分享:
分享到微信朋友圈
X
临床研究
冠心病伴抑郁患者脑结构磁共振成像特点及与情绪认知的相关性研究
刘蕾 赵天佐 许聃 袁洁 王旭 王亚楠 刘蓓 钟利群 李小圳 佘文龙 陈正光

Cite this article as: LIU L, ZHAO T Z, XU D, et al. Study on brain structural magnetic resonance imaging characteristics and correlation with emotion and cognition in patients with coronary heart disease and depression[J]. Chin J Magn Reson Imaging, 2024, 15(6): 59-66.本文引用格式:刘蕾, 赵天佐, 许聃, 等. 冠心病伴抑郁患者脑结构磁共振成像特点及与情绪认知的相关性研究[J]. 磁共振成像, 2024, 15(6): 59-66. DOI:10.12015/issn.1674-8034.2024.06.009.


[摘要] 目的 探究冠心病伴抑郁(coronary heart disease with depression, CHDD)患者脑结构磁共振成像(structure magnetic resonance imaging, sMRI)特点,并分析其与情绪、认知能力的相关性。材料与方法 采用病例对照设计,共纳入22例CHDD患者,44例冠心病不伴抑郁(coronary heart disease without depression, CHD-nD)患者,以及30例健康对照(healthy control, HC)组。所有受试者的T1加权图像均通过MR脑结构分割辅助分析系统进行数据处理,并利用SPSS 26.0软件进行统计分析。首先对所有数据进行正态性检验。对符合正态分布的数据,使用One-way ANOVA进行三组间比较,并通过最小显著差异检验(least significant difference test, LSD)进行事后组间的比较。对于非正态分布数据进行Kruskal Wallis H非参数检验,并使用Mann-Whitney U检验进行事后比较,同时应用Bonferroni校正以控制多重比较的误差。此外,采用相关性分析来探究脑结构变化与情绪认知评分的相关性。结果 (1)与HC组相比,CHDD组患者在右侧额中回前部、颞下回、枕外侧回皮层曲率显著降低(P<0.05),在左侧颞上回坡部的皮层表面积显著增加(P<0.05)。(2)与HC组相比,CHD-nD患者在胼胝体后部体积显著增加,在左侧后扣带回、左侧盖部、右侧中央旁小叶、左侧海马下托、左侧海马伞的全脑体积占比以及左侧内嗅皮质的皮层曲率均显著降低(P均<0.05)。(3)与HC组相比,CHDD组、CHD-nD组在双侧眶额叶内侧部、左侧楔叶的全脑体积占比及右侧中央前回皮层曲率均显著降低,在右侧海马裂的体积均显著增高(P<0.05)。(4)相关性分析的结果显示,汉密尔顿抑郁量表(Hamilton Depression Scale, HAMD)评分与左侧眶额叶内侧部全脑体积占比(r=-0.228,P=0.025)、右侧中央前回(r=-0.239,P=0.019)及右侧枕外侧回皮层曲率(r=-0.256,P=0.012)呈负相关,与左侧颞上回坡部皮层表面积呈正相关(r=0.254,P=0.013);蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)评分与左侧眶额叶内侧部全脑体积占比呈正相关(r=0.342,P=0.007)。结论 CHDD患者在前额叶(额中回前部和中央前回)、颞叶(颞下回和颞上回坡部)、枕叶(枕外侧回和楔叶),以及海马裂的结构异常可能是CHDD患者的神经解剖基础,这些脑区与患者的情绪、认知障碍有关。
[Abstract] Objective To explore the MRI characteristics of brain structure in patients with coronary heart disease and depression (CHDD) and analyze their correlation with emotion and cognitive ability.Materials and Methods A case-control design was adopted, including 22 CHDD patients, 44 coronary heart disease without depression (CHD-nD) patients, and 30 healthy controls (HC). T1-weighted images of all subjects were processed using a MR brain structure segmentation auxiliary analysis system, and statistical analysis was performed using SPSS 26.0 software. Firstly, all data were tested for normality. For data conforming to a normal distribution, one-way ANOVA was used to compare the three groups, followed by post-hoc comparisons using the least significant difference (LSD) test. For non-normally distributed data, the Kruskal Wallis H nonparametric test was applied, with post-hoc comparisons performed using the Mann-Whitney U test and Bonferroni correction to control for errors in multiple comparisons. Additionally, correlation analysis was conducted to explore the relationship between brain structural changes and emotional and cognitive scores.Results (1) Compared to the HC group, the CHDD group showed significantly reduced cortical curvature in the right anterior middle frontal gyrus, inferior temporal gyrus, and lateral occipital cortex (P<0.05), and a significant increase in cortical surface area in the left superior temporal gyrus (P<0.05). (2) Compared to the HC group, CHD-nD patients exhibited a significant increase in the volume of the posterior corpus callosum and significant decreases in the proportion of whole brain volume in the left posterior cingulate gyrus, left operculum, right paracentral lobule, left hippocampal subiculum, left hippocampal fissure, and cortical curvature of the left entorhinal cortex (all P<0.05). (3) Compared to the HC group, the CHDD and CHD-nD groups showed significantly reduced proportions of whole brain volume in the bilateral medial orbitofrontal cortex. They left cuneus and reduced cortical curvature in the right precentral gyrus. Additionally, volume significantly increased in the right hippocampal fissure (all P<0.05). (4) Correlation analysis revealed that the Hamilton Depression Scale (HAMD) score was negatively correlated with the proportion of whole brain volume in the left medial orbitofrontal cortex (r=-0.228, P=0.025), right precentral gyrus (r=-0.239, P=0.019), and cortical curvature of the right lateral occipital cortex (r=-0.256, P=0.012), and positively correlated with the cortical surface area of the left superior temporal gyrus (r=0.254, P=0.013). The Montreal Cognitive Assessment (MoCA) score was positively correlated with the proportion of whole brain volume in the left medial orbitofrontal cortex (r=0.342, P=0.007).Conclusions Structural abnormalities in the frontal lobe (precentral gyrus anterior and precentral gyrus), temporal lobe (inferior temporal gyrus and superior temporal gyrus slope), occipital lobe (lateral occipital gyrus and cuneus), and hippocampal fissure of CHDD patients may be the neuroanatomical basis of CHDD. These brain regions are related to patients' emotional, and cognitive impairments.
[关键词] 冠心病伴抑郁;磁共振成像;MR分割系统;情绪;认知
[Keywords] coronary heart disease with depression;magnetic resonance imaging;MR segmentation system;emotion;cognition

