分享:
分享到微信朋友圈
X
综述
儿童、青少年抑郁症的静息态功能磁共振成像研究进展
吴蓉 凌奥南 张高峰

Cite this article as: WU R, LING A N, ZHANG G F. Advances in resting-state fMRI studies of depression in children and adolescents[J]. Chin J Magn Reson Imaging, 2024, 15(6): 149-152, 195.本文引用格式:吴蓉, 凌奥南, 张高峰. 儿童、青少年抑郁症的静息态功能磁共振成像研究进展[J]. 磁共振成像, 2024, 15(6): 149-152, 195. DOI:10.12015/issn.1674-8034.2024.06.023.


[摘要] 儿童、青少年抑郁症是一种严重的心理健康问题,它会影响儿童、青少年的思维、感觉和行为,并可能导致情绪、功能和身体等方面的问题。抑郁症病因及病理生理机制不明,目前,MRI技术是研究其病因与病理生理机制的主要方法之一。功能MRI(functional MRI, fMRI)能够实时反映脑功能变化,可用于探索儿童、青少年抑郁症患者相关脑区的功能活动。静息态fMRI(resting-state fMRI, rs-fMRI)是目前研究神经影像学的一项热门研究技术,为探讨儿童、青少年抑郁症异常脑区的功能改变提供了影像学支持。本文简要总结近年来青少年抑郁症rs-fMRI研究结果及潜在不足,旨在为今后的研究提供方向。
[Abstract] Childhood and adolescent depression is a serious mental health problem that affects the way children and adolescents thinks, feels, and behaves, and can lead to emotional, functional, and physical problems. The etiology and pathophysiologic mechanisms of depression are unknown, and currently, MRI is one of the main methods to study its etiology and pathophysiologic mechanisms. Functional MRI (fMRI) reflects real-time changes in brain function and can be used to explore the functional activity of relevant brain regions in children and adolescents with depression. Resting-state fMRI (rs-fMRI) is currently a popular research technique for studying neuroimaging, which provides imaging support for exploring the functional alterations of abnormal brain regions in children and adolescents with depression. In this paper, we briefly summarize the results and potential shortcomings of rs-fMRI studies of adolescent depression in recent years, aiming to provide directions for future research.
[关键词] 抑郁症;儿童;青少年;静息态功能磁共振成像;磁共振成像
[Keywords] depression;children;adolescent;resting-state functional magnetic resonance imaging;magnetic resonance imaging

吴蓉    凌奥南    张高峰 *  

遵义医科大学第二附属医院医学影像科,遵义 563000

通信作者:张高峰,E-mail:zhanggaofeng159@126.com

作者贡献声明::张高峰设计本研究的方案,对稿件重要智力内容进行了修改,获得了贵州省科技计划项目的资助;吴蓉参与研究的构思和设计,起草和撰写稿件,收集并分析参考文献;凌奥南参与本研究的构思和设计,分析、解释本研究部分参考文献,对相关重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究所有方面负责,确保本研究的准确性和诚信。


基金项目: 贵州省科技计划项目 黔科合基础-ZK〔2021〕一般480
收稿日期:2023-12-12
接受日期:2024-04-30
中图分类号:R445.2  R749.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.06.023
本文引用格式:吴蓉, 凌奥南, 张高峰. 儿童、青少年抑郁症的静息态功能磁共振成像研究进展[J]. 磁共振成像, 2024, 15(6): 149-152, 195. DOI:10.12015/issn.1674-8034.2024.06.023.

