenorrhea; ALFF: amplitude of low frequency fluctuation; fALFF: fractional amplitude of low frequency fluctuations; ROI: region of interest; FC: functional connectivity.

1.2.2 MRI扫描

       数据采集分为两期,第一期在受试者月经周期的第1~3天完成,第二期在受试者月经周期的第10~12天完成。受试者均在兰州大学第二医院核磁共振科完成MRI检查,扫描设备为GE SINGNA Premier 3.0 T MR扫描仪,使用48通道头颅线圈。受试者佩戴3M耳塞,平卧于扫描床上。在受试者头部左右两侧塞入海绵垫加以固定,要求受试者闭上眼睛,保持清醒并且减少思考。采集顺序为:(1)首先采用盆腔T2WI-FS序列及颅脑T2WI序列分别排除器质性病变;(2)进行高分辨3D-T1WI结构像及rs-fMRI数据采集。具体参数见表1

表1  结构与功能图像的磁共振扫描参数
Tab. 1  MRI scanning parameters for structural and functional images

1.2.3 数据处理及分析

       在Matlab R2013b平台(https://ww2.mathworks.cn/products/matlab.html)上采用DAPRSFA 5.2软件[14](http://rfmri.org/DPABI)进行数据预处理。预处理流程如下:(1)前10个时间点将被去除以获得有稳定磁场的时间序列数据;(2)时间层校正将图像校正至同一时间点;(3)头动校正(排除标准为头部位移>2 mm,最大转动>2°,逐点头动>0.2 mm);(4)对功能图像使用DARTEL(Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra)方法进行空间标准化配准至蒙特利尔标准空间,对其中分割后的脑白质、脑脊液以及Friston 24头动参数、全脑信号进行回归分析去除上述协变量。对预处理后的数据计算ALFF及fALFF值,提取ALFF和fALFF值都有差异的脑区作为感兴趣区(region of interest, ROI),计算ROI与全脑体素的FC。将ALFF、fALFF及FC通过Fisher-Z转换得到Z值化的图像。最后所有图像统一以4 mm半高全宽的高斯核进行平滑。

1.3 统计学分析

       使用SPSS 26软件(https://www.ibm.com/cn-zh/spss)对临床量表资料进行分析,包括病程、VAS-P、SAS、SDS、CMSS-t、CMSS-s。对上述临床数据进行正态性检验(Kolmogorov-Smirnova方法),对符合正态性分布的数据采用均值和标准差来表述,不符合的采用中位数和上下四分位数来描述。采用配对样本t检验,以P<0.05认为差异有统计学意义。采用DPABI 6.0软件及SPSS 26软件分析PDM患者疼痛期与非疼痛期ALFF、fALFF、FC值的差异,采用配对样本t检验(Alphasim校正,校正阈值P<0.05)。采用Pearson相关性分析探索PDM患者ALFF、fALFF、FC与临床量表评分之间的关系,以P<0.05表示相关性具有统计学意义。

2 结果

2.1 临床资料

       最终纳入31名受试者。受试者的人口统计学资料见表2。受试者的两期焦虑、抑郁评分差异具有统计学意义,疼痛期的评分显著高于非疼痛期(P<0.05)。

表2  受试者人口统计学和临床量表资料
Tab. 2  Demographics and clinical scale data of the subjects

2.2 ALFF及fALFF结果

       ALFF值在左侧内侧额上回、右侧小脑Ⅱ区、左侧岛叶有显著差异(双尾检验P<0.05,Alphasim校正,团块大小>176),具体空间分布与团块信息见图2表3

       fALFF值在左侧背外侧额上回、左侧额下回三角部、右侧豆状核及左侧楔前叶(precuneus, PCUN)差异有统计学意义(双尾检验P<0.05,Alphasim校正,团块大小>154),具体空间分布与团块信息见图3表4