刘蕾 1   赵天佐 1   许聃 1   袁洁 2   王旭 2   王亚楠 3   刘蓓 1   钟利群 4   李小圳 1   佘文龙 1   陈正光 1*  

1 北京中医药大学东直门医院放射科,北京 100700

2 北京中医药大学东直门医院心血管三区,北京 101100

3 北京中医药大学东直门医院急诊科二区,北京 101100

4 北京中医药大学东直门医院脑病科,北京 100700

通信作者:陈正光,E-mail:guangchen999@sina.com

作者贡献声明::陈正光设计本研究的方案,对稿件重要的内容进行了修改;刘蕾起草和撰写稿件,获取、分析和解释本研究的数据;赵天佐参与设计本研究方案,获取、分析、解释本研究数据,对稿件重要内容进行了修改;许聃、袁洁、王旭、王亚楠、刘蓓、李晓圳、钟利群、佘文龙获取、分析、解释本研究数据,对稿件重要内容进行了修改;钟利群获得了北京市自然科学基金面上项目的资助;陈正光获得了北京市中医药管理局中医药质量控制管理项目的资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 北京市自然科学基金面上项目 7232291 北京市中医药管理局中医药质量控制管理项目 BJZYY202211,BJZYY202111
收稿日期:2024-03-08
接受日期:2024-06-03
中图分类号:R445.2  R541.4  R749.92 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.06.009
本文引用格式:刘蕾, 赵天佐, 许聃, 等. 冠心病伴抑郁患者脑结构磁共振成像特点及与情绪认知的相关性研究[J]. 磁共振成像, 2024, 15(6): 59-66. DOI:10.12015/issn.1674-8034.2024.06.009.

0 引言

       冠心病(coronary heart disease, CHD)是由冠状动脉硬化引起的缺血性心脏病,抑郁是以长期情绪低落、快感缺失、悲观和主动性下降为特征的精神障碍,这两种疾病均已成为人类面临的重大社会健康问题[1, 2]。据《中国心血管健康与疾病报告2022》显示,中国心血管疾病患病率持续上升,其中CHD患者已达1139万人[3]。值得关注的是,抑郁作为CHD的常见并发症,其在CHD患者中的发病率约为15%~20%[4],而在心肌梗死(myocardial infarct, MI)患者中高达29%[5]。更为严重的是,合并抑郁的MI患者的全因死亡率和心源性死亡率分别增加了2.25倍和2.71倍,心血管事件风险也提升了1.59倍[6]

       鉴于冠心病伴抑郁(coronary heart disease with depression, CHDD)的高发病率和高死亡率,深入探讨并明确其共病机制显得至关重要。尽管近年来关于CHD与抑郁共病机制的研究逐渐增多,但主要集中于炎症、神经内分泌、基因以及社会行为学等方面[7],对于二者共病时的脑部结构变化,目前的研究仍然相对匮乏。

       在现有的研究手段中,结构磁共振成像(structural magnetic resonance imaging, sMRI)以其非侵入性、高分辨率的特点,为我们提供了关于大脑形态、大小、分区及组织结构的详细信息,成为了研究大脑解剖结构变化及其与疾病关系的重要工具。既往研究,如GILBERT等[8]已经通过sMRI发现CHD共病抑郁患者在双侧眶额叶皮层、双侧杏仁核/海马旁回以及右岛叶的灰质体积(gray matter volume, GMV)相较于健康对照(healthy control, HC)有所减少。这一发现为参与情绪调节的大脑区域网络与CHD及抑郁之间的可能联系提供了初步证据。尽管这是目前唯一一项专注于CHD共病抑郁的sMRI研究,但它只关注了脑GMV的变化,未涉及皮层厚度、皮层曲率等其他关键的脑形态学指标。

       因此,本研究旨在通过对比分析CHDD患者、CHD-nD患者及HC的脑部数据,深入探索CHDD患者的脑部结构特征及其与情绪认知的关系,期望通过这项研究增进对CHDD病理机制的理解,为未来的诊断和治疗提供重要的科学依据。这不仅能够提升对这一复杂共病状态的认识,还有望为临床实践带来新的突破。

1 材料与方法

1.1 研究对象

1.1.1 一般资料

       本研究采用病例对照设计,共招募96例受试者,其中44例CHD-nD患者和22例CHDD患者,均为2023年4月至2023年10月于北京中医药大学东直门医院通州院区门诊和病房就诊的患者。另外,本研究还纳入30例HC,主要来自本院医务人员及其家属,以及来本院进行健康体检的个体。本研究遵守《赫尔辛基宣言》,经北京中医药大学东直门医院医学伦理委员会批准,批准文号:2023DZMEC-066,全体受试者均签署了知情同意书。

1.1.2 纳入标准

       CHD-nD组患者纳入标准:(1)稳定型CHD患者,符合2018年中华医学会心血管病学分会颁布的《稳定性冠心病诊断与治疗指南》[9]中的诊断标准;(2)9条目患者健康问卷(Patient Health Questionnaire-9, PHQ-9)评分≤4分;(3)年龄35~70岁;(4)右利手。

       CHDD组患者的纳入标准:在CHD-nD组患者纳入标准上去除(2),另增加一条,抑郁症患者,符合国际疾病与分类第10版(The criteria outlined in the 10th revision of the International Statistical Classification of Diseases and Related Health Problems, ICD-10)[10]抑郁症诊断标准。