0 引言

       抑郁症是导致自残的最常见精神障碍性疾病,目前,全球有超过3.5亿的抑郁症患者,常见于20~40岁的成人[1]。自杀是抑郁症最危险的因素,全球抑郁症患者中自杀率高达40%,导致患者及其家庭遭受严重痛苦。儿童、青少年抑郁症是一个日益令人担忧的问题;目前研究显示,抑郁症在青少年中发病率较高,且有逐年上升的趋势[2]。青少年抑郁症较成人抑郁症病情重且症状复杂,就诊时多有自杀自伤行为[3, 4]。目前已成为15~29岁人群的第二大主要死因[5]。所以,早期诊断和治疗儿童和青少年的抑郁症尤为重要。

       功能MRI(functional MRI, fMRI)可根据大脑皮层活动引起的脑代谢变化原理评估大脑皮层的功能,目前在临床上的应用较为广泛[6]。血氧水平依赖(blood oxygenation level dependent, BOLD)效应是获取大脑功能相关信息最常用的方法,它是对大脑皮层活动的间接测量。BOLD-fMRI是一种无创成像方法,它使用脱氧血红蛋白作为体内的天然对比剂,可以实时检测大脑血氧水平,是fMRI的基础[7, 8]。基于任务的fMRI(task-fMRI)和静息态fMRI(rs-fMRI)都属于BOLD-fMRI[8]。与task-fMRI相较而言,在进行rs-fMRI扫描时,受试者被要求在不进行思考的情况下保持清醒和安静[9],rs-fMRI已成为一种热门的神经影像学研究手段。以往rs-fMRI研究发现,抑郁症患者的大脑存在相关脑区脑功能的改变[10]。因此, 本文将对儿童、青少年抑郁症的rs-fMRI相关研究结果进行简要综述, 旨在为青少年抑郁症的诊断和治疗提供影像学支持。

1 低频振荡振幅

       低频振荡振幅(amplitude of low-frequence fluctuation, ALFF)是rs-fMRI中常用的指标,它能描述静息状态下大脑自发活动的强度[11]。既往研究发现,ALFF值在青少年抑郁症患者左侧海马明显降低[12, 13]。HU等[14]通过应用ALFF分析,发现在自杀未遂的儿童、青少年抑郁症患者组中左颞下回和右梭状回的ALFF值显著升高。ZHOU等[15]采用rs-fMRI对7~17岁首发儿童、青少年抑郁组和同年龄段健康对照组分析发现,相较于健康对照组,抑郁组在双侧内侧额上回和双侧楔前叶的ALFF 值降低。这些ALFF值改变的大脑特定区域可能作为识别儿童、青少年抑郁症患者情感、记忆障碍以及自杀风险的生物标记物。但相关研究表明,ALFF可能会受到非神经生理波动的影响,这些波动来自呼吸、心脏活动和运动等[16]。为了改进原始的ALFF方法,引入了一种修改后的度量,称为比率ALFF(fractional amplitude of low frequency fluctuation, fALFF),它检测低频范围内每个频率的功率与整个频率范围的功率之间的比值。与 ALFF 分析(原始方法)相比,fALFF 的生理噪声效应较小[17]。fALFF常用于脑功能评估,并可用于表征自发性脑活动[18]。在一项基于探索电休克疗法对重度抑郁症治疗效果的研究中,WANG等[19]通过研究发现相对于健康对照组,儿童、青少年抑郁症患者在基线时(治疗前)右侧额下回、枕下回和左侧额中回的 fALFF 值均升高。ALFF和fALFF分析方法可以直观地反映局部大脑自发性活动强度,且在多次数分析中结果具有较高稳定性,对儿童、青少年抑郁症的诊断和治疗具有一定价值。但人脑复杂活动依赖于多个脑区的连接,未来可联合功能连接等方法探索儿童、青少年抑郁症的神经影像机制。