图2  原发性痛经患者疼痛期与非疼痛期ALFF值差异脑区。ALFF:低频振幅。
Fig. 2  Depicts brain areas with differential ALFF values between painful and non-painful phases in patients with primary dysmenorrhea. ALFF: amplitude of low frequency fluctuation.
图3  原发性痛经患者疼痛期与非疼痛期fALFF值差异脑区。fALFF:比率低频振幅。
Fig. 3  Depicts brain areas with differential fALFF values between painful and non-painful phases in patients with primary dysmenorrhea. fALFF: fractional amplitude of low frequency fluctuations.
表3  原发性痛经患者疼痛期与非疼痛期ALFF值差异脑区信息
Tab. 3  Brain area information on differences in ALFF values between painful and non-painful phases in patients with primary dysmenorrhea
表4  原发性痛经患者疼痛期与非疼痛期fALFF值差异脑区信息
Tab. 4  Brain area information on differences in fALFF values between painful and non-painful phases in patients with primary dysmenorrhea

2.3 FC结果

       PDM患者于左侧额上回皆存在两期ALFF与fALFF值的差异,提取该脑区掩膜作为ROI进行全脑FC连接显示,结果显示ROI与左侧小脑半球Ⅷ区的FC值有显著差异(双尾检验P<0.05,Alphasim校正,团块水平>181),具体空间分布与团块信息见图4表5

图4  左侧额上回的全脑功能连接。
Fig. 4  Whole-brain functional connectivity connections involving the left superior frontal gyrus.
表5  左侧额上回的全脑FC连接
Tab. 5  Whole-brain FC connections in the left superior frontal gyrus

2.4 组间差异脑区的ALFF及fALFF与临床变量的相关性分析

       PDM患者疼痛期与非疼痛期ALFF、fALFF值有差异的脑区与患者病程、VAS-P、CMSS-s、CMSS-t、PCS、SAS、SDS进行Pearson相关性分析。结果表明,PDM患者疼痛期的左侧岛叶ALFF值与CMSS-t呈负相关(r=-0.400,P=0.026,图5

图5  PDM患者疼痛期的左侧岛叶ALFF值与CMSS-t呈负相关。PDM:原发性痛经;ALFF:低频振幅;CMSS-t:COX月经症状量表评估痛经症状持续时间。
Fig. 5  ALFF values in the left insula during painful periods in patients with PDM were negatively correlated with the CMSS-t. PDM: primary dysmenorrhea; ALFF: low-frequency amplitude; CMSS-t: duration of dysmenorrheal symptoms as assessed by the COX Menstrual Symptom Scale.

3 讨论

       基于rs-fMRI结合ALFF、fALFF和基于种子点的FC分析方法,本研究探讨了PDM患者的局部神经活动和功能连接改变。与无痛期比较,PDM患者疼痛期ALFF值在左侧内侧额上回、右侧小脑Ⅱ区增加、在左侧岛叶降低;fALFF值在左侧背外侧额上回、左侧额下回三角部、右侧豆状核增加,在左侧PCUN降低;左侧额上回与左侧小脑半球Ⅷ区FC降低。

3.1 PDM患者默认网络及突显网络相关脑区ALFF及fALFF值异常

       左侧内侧额上回、左侧背外侧额上回与左侧三角部额下回都属于前额叶(prefrontal cortex, PFC)区域,PFC区域的结构与功能异常已在PDM的多项研究中得到证实[15, 16, 17, 18]。而在一项采用机器学习方法的研究中发现无痛期时PDM患者和健康人群的PFC灰质结构特征存在差异,可以此来区分PDM患者和健康人群[19],但也有其他研究表明PDM患者的内部结构功能与健康人群并差异无统计学意义[20]。这些区域参与多层次的疼痛处理,影响人的决策能力与情绪反应[21, 22],这或许表明疼痛影响PDM患者在经期时的决策并且与焦虑、抑郁等情绪反应相关。