       HC组纳入标准:(1)年龄30~70岁;(2)无心血管疾病的症状或生化证据;(3)经胸超声心动图和心电图没有明显异常;(4)右利手。

1.1.3 排除标准

       CHD-nD组患者及CHDD组患者排除标准:(1)主动脉夹层、动脉瘤、原发性心肌病、风湿性心脏病等心血管病患者;(2)合并严重肺、肝、肾功能不全及血液系统等原发性疾病患者或严重心功能障碍者(NYHA Ⅳ级),左室射血分数<50%;(3)近1个月内患过急性MI、卒中及接受冠状动脉支架植入术者;(4)有明确诊断的脑血管等中枢神经系统疾病者;(5)血压、血糖控制不稳定的患者;(6)妊娠、哺乳期妇女;(7)有活动性感染的受试者;(8)恶性肿瘤终末阶段恶病质状态;(9)特异性出血史,或因服用华法林引起的出血史;(10)体内有不适合进行MRI扫描的金属制品;(11)对噪音和幽暗环境有恐惧者。

       HC组排除标准:(1)处于焦虑抑郁状态的患者;(2)有明确诊断的脑血管等中枢神经系统疾病者;(3)体内有不适合进行MRI扫描的金属制品;(4)对噪音和幽暗环境恐惧者。

1.2 研究方法

1.2.1 颅脑MRI检查

       受试者仰卧于MRI检查床,嘱受试者于扫描期间尽量避免任何不必要的肢体活动,闭目,保持清醒状态。给受试者佩戴防噪耳塞,并用泡沫头垫固定受试者头部以减少头部移动。扫描采用3.0 T MRI(GE Discovery 750w,美国)8通道相控阵头线圈。扫描序列:矢状位三维T1加权脑容积成像(sagittal 3D T1-weighted brain volume imaging, Sag 3DT1BRAVO),T2常规、T2 液体衰减反转恢复序列、扩散加权成像序列。所有受试者的扫描图像均经副主任级别及以上放射科医师进行图像质量审查及影像诊断,排除严重颅内病变患者。

       Sag 3DT1BRAVO参数:回波时间3.1 ms,重复时间8.0 ms,翻转角12°,视野24 cm×24 cm,矩阵240×240,层厚1 mm,层间距0 mm,扫描156层,扫描时间4 min 16 s,获得三维(three Dimensions, 3D)图像的分辨率为1.000 0 mm×0.468 8 mm ×0.468 8 mm。

1.2.2 数据处理

       所有MRI图像均使用uAI Research Portal(上海联影智能医疗科技有限公司)图像分析工具进行处理[11, 12]。该工具首先进行了一系列的预处理步骤,包括颅骨剥离、偏倚校正,以及将图像重采样至1 mm×1 mm×1 mm的分辨率。随后,对T1图像进行了灰质、白质和脑脊液的分割。并根据Desikan-Killiany(DK)图谱[13]进一步分割成109个主要感兴趣区。这一分割程序由预训练的级联V-nets(一种基于全卷积神经网络的3D图像分割方法)完成,它通过粗定位和分割细化的结合,实现了高精度的图像分割。该方法在包括脑肿瘤[14]和胸部器官[15]在内的医学图像分割任务中均被证明是有效的[16]

       在所有数据被导出后,得到109个脑区分割信息及68个皮层脑区的皮层分析数据,并对海马结构提供精细分割,根据分割粒度展示FreeSurfer 60 (FS60) Atlas模板分割下的海马亚区结构。109个脑区包括5个关键脑区(海马、额叶、颞叶、脑室、基底节)和104个子脑区(表1)。海马亚区容积,以FS60模板[17]划分为12个子脑区。参照DK脑图谱[13],皮层被划分为68个皮层脑区,并详细显示各脑区皮层厚度、皮层表面积和皮层曲率(图1图2)。这些数据将用于后续的研究分析和比较。

图1  皮层厚度3D图。皮层厚度图总体显示绿色,根据各脑区厚度变化,呈现不同效果。
图2  皮层曲率3D图。皮层曲率图根据曲率值显示红色(正值)或蓝色(负值),根据各脑区的变化呈现不同的效果。
Fig. 1  3D Rendering of cortical thickness. Overall displayed in green, with varying effects based on thickness changes in different brain regions.
Fig. 2  3D rendering of cortical curvature. Displayed in red for positive values and blue for negative values, with varying effects based on changes in different brain regions.
表1  一侧脑区具体分割表
Tab. 1  Detailed segmentation of one-sided brain regions

1.2.3 统计学分析

       使用SPSS 26.0统计软件对临床资料和MR分割系统产生的脑区相关指标进行分析。两组间比较,计量资料呈正态分布时采用两独立样本t检验,以均数±标准差表示,呈非正态分布的计量资料进行wilcoxon Mann-Whitney U检验,以中位数和四分位数间距表示。对二分类数据以相对数构成比或率(%)表示,采用卡方检验。对三组间数据进行比较时,先对三组数据进行正态性检验,当三组数据均为正态分布时选择One-way ANOVA分析,并继续以LSD检验进行事后两组间比较。当任意一组数据不符合正态分布时,选择Kruskal Wallis H检验,并采用Mann-Whitney U检验进行事后组间两两比较,并采用Bonferroni校正。三组间比较存在差异的脑区的相关性分析:两组数据均为正态分布时,对两组数据做Pearson相关性分析,任意一组数据不符合正态分布的数据则行Spearman相关性分析。所有统计检验采取双侧检验,P<0.05为差异具有统计学意义。

2 结果

2.1 人口学及临床资料的比较

       CHDD、CHD-nD、HC组受试者在性别、年龄、受教育程度上差异均无统计学意义(P>0.05)。CHD-nD组患者与CHDD组患者在体质量指数(body mass index, BMI)、心绞痛分级、病程、既往史、蒙特利尔认知评估(Montreal Cognitive Assessment, MoCA)量表评分上差异均无统计学意义(P>0.05)。在西雅图心绞痛量表(Seattle Angina Questionnaire, SAQ)评分中,两组患者在躯体活动受限程度、心绞痛稳定状态得分、心绞痛发作情况得分上差异无统计学意义(P>0.05)。而在治疗满意度、疾病认知情况得分上,CHDD组患者显著低于CHD-nD组,差异具有统计学意义(P<0.05)。三组患者在汉密尔顿抑郁量表(Hamilton Depression Rating Scale, HAMD)评分上差异具有统计学意义(P<0.05)(表2)。

表2  三组的人口学资料和临床资料的比较
Tab. 2  Comparison of demographic and clinical data of all study participants