2 局部一致性

       局部一致性(reginoal homogeneity, ReHo)是一种数据驱动的方法,用于通过fMRI确定区域内的均匀性程度,ReHo的优点是能够捕获区域大脑活动,异常的ReHo可能反映了神经活动的中断[20]。ReHo在研究中具有较高的稳定性,可判断出静息状态下脑结构变化情况,表现出较高应用价值[21, 22]。在以往关于ReHo的研究中显示,重度抑郁症患者的大脑发生了广泛的变化,包括前额叶、海马体、杏仁核、颞叶、楔前回和扣带回、小脑和舌回[23]。MAO等[24]观察到儿童、青少年抑郁症患者的舌回、枕中回、中央前回和中央后回的ReHo值增加,小脑蚓部的ReHo值下降。LIU等[25]研究发现,与健康对照组比较,患有重度抑郁症的女性儿童、青少年中,自杀未遂患者组在左侧额中回的fALFF和ReHo降低。LI等[26]采用ReHo比较健康对照组和重度抑郁组脑功能的差异,发现青少年重度抑郁症的右额下回、鳃盖部和左枕中回ReHo升高,左颞下回ReHo降低。ZHOU等[27]分析了12~17岁重度抑郁症患者的全脑神经活动,发现与不伴非自杀性自伤行为的重度抑郁症患者比较,伴有非自杀性自伤的重度抑郁症患者中枕中回和右颞中回的ReHo值降低,右内侧扣带回的ReHo值增高。ReHo在儿童、青少年抑郁症患者的研究中,已经发现多个脑功能区域发生异常改变,为本病的病理生理机制研究提供了影像学支持。ReHo与ALFF分析方法一致,都具有很高的可重复性。ReHo主要反映单一脑区内的神经元活动同步性,但不能提供抑郁症患者异常脑区之间的功能连接信息,未来可结合多种分析方法,如功能连接和脑网络分析等,全面反映儿童、青少年抑郁症的神经影像学特征。

3 独立成分分析

       独立成分分析(independent component analysis, ICA)是通过计算所有受试者预处理后的静息态数据,获得组独立成分(independent component, IC),根据每个IC与网络模板之间的空间相关性值,可获取与抑郁症相关功能网络,以往研究表明,多个脑网络的破坏与抑郁有关[28, 29],主要集中在默认模式网络(default mode network, DMN)、中央执行网络(central executive network, CEN)、突出网络(salience network, SN)等[30]。LI等[31]发现与健康对照组相比,抑郁症患者组左侧CEN和SN间的内在功能连接(function connectivity, FC)显著增加,右侧CEN到左侧CEN间的有效连接增加,右侧CEN到DMN间的有效连接减少,以及右侧CEN和SN、DMN之间的动态功能连接降低。CAO等[32]采用ICA方法识别神经网络的内在连接,并使用脑功能连接分析的方法分析了青少年抑郁组和健康对照组的脑网络连通性的变化,发现存在自杀企图的青少年抑郁组前DMN和SN以及右额顶网络(right frontoparietal network, rFPN)之间的网络间连通性明显降低。MACÊDO等[33]确定了三套用于分析10~20岁重度抑郁症患者rs-fMRI数据的方法:基于种子点的分析、基于网络的分析和ICA,研究结果显示DMN内的超连接性,认知控制网络(cognitive control network, CCN)内的低连接性,前DMN和SN之间的连接功能失调。ICA可提取所有可检测的网络,且能在无先验假设的条件下进行分析。然而在目前的研究中,关于儿童、青少年抑郁症的ICA研究较少,未来需要多中心、大样本研究进行验证。