       本研究发现PDM患者左侧PCUN的fALFF值降低。PCUN是实现高级认知功能的关键区域,在多种高度整合的任务中发挥着举足轻重的作用,与疼痛感知和内源性疼痛调节[23]等疼痛处理上相关。同时PCUN是默认网络(default mode network, DMN)的一个核心区域[24],而DMN相关功能可能会被慢性疼痛破坏[25]。本研究发现PDM患者左侧PCUN的fALFF值在疼痛状态下降低,推测PDM患者中PCUN的活动因疼痛而受到抑制,表现为PDM患者的认知及疼痛调节能力的下降,功能受损。值得一提的是,有研究发现PDM患者双侧PCUN脑血流量增加,并且基于种子点的FC分析发现PCUN与中扣带皮层的FC增加[26]。在针灸治疗疼痛的研究[27]中发现,治疗有效时对应的同侧PCUN代谢减低。正常情况下,脑区神经元活动代谢物会导致微血管扩张,从而使脑血流量增加,反映了PCUN的活动增加,这可能反映了PDM患者对疼痛的适应,从而与本研究的结果有不一致之处。

       本研究的另一个值得关注的结果是PDM患者疼痛期时的左侧岛叶ALFF值降低。突显网络(salience network, SN)负责发现、评估周围刺激并将刺激传至其他网络予以处理,而岛叶就是SN的一个重要节点。在一项PDM无痛期的静息态研究[28]中,研究人员发现了PDM患者左前岛叶灰质密度相较于健康人群降低,以左侧岛叶为ROI,进一步发现左侧岛叶与内侧PFC之间的FC降低并且相关性分析显示该FC与VAS评分呈负相关。VAS等所测量表反映PDM患者在疼痛状态下的疼痛感知,情感调节能力等。而本研究也发现左侧岛叶的脑区活动异常且与CMSS-t评分呈负相关,表明PDM患者可能在疼痛期时的伤害刺激感知力下降功能受损。

3.2 小脑-皮层网络的ALFF、FC异常

       小脑常被认为主要参与随意运动的协调、平衡躯体及肌张力的调节,但在各种疼痛相关疾病中,小脑的结构和功能异常也得到了广泛的研究,其可能参与了疼痛的感觉、认知情感、疼痛调节等多个方面,体现了疼痛的多维性[29]。本研究中存在右侧小脑半球Ⅱ区的ALFF值的升高并且额上回与左侧小脑半球Ⅷ区的FC减弱。这些区域均属于小脑-皮层网络的一部分;小脑不仅在运动过程中起重要作用,在认知过程中也起重要作用[30, 31],已有文献表明PDM患者的小脑-皮质网络异常[9, 32]。小脑半球Ⅱ区被认为与认知相关,而小脑半球Ⅷ区则更多与次级感觉处理相关,这些区域的异常脑活动与疼痛的多维度影响是吻合的[33, 34, 35],可能对应了疼痛的多维整合特征。我们的发现可能说明,PDM患者的脑功能异常与皮层-小脑网络密切相关。但我们仍然需要更多的与小脑-皮层网络相关的PDM疼痛处理参与的研究来佐证我们的观点。

3.3 局限性

       本研究通过ALFF的方法探究原发性痛经的中枢机制,有着一些局限性。首先,疼痛是一种多维度的体验,其影响人的主观感受进而影响人的行为认知,但不同的人因有着不同的疼痛耐受性,对疼痛的主观感受不尽相同。况且女性在不同的月经周期阶段因生理条件变化导致疼痛感知与神经活动水平也会发生变化,这些因素都会影响对试验结果的解释。在数据采集上,我们本次所使用的焦虑、抑郁量表为患者自评量表,未来可以补充认知行为学的检测来结合;其次,未加入诸如睡眠质量评测等更多方面的量表,难以全面评估疼痛对患者的全方面影响,未来需要更全面与精细的量表来评估疼痛的影响;然后,本研究只对PDM患者进行了疼痛与无痛两种状态下的脑功能比较,未纳入足够的健康对照者进行比较,因此可能限制了我们对结果的部分探索;最后,本研究样本量较小且为单中心研究,导致结果存在一定局限性,未来需要更大样本量的研究以验证结果的可重复性及稳定性。

4 结论

       本研究发现PDM患者在疼痛状态下存在多个脑区的ALFF、fALFF及脑区间FC异常,这涉及到数个脑网络(DMN、SN、小脑-皮质网络),相关性分析结果可能解释了PDM患者在月经痛时表现出的疼痛感知与调节方面的异常表现。这些为PDM的中枢神经影像学机制提供了更多的影像证据,帮助扩展我们对PDM大脑中枢异常机制的了解。