2.2 脑MR分割系统结果

       脑MR分割研究结果显示CHDD组、CHD-nD及HC组在全脑容积、GMV、白质体积及海马体积等指标上差异无统计学意义(P>0.05)。事后组间两两比较,差异均无统计学意义(P>0.05)(表3)。

       CHDD、CHD-nD及HC组比较,多个脑区分割指标存在显著差异。与HC组相比,CHDD组患者在右侧额中回前部、颞下回、枕外侧回皮层曲率显著降低(P<0.05),在左侧颞上回坡部的皮层表面积显著增加(P<0.05)(表4图3)。与HC组相比,CHD-nD患者在胼胝体后部体积显著增加,在左侧后扣带回、左侧盖部、右侧中央旁小叶、左侧海马下托、左侧海马伞的全脑体积占比以及左侧内嗅皮质的皮层曲率均显著降低(P均<0.05)(表4)。与HC组相比,CHDD组、CHD-nD组在双侧眶额叶内侧部、左侧楔叶的全脑体积占比及右侧中央前回皮层曲率均显著降低,在右侧海马裂的体积均显著增高(P<0.05)(表4图4)。CHDD患者与CHD-nD患者相比在脑结构上差异无统计学意义(P>0.05)(表4)。

图3  CHDD组与HC组比较存在差异,CHD组与HC组比较不存在差异的脑区。3A:三组间在E405额中回前部_皮层曲率_右的比较;3B:三组间在E555颞下回_皮层曲率_右的比较;3C:三组间在E564颞上回坡部_皮层表面积_左的比较;3D:三组间在E579枕外侧回_皮层曲率_右的比较;ns表示差异无统计学意义,*表示P<0.05,**表示P<0.01。CHDD:冠心病伴抑郁;CHD-nD:冠心病不伴抑郁;HC:健康对照。
Fig. 3  Brain regions exhibiting differences between CHDD group and HC group, but no differences between CHD group and HC group. 1A: Comparison of cortical curvature in the anterior gyrus rectus (E405)_Right among the three groups; 1B: Comparison of cortical curvature in the inferior temporal gyrus (E555)_Right among the three groups; 1C: Comparison of cortical surface area in the superior temporal gyrus slope (E564)_Left among the three groups; 1D: Comparison of cortical curvature in the lateral occipital gyrus (E579)_Right among the three groups. ns indicates no significant difference, * indicates P<0.05, and ** indicates P<0.01. CHDD: coronary heart disease with depression; CHD-nD: coronary heart disease without depression; HC: healthy control.
图4  CHDD组、CHD-nD组与HC组比较均存在差异的脑区。4A:三组间在R227眶额叶内侧部_左的比较;4B:三组间在R228眶额叶内侧部_右的比较。4C:三组间在R243楔叶_左全脑体积占比的比较;4D:三组间在H359FS60_海马裂_右体积的比较;4E:三组间在E381中央前回_皮层曲率_右的比较;ns表示差异无统计学意义,*表示P<0.05,**表示P<0.01。CHDD:冠心病伴抑郁;CHD-nD:冠心病不伴抑郁;HC:健康对照。
Fig. 4  Brain regions where differences exist among CHDD, CHD-nD, and HC groups. 4A: Comparison among the three groups in the left medial orbitofrontal cortex (R227); 4B: Comparison among the three groups in the right medial orbitofrontal cortex (R228); 4C: Comparison among the three groups in the proportion of left cuneus (R243) to the whole brain volume; 4D: Comparison among the three groups in the volume of right hippocampal fissure (H359FS60); 4E: Comparison among the three groups in the cortical curvature of the right precentral gyrus (E381). ns indicates no statistically significant difference, * indicates P<0.05, and ** indicates P<0.01. CHDD: coronary heart disease with depression group; CHD-nD: coronary heart disease without depression group; HC: healthy control.
表3  三组患者全脑容积、白质、灰质、海马体积的比较
Tab. 3  Comparison of total brain volume, white matter, gray matter, and hippocampal volume among three groups
表4  三组患者具有差异的脑区指标值
Tab. 4  Values of brain region indicators showing differences among three groups

2.3 相关性分析

       对MoCA、HAMD抑郁量表的评分与存在差异的脑区进行相关性分析,因两者评分均为非正态分布,故采用Speraman相关性分析。结果显示:HAMD评分与左侧眶额叶内侧部全脑体积占比(r=-0.228,P=0.025)、中央前回_皮层曲率_右(r=-0.239,P=0.019)、枕外侧回_皮层曲率_右(r=-0.256,P=0.012)之间呈较弱的负相关关系。HAMD抑郁量表评分与颞上回坡部_皮层表面积_左呈较弱的正相关关系(r=0.254,P=0.013),MoCA评分与左侧眶额叶内侧部全脑体积占比呈正相关(r=0.342,P=0.007)(表5)。

表5  HAMD抑郁评分与三组间差异脑区指标的相关性分析
Tab. 5  Correlation analysis between HAMD depression scores and differential brain region indicators among three groups

3 讨论

       MR脑分割辅助分析系统能够精确地对3D-T1结构像薄层数据进行分割,从而获取多维度的脑部结构信息,包括各脑区体积、脑区占比、皮层厚度、皮层表面积、皮层曲率、海马亚结构体积等。本研究首次(国内)采用该系统分析了CHDD组、CHD-nD组及HC组的脑结构差异。并进一步分析了CHDD患者脑结构改变与抑郁和认知评分之间的相关性。初步研究结果显示,与HC组相比,CHDD患者在右侧额中回前部、颞下回、枕外侧回、中央前回的皮层曲率及双侧眶额叶内侧部、左侧楔叶的全脑体积占比显著降低,左侧颞上回坡部的表面积、右侧海马裂的体积显著增高,这些差异与患者的抑郁和认知障碍紧密相关。这些发现不仅为理解CHDD的病理机制提供了新的线索,也为未来的研究及治疗手段的研发奠定了基础。