4 基于种子点的功能连接

       基于种子点的FC分析是一种基于模型的方法,它依赖于定义一个或一组感兴趣区域(region of interest, ROI),并将ROI的BOLD fMRI时间序列与其他所有区域的时间序列相关联,从而获得功能连接图。种子点可以根据以往研究进行选择,也可以根据基于任务的激活进行定义[34]。CHI等[35]采用基于种子点的分析方法研究发现,在接受抗抑郁药治疗后的抑郁症青少年与健康对照组相比,其前部边缘回路所涉及区域的正性FC增强,这些区域与情绪调节、认知功能、冲动控制和视觉处理有关。另一项研究[36]运用基于种子点的分析方法对与抑郁相关的边缘网络、DMN和SN进行研究,种子点选自双侧杏仁核(边缘系统)、双侧后扣带回皮层(DMN)及双侧背侧前扣带回皮层(SN),结果显示抑郁症青少年的边缘系统和SN区域的FC异常,DMN未发现FC异常。一项选取杏仁核、前扣带回皮层、脑岛和海马体为种子点的研究结果显示,青少年重度抑郁症右杏仁核与右额上回之间以及右海马和簇(包括右脑岛和右额中回)之间的FC减低,左前扣带回皮层和左脑岛之间的FC增高[37]。有研究建议将ALFF和FC联合用于研究重度抑郁症患者的内在脑功能异常[38, 39]。CHEN等[40]进行了基于种子点的区域间FC分析,ALFF差异显著的区域被选为FC分析的种子点,结果发现,与无童年创伤的重度抑郁症患者相比,有童年创伤的重度抑郁症患者额中回和右中央后回的ALFF增加,左侧额中回和双侧壳核之间的FC升高。基于种子点的FC分析方法的优点是分析简单、结果较为直观。然而该研究方法对种子点选取的依赖性较大,易受个人主观因素的影响,即种子点改变时,FC分析的结果可能会发生改变。未来可选取多个种子点而不是单一种子点来探索FC,这可以减少主观性,提供更全面的大脑FC情况。

5 度中心性

       度中心性(degree centrality, DC)通过评估体素与全脑水平上其他体素之间的连接数量来评估体素中心性[41]。不同于ALFF和ReHo分析方法,DC不需要定义ROI[42]。一定程度上,DC的增加或减少可以解释疾病条件下脑网络的协调和拮抗作用[41]。DC值越大,连接到感兴趣节点的大脑区域就越多。DC被认为是几个大规模网络指标中最可靠的指标[43]。YANG等[44]研究发现,严重抑郁组的右侧颞上回和右侧顶下小叶的DC升高。LI等[45]通过对14名12~17岁青少年抑郁症患者的研究发现,伴自杀意念的青少年抑郁症患者在接受电抽搐治疗后左侧海马的DC值增加。在一项基于rs-fMRI的DC分析中发现,青少年重度抑郁症患者的双侧脑岛和左舌区DC明显升高,右小脑和双侧顶叶DC值降低。而在校正多重比较后,这些患者的DC值与疾病严重程度或持续时间无显著相关性[46]。DC值的变化可能表明大脑区域异常,且DC具有高敏感性、高特异性以及重复测试可信度高的优点,但现有大部分研究仍处于描述性研究阶段,部分结果难以用现有发病机制进行解释,未来需进一步探究。

6 其他

       图论是另一种从网络的角度研究大脑自发神经活动的方法[47]。在大脑网络中,每个大脑区域被定义为一个节点,而每对区域之间的FC被定义为一条边。FC通常通过计算两个大脑区域的rs-fMRI信号时间序列之间的Pearson相关系数来确定。图论和神经科学的结合有助于我们更加深入地探索大脑的机制[48]。WU等[49]使用图论分析研究首发、初治青少年抑郁症患者大脑功能网络的拓扑结构,发现与对照组相比,抑郁青少年在默认模式区域的节点中心性增加,而眶额、颞叶和枕部区域的节点中心性降低。功能连接密度(function connectivity density, FCD)是一种图论模态,可以量化全部和局部自发神经活动,FCD评估区域间和区域内体素的重要功能网络,它适用于探索皮层功能连接的变化[50]。在一项基于FCD的研究中发现,伴自杀意念抑郁组双侧内前额叶的半球间FCD值降低[51]。但是,以上研究大多针对成人抑郁症患者,而对儿童、青少年抑郁症的研究较少。目前看来,以上研究成果尚不明确,未来还需对儿童、青少年这一群体进行大样本研究来进一步验证。