[1]
LANCET THE. ICD-11[J/OL]. Lancet, 2019, 393(10188): 2275 [2023-10-31]. https://pubmed.ncbi.nlm.nih.gov/31180012/. DOI: 10.1016/S0140-6736(19)31205-X.
[2]
HU Z, TANG L, CHEN L, et al. Prevalence and risk factors associated with primary dysmenorrhea among chinese female university students: A cross-sectional study[J]. J Pediatr Adolesc Gynecol, 2020, 33(1): 15-22. DOI: 10.1016/j.jpag.2019.09.004.
[3]
TREEDE R D, RIEF W, BARKE A, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11)[J]. Pain, 2019, 160(1): 19-27. DOI: 10.1097/j.pain.0000000000001384.
[4]
NICHOLAS M, VLAEYEN J W S, RIEF W, et al. The IASP classification of chronic pain for ICD-11: chronic primary pain[J]. Pain, 2019, 160(1): 28-37. DOI: 10.1097/j.pain.0000000000001390.
[5]
WOO H L, JI H R, PAK Y K, et al. The efficacy and safety of acupuncture in women with primary dysmenorrhea: A systematic review and meta-analysis[J/OL]. Medicine (Baltimore), 2018, 97(23): e11007 [2023-10-31]. https://journals.lww.com/00005792-201806080-00051. DOI: 10.1097/MD.0000000000011007.
[6]
LÓPEZ-LIRIA R, TORRES-ÁLAMO L, VEGA-RAMÍREZ F A, et al. Efficacy of physiotherapy treatment in primary dysmenorrhea: A systematic review and meta-analysis[J/OL]. Int J Environ Res Public Health, 2021, 18(15): 7832 [2023-10-31]. https://www.mdpi.com/1660-4601/18/15/7832. DOI: 10.3390/ijerph18157832.
[7]
何万林, 李谨利, 冯莉, 等. 高原藏族2型糖尿病患者静息态磁共振成像研究:基于低频振幅和比率低频振幅[J]. 磁共振成像, 2023, 14(5): 72-78, 122. DOI: 10.12015/issn.1674-8034.2023.05.014.
HE W L, LI J L, FENG L, et al. Study on resting-state functional magnetic resonance imaging in plateau Tibetan with type 2 diabetes mellitus: Amplitude of low-frequency fluctuations and fractional amplitude of low-frequency fluctuations[J]. Chin J Magn Reson Imaging, 2023, 14(5): 72-78, 122. DOI: 10.12015/issn.1674-8034.2023.05.014.
[8]
刘妮, 张亚男, 吴俊辰, 等. 度中心性的静息态功能磁共振成像探讨原发性痛经患者月经期痛经的中枢机制[J]. 磁共振成像, 2021, 12(7): 29-33. DOI: 10.12015/issn.1674-8034.2021.07.006.
LIU N, ZHANG Y N, WU J C, et al. An explorative resting-state fMRI study of central mechanism in patients with primary dysmenorrhea during menstrual phase by using the method of degree centrality[J]. Chin J Magn Reson Imaging, 2021, 12(7): 29-33. DOI: 10.12015/issn.1674-8034.2021.07.006.
[9]
刘妮, 张亚男, 戴娜, 等. 原发性痛经多频段的脑区域一致性改变:一项静息态功能磁共振研究[J]. 磁共振成像, 2023, 14(6): 39-44. DOI: 10.12015/issn.1674-8034.2023.06.006.
LIU N, ZHANG Y N, DAI N, et al. Brain regional homogeneity alterations in multi-frequency bands in primary dysmenorrhea: A resting-state functional magnetic resonance imaging study[J]. Chin J Magn Reson Imaging, 2023, 14(6): 39-44. DOI: 10.12015/issn.1674-8034.2023.06.006.
[10]
刘军莲, 张亚男, 刘妮, 等. 探索原发性痛经患者大脑自发性活动的动态性及一致性变化[J]. 中国医疗设备, 2022, 37(2): 65-69. DOI: 10.3969/j.issn.1674-1633.2022.02.015.
LIU J L, ZHANG Y N, LIU N, et al. Exploratory research of dynamic feature and concordance changes of brain spontaneous activity in patients with primary dysmenorrhea[J]. China Medical Devices, 2022, 37(2): 65-69. DOI: 10.3969/j.issn.1674-1633.2022.02.015.