3.1 CHDD组与HC组差异脑区

       本研究结果显示,CHDD组在右侧额中回前部的皮层曲率显著降低,此脑区与情绪加工和认知功能紧密相关[18],与既往研究[19, 20]相符。此外,在情绪调节环路扮演关键角色的颞叶区域,我们观察到CHDD组右侧颞下回的皮层曲率降低,而左侧颞上回坡部的表面积增加,这些变化可能与情绪处理和记忆功能异常有关[21, 22, 23]。同时,右侧枕外侧回的皮层曲率也显著降低,并且与HAMD抑郁评分呈负相关。枕叶主要参与视觉处理和情绪调节,其结构和功能的改变与抑郁情绪密切相关[24, 25]。综上,本研究揭示了CHDD患者在额中回、颞叶和枕叶等脑区的显著差异,这些差异与情绪障碍和认知功能下降密切相关。这些发现为深入理解CHDD的病理机制提供了新的视角。然而,需要注意的是,研究结果可能受到扫描过程中的微小头部运动及样本量等因素的影响。

3.2 CHD-nD组与HC组差异脑区

       本研究结果显示,CHD-nD组与HC组在多个脑区存在显著差异,包括胼胝体后部体积、海马结构(海马下托和海马伞)以及内嗅皮质。胼胝体后部体积的变化可能影响信息传递效率[26, 27]。而后扣带回[28]、海马结构[29, 30, 31]和内嗅皮质[32, 33]的异常与认知功能紧密相关。这些发现表明CHD可能对大脑认知产生潜在影响,其原因可能与CHD导致的血管内皮功能损害和心功能损伤,继而引发慢性脑灌注不足相关。尽管本研究结果可能受样本量、数据处理和分析方法的影响,但结果仍为理解CHD对大脑的影响提供了新视角。

3.3 CHDD组、CHD-nD组与HC组均存在差异脑区

       本研究结果显示,与HC组相比,CHDD组、CHD-nD组在双侧眶额叶内侧部、左侧楔叶的全脑体积占比显著降低,在右侧海马裂的体积显著增高,在右侧中央前回皮层曲率显著降低。

       眶额叶皮层在疼痛感知[34, 35]、注意力[36]及情绪[37]的调节中起关键作用。内侧眶额皮质异常可能破坏奖赏机制,从而增加抑郁风险[37, 38, 39]。对于CHD患者,长期间断的心绞痛可能深刻影响其心理状态,加剧疼痛感知,并进一步影响眶额功能。本研究结果显示,CHD-nD与CHDD患者的双侧眶额叶内侧部全脑体积占比显著降低,且与抑郁和认知障碍程度相关。这与之前的研究相吻合[40, 41],暗示眶额叶皮层的变化可能是由疼痛和抑郁共同引发。

       楔叶是初级视觉皮层的关键部分,不仅在视觉信息和面部情绪感知中起重要作用,还参与整合疼痛等体感信息[42, 43]。研究显示,慢性疼痛状况与楔叶的激活相关[44]。本研究结果显示,CHD-nD组患者在左侧楔叶脑区占比显著降低,这可能与心绞痛引发的疼痛刺激有关。此外,抑郁症患者常出现楔叶功能损伤[45],表现为局部功能连接和活动异常[46, 47],这与抑郁症的病理机制可能直接相关[48, 49]。本研究结果显示,与HC组相比,CHDD组左侧楔叶全脑体积占比也显著降低,这可能既与抑郁症的病理有关,也受CHD心绞痛的影响,表明两者可能存在叠加。

       本研究结果显示CHDD和CHD-nD组患者的右侧海马裂体积显著增高。海马裂是海马结构周围的脑脊液空间,海马结构本身与记忆和情感处理密切相关。抑郁症患者常出现海马解剖结构变化[50],可能与下丘脑-垂体-肾上腺(hypothalamic pituitary adrenal axis, HPA)轴功能异常引发的糖皮质激素水平升高,从而导致海马萎缩有关[51, 52]。本研究中,未发现海马结构异常,而患者右侧海马裂体积增高,考虑到CHD-nD和CHDD患者也存在HPA轴功能异常[7],我们推测其海马裂结构变化或与此相关,这一推测尚需进一步验证。

       中央前回是一个关键脑区,不仅涉及运动控制也参与情绪调节。本研究结果显示,与HC组相比,CHD-nD组与CHDD组患者在右侧中央前回的皮层曲率均显著降低,且CHDD组降幅更明显,这与既往关于CHD[53]和抑郁症[54]的研究相符。此外,本研究显示,右侧中央前回皮层曲率与HAMD抑郁评分呈负相关,即患者抑郁程度越重,曲率越小。这可能与患者活动减少有关,CHD患者因心肌供氧不足而活动减少,而抑郁症导致的情绪低落进一步降低患者活动量,这些因素都可能影响到皮层曲率。因此,我们可以认为右侧中央前回的皮层曲率降低与CHDD患者的抑郁症状及活动减少紧密相关。

       综上,本研究揭示了CHDD组、CHD-nD组与HC组在多个脑区存在的结构差异,这些差异与CHD及CHD并发抑郁的病理生理机制密切相关。尽管存在个体差异、扫描时的头动及样本量等偶然因素的影响,但本研究结果仍为理解冠心CHD与抑郁的关联提供了重要线索,反映了两者对脑的共同作用。

3.4 本研究的局限性

       虽然本研究取得了一些有意义的发现,但也存在一些局限性。首先,样本量相对较小,可能影响到结果的稳定性和普遍性。未来研究可以进一步扩大样本量,以提高研究的可靠性。其次,本研究主要关注了脑结构的改变,而未涉及功能性的研究。未来可以进一步探讨这些脑区在功能上的改变以及与CHDD症状之间的具体联系。最后,本研究未能深入探讨脑结构变化背后的神经生物学机制,未来研究可以结合临床及其他生理病理机制进行综合分析,以揭示CHDD患者脑结构变化的深层次原因。

4 结论

       本研究发现,相较于HC组,CHDD患者的脑结构在前额叶(额中回前部和中央前回)、颞叶(颞下回和颞上回坡部)、枕叶(枕外侧回和楔叶),以及海马周围存在显著差异,这些差异与患者的抑郁和认知功能障碍紧密相关,为理解CHD与抑郁障碍的共病机制提供了神经解剖学依据。