7 小结与展望

       综上所述,儿童、青少年抑郁症患者存在相关脑区功能的改变以及不同脑区间功能连接的异常,这些异常可能是导致抑郁症的神经生物学机制,但现有研究的结论并不一致,需要进一步验证。rs-fMRI是研究和探讨抑郁症发病机制的强有力的工具,在研究抑郁症脑功能改变中具有良好的可行性。此外,尽管我们发现儿童、青少年抑郁症患者相关脑区的功能发生了变化,脑区之间功能连接发生了异常,但对这些变化是如何改变脑功能网络的完整性,我们仍然不得而知。

       rs-fMRI检查技术能够对儿童、青少年抑郁症患者的脑功能连接模式进行阐述。未来,儿童、青少年抑郁症的rs-fMRI可以进行以下几方面的研究:(1)现有MRI技术较多,但各种技术使用相对独立,今后可结合多种分析方法,探索病理生理学的神经影像生物学标记物,为防治抑郁症提供重要依据;(2)目前对儿童、青少年抑郁症的研究中,样本量较少,今后可扩大样本量,充分考虑抑郁症亚型、年龄亚组以及性别等因素对本病的影响;(3)探索儿童、青少年抑郁症发病的中枢机制,检测及比较各种治疗方法的疗效。

[1]
WACHOWSKA K, GAŁECKI P. Inflammation and cognition in depression: A narrative review[J/OL]. J Clin Med, 2021, 10(24): 5859 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706670/. DOI: 10.3390/jcm10245859.
[2]
RICE F, RIGLIN L, LOMAX T, et al. Adolescent and adult differences in major depression symptom profiles[J]. J Affect Disord, 2019, 243: 175-181. DOI: 10.1016/j.jad.2018.09.015.
[3]
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI: 10.1016/S2215-0366(18)30511-X.
[4]
DIENER M J, GOTTDIENER W H, KEEFE J R, et al. Treatment of depression in children and adolescents[J/OL]. Lancet Psychiatry, 2021, 8(2): 97 [2023-12-08]. https://www.sciencedirect.com/science/article/abs/pii/S2215036620305186. DOI: 10.1016/S2215-0366(20)30518-6.
[5]
BENTON T D. Suicide and suicidal behaviors among minoritized youth[J]. Child Adolesc Psychiatr Clin N Am, 2022, 31(2): 211-221. DOI: 10.1016/j.chc.2022.01.002.
[6]
KIM S G. Biophysics of BOLD fMRI investigated with animal models[J]. J Magn Reson, 2018, 292: 82-89. DOI: 10.1016/j.jmr.2018.04.006.
[7]
HARRIS J J, REYNELL C. How do antidepressants influence the BOLD signal in the developing brain?[J]. Dev Cogn Neurosci, 2017, 25: 45-57. DOI: 10.1016/j.dcn.2016.12.003.
[8]
KANG L, WAN C. Application of advanced magnetic resonance imaging in glaucoma: a narrative review[J]. Quant Imaging Med Surg, 2022, 12(3): 2106-2128. DOI: 10.21037/qims-21-790.
[9]
SPELLMAN T, LISTON C. Toward circuit mechanisms of pathophysiology in depression[J]. Am J Psychiatry, 2020, 177(5): 381-390. DOI: 10.1176/appi.ajp.2020.20030280.
[10]
CHASE H W, AUERBACH R P, BRENT D A, et al. Dissociating default mode network resting state markers of suicide from familial risk factors for depression[J]. Neuropsychopharmacology, 2021, 46(10): 1830-1838. DOI: 10.1038/s41386-021-01022-5.
[11]
SUN J, GUO C, MA Y, et al. A comparative study of amplitude of low-frequence fluctuation of resting-state fMRI between the younger and older treatment-resistant depression in adults[J/OL]. Front Neurosci, 2022, 16: 949698 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462398/. DOI: 10.3389/fnins.2022.949698.
[12]
ZHANG B, QI S, LIU S, et al. Altered spontaneous neural activity in the precuneus, middle and superior frontal gyri, and hippocampus in college students with subclinical depression[J/OL]. BMC Psychiatry, 2021, 21(1): 280 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167968/. DOI: 10.1186/s12888-021-03292-1.
[13]
潘红庆, 李淑英, 王源莉, 等. 伴自杀意念青少年抑郁症患者低频振幅的静息态功能磁共振成像研究[J]. 中华行为医学与脑科学杂志, 2019, 28(12): 1091-1095. DOI: 10.3760/cma.j.issn.1674-6554.2019.12.007.
PAN H Q, LI S Y, WANG Y L, et al. The changes of amplitude of low frequency fluctuation in adolescent depression patients with suicidal ideation: a resting-state functional magnetic resonance imaging study[J]. Chin J Behav Med & Brain Sci, 2019, 28(12): 1091-1095. DOI: 10.3760/cma.j.issn.1674-6554.2019.12.007.