[11]
张亚男, 刘妮, 郝瑛, 等. 原发性痛经患者半球间镜像同伦功能连接的静息态fMRI研究[J]. 磁共振成像, 2020, 11(10): 872-876. DOI: 10.12015/issn.1674-8034.2020.10.008.
ZHANG Y N, LIU N, HAO Y, et al. The resting-state fMRI study of interhemispheric voxel-mirrored homotopic connectivity in patients with primary dysmenorrhea[J]. Chin J Magn Reson Imaging, 2020, 11(10): 872-876. DOI: 10.12015/issn.1674-8034.2020.10.008.
[12]
BURNETT M, LEMYRE M. No. 345-primary dysmenorrhea consensus guideline[J]. J Obstet Gynaecol Can, 2017, 39(7): 585-595. DOI: 10.1016/j.jogc.2016.12.023.
[13]
COX D J, MEYER R G. Behavioral treatment parameters with primary dysmenorrhea[J]. J Behav Med, 1978, 1(3): 297-310. DOI: 10.1007/BF00846681.
[14]
YAN C G, WANG X D, ZUO X N, et al. DPABI: Data processing & analysis for (Resting-State) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[15]
MU J, WANG Q, DUN W, et al. The effects of long-term menstrual pain on pain empathy in women with primary dysmenorrhea[J]. Pain, 2021, 162(7): 2051-2059. DOI: 10.1097/j.pain.0000000000002205.
[16]
TU C H, NIDDAM D M, YEH T C, et al. Menstrual pain is associated with rapid structural alterations in the brain[J]. Pain, 2013, 154(9): 1718-1724. DOI: 10.1016/j.pain.2013.05.022.
[17]
LIU P, YANG J, WANG G, et al. Altered regional cortical thickness and subcortical volume in women with primary dysmenorrhoea[J]. Eur J Pain, 2016, 20(4): 512-520. DOI: 10.1002/ejp.753.
[18]
ZHANG Y, HUANG Y, LIU N, et al. Abnormal interhemispheric functional connectivity in patients with primary dysmenorrhea: a resting-state functional MRI study[J]. Quant Imaging Med Surg, 2022, 12(3): 1958-1967. DOI: 10.21037/qims-21-731.
[19]
CHEN T, MU J, XUE Q, et al. Whole-brain structural magnetic resonance imaging-based classification of primary dysmenorrhea in pain-free phase: a machine learning study[J]. Pain, 2019, 160(3): 734-741. DOI: 10.1097/j.pain.0000000000001428.
[20]
LEE L C, CHEN Y H, LIN C S, et al. Unaltered intrinsic functional brain architecture in young women with primary dysmenorrhea[J/OL]. Sci Rep, 2018, 8(1): 12971 [2023-10-31]. https://www.nature.com/articles/s41598-018-30827-6. DOI: 10.1038/s41598-018-30827-6.
[21]
WINSTON J S, VLAEV I, SEYMOUR B, et al. Relative valuation of pain in human orbitofrontal cortex[J]. J Neurosci, 2014, 34(44): 14526-14535. DOI: 10.1523/JNEUROSCI.1706-14.2014.
[22]
MASHOUR G A, PAL D, BROWN E N. Prefrontal cortex as a key node in arousal circuitry[J]. Trends Neurosci, 2022, 45(10): 722-732. DOI: 10.1016/j.tins.2022.07.002.
[23]
ZYLONEY C E, JENSEN K, POLICH G, et al. Imaging the functional connectivity of the periaqueductal gray during genuine and sham electroacupuncture treatment[J/OL]. Mol Pain, 2010, 6: 1744-8069-6-80 [2023-10-31]. http://journals.sagepub.com/doi/10.1186/1744-8069-6-80. DOI: 10.1186/1744-8069-6-80.
[24]
UTEVSKY A V, SMITH D V, HUETTEL S A. Precuneus is a functional core of the default-mode network[J]. J Neurosci, 2014, 34(3): 932-940. DOI: 10.1523/JNEUROSCI.4227-13.2014.