[1]
DE OLIVEIRA LATERZA RIBEIRO M, CORREIA V M, HERLING DE OLIVEIRA L L, et al. Evolving diagnostic and management advances in coronary heart disease[J/OL]. Life, 2023, 13(4): 951 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/37109480/. DOI: 10.3390/life13040951.
[2]
MALHI G S, MANN J J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. DOI: 10.1016/S0140-6736(18)31948-2.
[3]
《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2022》概述[J]. 中国心血管病研究, 2023, 21(7): 577-600. DOI: 10.3969/j.issn.1672-5301.2023.07.001.
"China Cardiovascular Health and Disease Report 2022" writing team. Overview of report on cardiovascular health and diseases in China 2022[J]. Chin J Cardiovasc Res, 2023, 21(7): 577-600. DOI: 10.3969/j.issn.1672-5301.2023.07.001.
[4]
JHA M K, QAMAR A, VADUGANATHAN M, et al. Screening and management of depression in patients with cardiovascular disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(14): 1827-1845. DOI: 10.1016/j.jacc.2019.01.041.
[5]
FENG L M, LI L F, LIU W N, et al. Prevalence of depression in myocardial infarction[J/OL]. Medicine, 2019, 98(8): e14596 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/30813183/. DOI: 10.1097/md.0000000000014596.
[6]
WU Y S, ZHU B, CHEN Z J, et al. New insights into the comorbidity of coronary heart disease and depression[J/OL]. Curr Probl Cardiol, 2021, 46(3): 100413 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31005351/. DOI: 10.1016/j.cpcardiol.2019.03.002.
[7]
ZHAO S W, ZHU L P, YANG J F. Association between depression and macrovascular disease: a mini review[J/OL]. Front Psychiatry, 2023, 14: 1215173 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/37457763/. DOI: 10.3389/fpsyt.2023.1215173.
[8]
GILBERT A M, PRASAD K, GORADIA D, et al. Grey matter volume reductions in the emotion network of patients with depression and coronary artery disease[J/OL]. Psychiatry Res, 2010, 181(1): 9-14 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/19959343/. DOI: 10.1016/j.pscychresns.2009.07.006.
[9]
中华医学会心血管病学分会介入心脏病学组, 中华医学会心血管病学分会动脉粥样硬化与冠心病学组, 中国医师协会心血管内科医师分会血栓防治专业委员会, 等. 稳定性冠心病诊断与治疗指南[J]. 中华心血管病杂志, 2018, 46(9): 680-694. DOI: 10.3760/cma.j.issn.0253-3758.2018.09.004.
Interventional Cardiology Group of the Cardiovascular Disease Branch of the Chinese Medical Association, Atherosclerosis and Coronary Heart Disease Group of the Cardiovascular Disease Branch of the Chinese Medical Association, Thrombosis Prevention and Treatment Professional Committee of the Cardiovascular Physicians Branch of the Chinese Medical Doctor Association, et al. Guidelines for the diagnosis and treatment of stable coronary heart disease[J]. Chin J Cardiol, 2018, 46(9): 680-694. DOI: 10.3760/cma.j.issn.0253-3758.2018.09.004.
[10]
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 抑郁症基层诊疗指南(实践版·2021)[J]. 中华全科医师杂志, 2021, 20(12): 1261-1268. DOI: 10.3760/cma.j.cn114798-20211020-00779.
Chinese Medical Association, Chinese Medical Association Magazine, Chinese Medical Association General Medicine Branch, et al. Guideline for primary care of major depressive disorder: practice version (2021)[J]. Chin J Gen Pract, 2021, 20(12): 1261-1268. DOI: 10.3760/cma.j.cn114798-20211020-00779.
[11]
XIAO B, CHENG X Q, LI Q F, et al. Weakly supervised confidence learning for brain MR image dense parcellation[C]//SUK HI, LIU M, YAN P, et al. International Workshop on Machine Learning in Medical Imaging. Cham: Springer, 2019: 409-416. DOI: 10.1007/978-3-030-32692-0_47
[12]
WEI J, SHI F, CUI Z M, et al. Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks[C]//Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. Strasbourg, France, 2021: 89-98.
[13]
KLEIN A, TOURVILLE J. 101 labeled brain images and a consistent human cortical labeling protocol[J/OL]. Front Neurosci, 2012, 6: 171 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/23227001/. DOI: 10.3389/fnins.2012.00171.
[14]
HUA R, HUO Q, GAO Y Z, et al. Segmenting brain tumor using cascaded V-nets in multimodal MR images[J/OL]. Front Comput Neurosci, 2020, 14: 9 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/32116623/. DOI: 10.3389/fncom.2020.00009.
[15]
HAN M F, YAO G, ZHANG W H, et al. Segmentation of CT thoracic organs by multi-resolution VB-nets[J/OL]. SegTHOR@ISBI, 2019 [2024-03-07]. https://www.semanticscholar.org/paper/Segmentation-of-CT-Thoracic-Organs-by-VB-nets-Han-Yao/e8cf28abe20c9d62bce1548ea0f1551228ff8039.
[16]
LIU S, JIE C, ZHENG W M, et al. Investigation of underlying association between whole brain regions and Alzheimer's disease: a research based on an artificial intelligence model[J/OL]. Front Aging Neurosci, 2022, 14: 872530 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/35747447/. DOI: 10.3389/fnagi.2022.872530.
[17]
BROWN E M, PIERCE M E, CLARK D C, et al. Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners[J/OL]. NeuroImage, 2020, 210: 116563 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31972281/. DOI: 10.1016/j.neuroimage.2020.116563.
[18]
GENG J T, YAN R, SHI J B, et al. Altered regional homogeneity in patients with somatic depression: a resting-state fMRI study[J/OL]. J Affect Disord, 2019, 246: 498-505 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/30599374/. DOI: 10.1016/j.jad.2018.12.066.