[14]
HU C, JIANG W, HUANG J, et al. The amplitude of low-frequency fluctuation characteristics in depressed adolescents with suicide attempts: a resting-state fMRI study[J/OL]. Front Psychiatry, 2023, 14: 1228260 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419264/. DOI: 10.3389/fpsyt.2023.1228260.
[15]
ZHOU Y, SONG Y, CHEN C, et al. Abnormal amplitude of low-frequency fluctuation values as a neuroimaging biomarker for major depressive disorder with suicidal attempts in adolescents: A resting-state fMRI and support vector machine analysis[J/OL]. Front Psychol, 2023, 14: 1146944 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998935/. DOI: 10.3389/fpsyg.2023.1146944.
[16]
KÜBLBÖCK M, WOLETZ M, HÖFLICH A, et al. Stability of low-frequency fluctuation amplitudes in prolonged resting-state fMRI[J]. Neuroimage, 2014, 103: 249-257. DOI: 10.1016/j.neuroimage.2014.09.038.
[17]
ZOU Q H, ZHU C Z, YANG Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[18]
WANG L, LI X, LI K, et al. Mapping the effect of escitalopram treatment on amplitude of low-frequency fluctuations in patients with depression: a resting-state fMRI study[J]. Metab Brain Dis, 2017, 32(1): 147-154. DOI: 10.1007/s11011-016-9871-5.
[19]
WANG X Y, TAN H, LI X, et al. Resting-state functional magnetic resonance imaging-based identification of altered brain the fractional amplitude of low frequency fluctuation in adolescent major depressive disorder patients undergoing electroconvulsive therapy[J/OL]. Front Psychiatry, 2022, 13: 972968 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357980/. DOI: 10.3389/fpsyt.2022.972968.
[20]
SHAN X, QIU Y, PAN P, et al. Disrupted regional homogeneity in drug-naive patients with bipolar disorder[J/OL]. Front Psychiatry, 2020, 11: 825 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456987/. DOI: 10.3389/fpsyt.2020.00825.
[21]
LIU S, MA R, LUO Y, et al. Facial expression recognition and ReHo analysis in major depressive disorder[J/OL]. Front Psychol, 2021, 12: 688376 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493300/. DOI: 10.3389/fpsyg.2021.688376.
[22]
STEFFENS D C, WANG L, PEARLSON G D. Functional connectivity predictors of acute depression treatment outcome[J]. Int Psychogeriatr, 2019, 31(12): 1831-1835. DOI: 10.1017/S1041610218002260.
[23]
GRAY J P, MÜLLER V I, EICKHOFF S B, et al. Multimodal abnormalities of brain structure and function in major depressive disorder: A meta-analysis of neuroimaging studies[J]. Am J Psychiatry, 2020, 177(5): 422-434. DOI: 10.1176/appi.ajp.2019.19050560.
[24]
MAO N, CHE K, CHU T, et al. Aberrant resting-state brain function in adolescent depression[J/OL]. Front Psychol, 2020, 11: 1784 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396538/. DOI: 10.3389/fpsyg.2020.01784.
[25]
LIU M, HUANG Y, LI X, et al. Aberrant frontolimbic circuit in female depressed adolescents with and without suicidal attempts: A resting-state functional magnetic resonance imaging study[J/OL]. Front Psychiatry, 2022, 13: 1007144 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641155/. DOI: 10.3389/fpsyt.2022.1007144.
[26]
LI X, CHEN X, ZHOU Y, et al. Altered regional homogeneity and amplitude of low-frequency fluctuations induced by electroconvulsive therapy for adolescents with depression and suicidal ideation[J]. Brain Sci, 2022, 12(9): 1121 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496677/. DOI: 10.3390/brainsci12091121.