[25]
LIU P, LIU Y, WANG G, et al. Aberrant default mode network in patients with primary dysmenorrhea: a fMRI study[J]. Brain Imaging Behav, 2017, 11(5): 1479-1485. DOI: 10.1007/s11682-016-9627-1.
[26]
ZHANG Y N, HUANG Y R, LIU J L, et al. Aberrant resting-state cerebral blood flow and its connectivity in primary dysmenorrhea on arterial spin labeling MRI[J]. Magn Reson Imaging, 2020, 73: 84-90. DOI: 10.1016/j.mri.2020.07.012.
[27]
龚萍, 张明敏, 王棋, 等. 针刺三阴交对痛经患者脑葡萄糖代谢的影响[J]. 中国针灸, 2006, 26(1): 51-55. DOI: 10.3321/j.issn:0255-2930.2006.01.016.
GONG P, ZHANG M M, WANG Q, et al. Effect of acupuncture at Sanyinjiao (SP6)on glucose metabolism in the patient of dysmenorrhea[J]. Chin Acup Moxib, 2006, 26(1): 51-55. DOI: 10.3321/j.issn:0255-2930.2006.01.016.
[28]
DUN W, YANG J, YANG L, et al. Abnormal structure and functional connectivity of the anterior insula at pain-free periovulation is associated with perceived pain during menstruation[J]. Brain Imaging Behav, 2017, 11(6): 1787-1795. DOI: 10.1007/s11682-016-9646-y.
[29]
DIANO M, D'AGATA F, CAUDA F, et al. Cerebellar clustering and functional connectivity during pain processing[J]. The Cerebellum, 2016, 15(3): 343-356. DOI: 10.1007/s12311-015-0706-4.
[30]
MAITI B, KOLLER J M, SNYDER A Z, et al. Cognitive correlates of cerebellar resting-state functional connectivity in Parkinson disease[J/OL]. Neurology, 2020, 94(4): e384-e396 [2023-10-31]. https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000008754. DOI: 10.1212/WNL.0000000000008754.
[31]
ZHU Y, YANG B, ZHOU C, et al. Cortical atrophy is associated with cognitive impairment in Parkinson's disease: a combined analysis of cortical thickness and functional connectivity[J]. Brain Imaging Behav, 2022, 16(6): 2586-2600. DOI: 10.1007/s11682-022-00714-w.
[32]
LIU N, LI Y, HONG Y, et al. Altered brain activities in mesocorticolimbic pathway in primary dysmenorrhea patients of long-term menstrual pain[J/OL]. Front Neurosci, 2023, 17: 1098573 [2023-10-31]. https://www.frontiersin.org/articles/10.3389/fnins.2023.1098573/full. DOI: 10.3389/fnins.2023.1098573.
[33]
MOULTON E A, SCHMAHMANN J D, BECERRA L, et al. The cerebellum and pain: Passive integrator or active participator?[J]. Brain Res Rev, 2010, 65(1): 14-27. DOI: 10.1016/j.brainresrev.2010.05.005.
[34]
蒋元明, 黄建强, 李宗芳, 等. 原发性三叉神经痛患者小脑灰质体积变化[J]. 武汉大学学报(医学版), 2015, 36(6): 940-943, 970. DOI: 10.14188/j.1671-8852.2015.06.023.
JIANG Y M, HUANG J Q, LI Z F, et al. Abnormalities of cerebellar gray matter volume in patients with idiopathic trigeminal neuralgia[J]. Medical Journal of Wuhan University, 2015, 36(6): 940-943, 970. DOI: 10.14188/j.1671-8852.2015.06.023.
[35]
SILVA K E, ROSNER J, ULLRICH N J, et al. Pain affect disrupted in children with posterior cerebellar tumor resection[J]. Ann Clin Transl Neurol, 2019, 6(2): 344-354. DOI: 10.1002/acn3.709.

上一篇 克罗恩病患者左脑岛及右后顶叶皮层厚度与功能连接异常
下一篇 基于静息态功能磁共振成像观察电针治疗AIS患者的即刻脑网络变化
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2