[19]
房俊芳, 王倩, 王滨, 等. ALFF及fALFF在评价抑郁症脑活动异常中的应用[J]. 临床放射学杂志, 2015, 34(7): 1030-1034. DOI: 10.13437/j.cnki.jcr.2015.07.002.
FANG J F, WANG Q, WANG B, et al. Amplitude of low-frequency oscillations in major depression as revealed by resting state functional magnetic resonance imaging[J]. J Clin Radiol, 2015, 34(7): 1030-1034. DOI: 10.13437/j.cnki.jcr.2015.07.002.
[20]
LIU X Y, HOU Z H, YIN Y Y, et al. CACNA1C gene rs11832738 polymorphism influences depression severity by modulating spontaneous activity in the right middle frontal gyrus in patients with major depressive disorder[J/OL]. Front Psychiatry, 2020, 11: 73 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/32161558/. DOI: 10.3389/fpsyt.2020.00073.
[21]
FRANK D, KAFKAS A. Expectation-driven novelty effects in episodic memory[J/OL]. Neurobiol Learn Mem, 2021, 183: 107466 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/34048914/. DOI: 10.1016/j.nlm.2021.107466.
[22]
ZHAO P, WANG X Y, WANG Q, et al. Altered fractional amplitude of low-frequency fluctuations in the superior temporal gyrus: a resting-state fMRI study in anxious depression[J/OL]. BMC Psychiatry, 2023, 23(1): 847 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/37974113/. DOI: 10.1186/s12888-023-05364-w.
[23]
马跃, 何家恺, 郭春蕾, 等. 轻中度抑郁症静息态fMRI低频振幅与血清炎症因子相关性研究[J]. 磁共振成像, 2023, 14(9): 1-6, 18. DOI: 10.12015/issn.1674-8034.2023.09.001.
MA Y, HE J K, GUO C L, et al. Correlation between low-frequency amplitude and serum inflammatory factors in resting-state functional magnetic resonance imaging in mild to moderate depression[J]. Chin J Magn Reson Imag, 2023, 14(9): 1-6, 18. DOI: 10.12015/issn.1674-8034.2023.09.001.
[24]
LI K, ZHANG M, ZHANG H S, et al. The spontaneous activity and functional network of the occipital cortex is correlated with state anxiety in healthy adults[J/OL]. Neurosci Lett, 2020, 715: 134596 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31711976/. DOI: 10.1016/j.neulet.2019.134596.
[25]
WU F F, LU Q B, KONG Y, et al. A comprehensive overview of the role of visual cortex malfunction in depressive disorders: opportunities and challenges[J]. Neurosci Bull, 2023, 39(9): 1426-1438. DOI: 10.1007/s12264-023-01052-7.
[26]
GOLDMAN J G, BLEDSOE I O, MERKITCH D, et al. Corpus callosal atrophy and associations with cognitive impairment in Parkinson disease[J]. Neurology, 2017, 88(13): 1265-1272. DOI: 10.1212/WNL.0000000000003764.
[27]
PORCU M, COCCO L, MARROSU F, et al. Impact of corpus callosum integrity on functional interhemispheric connectivity and cognition in healthy subjects[J]. Brain Imaging Behav, 2024, 18(1): 141-158. DOI: 10.1007/s11682-023-00814-1.
[28]
LEECH R, SHARP D J. The role of the posterior cingulate cortex in cognition and disease[J]. Brain, 2014, 137(Pt 1): 12-32. DOI: 10.1093/brain/awt162.
[29]
WEI Y Y, HUANG N W, LIU Y, et al. Hippocampal and amygdalar morphological abnormalities in Alzheimer's disease based on three Chinese MRI datasets[J]. Curr Alzheimer Res, 2020, 17(13): 1221-1231. DOI: 10.2174/1567205018666210218150223.
[30]
冯伦伦, 金蓉, 曹城浩, 等. 阿尔茨海默病患者认知功能减退的海马亚区结构改变分析[J]. 临床放射学杂志, 2022, 41(10): 1819-1824. DOI: 10.13437/j.cnki.jcr.2022.10.025.
FENG L L, JIN R, CAO C H, et al. Structural changes in the hippocampal subfields about cognitive decline of Alzheimer's disease[J]. J Clin Radiol, 2022, 41(10): 1819-1824. DOI: 10.13437/j.cnki.jcr.2022.10.025.
[31]
王雅君, 徐姝蕊, 罗佳, 等. 2型糖尿病对主观认知下降患者认知功能及海马结构的影响[J]. 中国康复医学杂志, 2024, 39(4): 505-514. DOI: 10.3969/j.issn.1001-1242.2024.04.008.
WANG Y J, XU S R, LUO J, et al. Effects of type 2 diabetes on cognitive function and hippocampus structure in patients with subjective cognitive decline[J]. Chin J Rehabil Med, 2024, 39(4): 505-514. DOI: 10.3969/j.issn.1001-1242.2024.04.008.
[32]
GERLEI K Z, BROWN C M, SÜRMELI G, et al. Deep entorhinal cortex: from circuit organization to spatial cognition and memory[J]. Trends Neurosci, 2021, 44(11): 876-887. DOI: 10.1016/j.tins.2021.08.003.
[33]
ROESLER R, MCGAUGH J L. The entorhinal cortex as a gateway for amygdala influences on memory consolidation[J/OL]. Neuroscience, 2022, 497: 86-96 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/35122874/. DOI: 10.1016/j.neuroscience.2022.01.023.
[34]
HUANG J T, ZHANG Z Z, GAMBETA E, et al. An orbitofrontal cortex to midbrain projection modulates hypersensitivity after peripheral nerve injury[J/OL]. Cell Rep, 2021, 35(4): 109033 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/33910011/. DOI: 10.1016/j.celrep.2021.109033.
[35]
CASTON R M, SMITH E H, DAVIS T S, et al. Characterization of spatiotemporal dynamics of binary and graded tonic pain in humans using intracranial recordings[J/OL]. PLoS One, 2023, 18(10): e0292808 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/37844101/. DOI: 10.1371/journal.pone.0292808.
[36]
MIYASHIRO S, YAMADA Y, MUTA T, et al. Activation of the orbitofrontal cortex by both meditation and exercise: a near-infrared spectroscopy study[J/OL]. PLoS One, 2021, 16(2): e0247685 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/33621250/. DOI: 10.1371/journal.pone.0247685.