[27]
ZHOU Y, YU R, AI M, et al. A resting state functional magnetic resonance imaging study of unmedicated adolescents with non-suicidal self-injury behaviors: Evidence from the amplitude of low-frequency fluctuation and regional homogeneity indicator[J/OL]. Front Psychiatry, 2022, 13: 925672 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247173/. DOI: 10.3389/fpsyt.2022.925672.
[28]
LI Y, WANG C, TENG C, et al. Hippocampus-driving progressive structural alterations in medication-naïve major depressive disorder[J]. J Affect Disord, 2019, 256: 148-155. DOI: 10.1016/j.jad.2019.05.053.
[29]
JIAO K, XU H, TENG C, et al. Connectivity patterns of cognitive control network in first episode medication-naive depression and remitted depression[J/OL]. Behav Brain Res, 2020, 379: 112381 [2023-12-09]. https://www.sciencedirect.com/science/article/pii/S0166432818309987. DOI: 10.1016/j.bbr.2019.112381.
[30]
ZHANG G, XIAO Q, WANG C, et al. The different impact of depressive or manic first-episode on pediatric bipolar disorder patients: Evidence from resting-state fMRI[J]. Neuroscience, 2023, 526: 185-195. DOI: 10.1016/j.neuroscience.2023.06.015.
[31]
LI Y, DAI X, WU H, et al. Establishment of effective biomarkers for depression diagnosis with fusion of multiple resting-state connectivity measures[J/OL]. Front Neurosci, 2021, 15: 729958 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458632/. DOI: 10.3389/fnins.2021.729958.
[32]
CAO J, AI M, CHEN X, et al. Altered resting-state functional network connectivity is associated with suicide attempt in young depressed patients[J/OL]. Psychiatry Res, 2020, 285: 112713 [2023-12-09]. https://www.sciencedirect.com/science/article/pii//S0165178119312144. DOI: 10.1016/j.psychres.2019.112713.
[33]
MACÊDO M A, SATO J R, BRESSAN R A, et al. Adolescent depression and resting-state fMRI brain networks: a scoping review of longitudinal studies[J]. Braz J Psychiatry, 2022, 44(4): 420-433. DOI: 10.47626/1516-4446-2021-2032.
[34]
YANG J, GOHEL S, VACHHA B. Current methods and new directions in resting state fMRI[J]. Clin Imaging, 2020, 65: 47-53. DOI: 10.1016/j.clinimag.2020.04.004.
[35]
CHI S, SONG M, LEE J H, et al. Prospective study on resting state functional connectivity in adolescents with major depressive disorder after antidepressant treatment[J]. J Psychiatr Res, 2021, 142: 369-375. DOI: 10.1016/j.jpsychires.2021.08.026.
[36]
PANNEKOEK J N, VAN DER WERFF S J, MEENS P H, et al. Aberrant resting-state functional connectivity in limbic and salience networks in treatment--naïve clinically depressed adolescents[J]. J Child Psychol Psychiatry, 2014, 55(12): 1317-1327. DOI: 10.1111/jcpp.12266.
[37]
LEE J, PAVULURI M N, KIM J H, et al. Resting-state functional connectivity in medication-naïve adolescents with major depressive disorder[J]. Psychiatry Res Neuroimaging, 2019, 288: 37-43. DOI: 10.1016/j.pscychresns.2019.04.008.
[38]
EBNEABBASI A, MAHDIPOUR M, NEJATI V, et al. Emotion processing and regulation in major depressive disorder: A 7T resting-state fMRI study[J]. Hum Brain Mapp, 2021, 42(3): 797-810. DOI: 10.1002/hbm.25263.
[39]
YAN R, HUANG Y, SHI J, et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuits related to non-suicidal self-injury in young adults with major depressive disorder[J]. J Affect Disord, 2022, 305: 8-18. DOI: 10.1016/j.jad.2022.02.040.
[40]
CHEN J, LUO Q, LI Y, et al. Intrinsic brain abnormalities in female major depressive disorder patients with childhood trauma: A resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 930997 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395929/. DOI: 10.3389/fnins.2022.930997.
[41]
WEN Z, KANG Y, ZHANG Y, et al. Alteration of degree centrality in adolescents with early blindness[J/OL]. Front Hum Neurosci, 2022, 16: 935642 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271564/. DOI: 10.3389/fnhum.2022.935642.
[42]
DU B, CAO S, LIU Y, et al. Abnormal degree centrality in white matter hyperintensities: A resting-state functional magnetic resonance imaging study[J/OL]. Front Psychiatry, 2021, 12: 684553 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315277/. DOI: 10.3389/fpsyt.2021.684553.
[43]
LI S, MA X, HUANG R, et al. Abnormal degree centrality in neurologically asymptomatic patients with end-stage renal disease: A resting-state fMRI study[J]. Clin Neurophysiol, 2016, 127(1): 602-609. DOI: 10.1016/j.clinph.2015.06.022.
[44]
YANG L, JIN C, QI S, et al. Aberrant degree centrality of functional brain networks in subclinical depression and major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1084443 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978101/. DOI: 10.3389/fpsyt.2023.1084443.
[45]
LI X, YU R, HUANG Q, et al. Alteration of whole brain ALFF/fALFF and degree centrality in adolescents with depression and suicidal ideation after electroconvulsive therapy: A resting-state fMRI study[J/OL]. Front Hum Neurosci, 2021, 15: 762343 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632519/. DOI: 10.3389/fnhum.2021.762343.
[46]
GUO X, WANG W, KANG L, et al. Abnormal degree centrality in first-episode medication-free adolescent depression at rest: A functional magnetic resonance imaging study and support vector machine analysis[J/OL]. Front Psychiatry, 2022, 13: 926292 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556654/. DOI: 10.3389/fpsyt.2022.926292.
[47]
SPORNS O. Graph theory methods: applications in brain networks[J]. Dialogues Clin Neurosci, 2018, 20(2): 111-121. DOI: 10.31887/DCNS.2018.20.2/osporns.
[48]
HE Y, EVANS A. Graph theoretical modeling of brain connectivity[J]. Curr Opin Neurol, 2010, 23(4): 341-350. DOI: 10.1097/WCO.0b013e32833aa567.
[49]
WU B, LI X, ZHOU J, et al. Altered whole-brain functional networks in drug-naïve, first-episode adolescents with major depression disorder[J]. J Magn Reson Imaging, 2020, 52(6): 1790-1798. DOI: 10.1002/jmri.27270.
[50]
WANG Y, KWAPONG W R, TU Y, et al. Altered resting-state functional connectivity density in patients with neuromyelitis optica-spectrum disorders[J/OL]. Mult Scler Relat Disord, 2020, 43: 102187 [2023-12-09]. https://www.sciencedirect.com/science/article/pii/S2211034820302637. DOI: 10.1016/j.msard.2020.102187.
[51]
姜雨, 程敬亮, 陈苑, 等. 伴自杀意念抑郁症患者半球水平功能连接改变的fMRI研究[J]. 磁共振成像, 2022, 13(4): 1-4, 14. DOI: 10.12015/issn.1674-8034.2022.04.001.
JIANG Y, CHENG J L, CHEN Y, et al. The changes of functional connectivity on hemispheric level in depression patients with suicidal ideation: A functional magnetic resonance imaging study[J]. Chin J Magn Reson Imaging, 2022, 13(4): 1-4, 14. DOI: 10.12015/issn.1674-8034.2022.04.001

上一篇 多发性硬化合并抑郁症的多模态MRI技术研究进展
下一篇 动态功能连接在孤独症谱系障碍中的应用及研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2