[37]
ROLLS E T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala[J]. Brain Struct Funct, 2023, 228(5): 1201-1257. DOI: 10.1007/s00429-023-02644-9.
[38]
FOLAND-ROSS L C, SACCHET M D, PRASAD G, et al. Cortical thickness predicts the first onset of major depression in adolescence[J/OL]. Int J Dev Neurosci, 2015, 46: 125-131 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/26315399/. DOI: 10.1016/j.ijdevneu.2015.07.007.
[39]
ROLLS E T, CHENG W, DU J N, et al. Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression[J]. Soc Cogn Affect Neurosci, 2020, 15(1): 75-86. DOI: 10.1093/scan/nsaa014.
[40]
WU Y F, KONG L T, YANG A Q, et al. Gray matter volume reduction in orbitofrontal cortex correlated with plasma glial cell line-derived neurotrophic factor (GDNF) levels within major depressive disorder[J/OL]. Neuroimage Clin, 2023, 37: 103341 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/36739789/. DOI: 10.1016/j.nicl.2023.103341.
[41]
LAIRD K T, SIDDARTH P, KRAUSE-SORIO B, et al. Anxiety symptoms are associated with smaller insular and orbitofrontal cortex volumes in late-life depression[J/OL]. J Affect Disord, 2019, 256: 282-287 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31200165/. DOI: 10.1016/j.jad.2019.05.066.
[42]
PALEJWALA A H, DADARIO N B, YOUNG I M, et al. Anatomy and white matter connections of the lingual gyrus and Cuneus[J/OL]. World Neurosurg, 2021, 151: e426-e437 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/33894399/. DOI: 10.1016/j.wneu.2021.04.050.
[43]
GE X H, WANG L Y, PAN L, et al. Amplitude of low-frequency fluctuation after a single-trigger pain in patients with classical trigeminal neuralgia[J/OL]. J Headache Pain, 2022, 23(1): 117 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/36076162/. DOI: 10.1186/s10194-022-01488-8.
[44]
邱志强, 钟向凯, 杨麒民, 等. 带状疱疹后神经痛患者的脑自发活动改变: 一项基于rs-fMRI数据的ALE元分析[J]. 磁共振成像, 2023, 14(9): 19-25. DOI: 10.12015/issn.1674-8034.2023.09.004.
QIU Z Q, ZHONG X K, YANG Q M, et al. Changes in spontaneous brain activity in patients with postherpetic neuralgia: an ALE Meta-analysis based on rs-fMRI data[J]. Chin J Magn Reson Imag, 2023, 14(9): 19-25. DOI: 10.12015/issn.1674-8034.2023.09.004.
[45]
YUAN J X, YU H, YU M L, et al. Altered spontaneous brain activity in major depressive disorder: an activation likelihood estimation meta-analysis[J/OL]. J Affect Disord, 2022, 314: 19-26 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/35750093/. DOI: 10.1016/j.jad.2022.06.014.
[46]
李轶, 邬莎, 尹岩, 等. 初发、未服药重度抑郁症患者静息态低频振幅率及其与抑郁症状相关性的研究[J]. 临床放射学杂志, 2022, 41(1): 12-17. DOI: 10.13437/j.cnki.jcr.2022.01.003.
LI Y, WU S, YIN Y, et al. Altered resting state fALFF and their relationship with depressive symptom in first episode drug-naivemajor depressive disorder patients[J]. J Clin Radiol, 2022, 41(1): 12-17. DOI: 10.13437/j.cnki.jcr.2022.01.003.
[47]
DOTSON V M, BOGOIAN H R, GRADONE A M, et al. Subthreshold depressive symptoms relate to cuneus structure: thickness asymmetry and sex differences[J/OL]. J Psychiatr Res, 2021, 145: 144-147 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/34922098/. DOI: 10.1016/j.jpsychires.2021.12.013.
[48]
MARWOOD L, WISE T, PERKINS A M, et al. Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety[J/OL]. Neurosci Biobehav Rev, 2018, 95: 61-72 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/30278195/. DOI: 10.1016/j.neubiorev.2018.09.022.
[49]
MA X Y, LIU J, LIU T Y, et al. Altered resting-state functional activity in medication-naive patients with first-episode major depression disorder vs. healthy control: a quantitative meta-analysis[J/OL]. Front Behav Neurosci, 2019, 13: 89 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31133831/. DOI: 10.3389/fnbeh.2019.00089.
[50]
YAO Z J, FU Y, WU J F, et al. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients[J]. Brain Imaging Behav, 2020, 14(3): 653-667. DOI: 10.1007/s11682-018-0003-1.
[51]
BREMNER J D, FANI N, CHEEMA F A, et al. Effects of a mental stress challenge on brain function in coronary artery disease patients with and without depression[J]. Health Psychol, 2019, 38(10): 910-924. DOI: 10.1037/hea0000742.
[52]
ZHANG F F, PENG W, SWEENEY J A, et al. Brain structure alterations in depression: Psychoradiological evidence[J]. CNS Neurosci Ther, 2018, 24(11): 994-1003. DOI: 10.1111/cns.12835.
[53]
LIN S M, HAN Y, DUAN S Y, et al. Aberrant spontaneous brain activity in coronary heart disease using fractional amplitude of low-frequency fluctuations: a preliminary resting-state functional MRI study[J/OL]. Dis Markers, 2022, 2022: 2501886 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/35692880/. DOI: 10.1155/2022/2501886.
[54]
王静, 彭红军, 杨勇哲, 等. 基于多模态磁共振影像的抑郁障碍自动分类研究[J]. 中国神经精神疾病杂志, 2018, 44(10): 583-588. DOI: 10.3969/j.issn.1002-0152.2018.10.002.
WANG J, PENG H J, YANG Y Z, et al. Automatic classification of major depressive disorder with multi-modal magnetic resonance imaging[J]. Chin J Nerv Ment Dis, 2018, 44(10): 583-588. DOI: 10.3969/j.issn.1002-0152.2018.10.002.

上一篇 超高海拔移居者脑网络度中心性静息态功能磁共振成像研究
下一篇 脑小血管负担评分对短暂性脑缺血发作患者复发性脑血管事件的预测价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2