分享:
分享到微信朋友圈
X
综述
MR扩散张量成像预测脑胶质瘤级别及基因型的研究进展
吴晓怡 吴元魁

Cite this article as: WU X Y, WU Y K. Research progress of magnetic resonance diffusion tensor imaging in glioma grading and genotype prediction[J]. Chin J Magn Reson Imaging, 2024, 15(6): 190-195.本文引用格式:吴晓怡, 吴元魁. MR扩散张量成像预测脑胶质瘤级别及基因型的研究进展[J]. 磁共振成像, 2024, 15(6): 190-195. DOI:10.12015/issn.1674-8034.2024.06.030.


[摘要] 胶质瘤是颅内最常见的原发性恶性肿瘤,不同级别、不同基因型的胶质瘤治疗策略和预后存在明显差异。MR扩散张量成像(diffusion tensor imaging, DTI)可反映脑组织微观结构尤其是白质纤维束的病理性变化,大量学者对其在胶质瘤病理级别和基因特征的预测价值进行了研究。本文就基于DTI定量参数和影像组学模型预测胶质瘤级别及基因型的研究进展进行综述,以期为胶质瘤患者个体化诊疗计划制订及预后预测提供影像学帮助。
[Abstract] Glioma is the most common intracranial primary malignant tumor, and the treatment and prognosis of different grades and genotypes of glioma are obviously different. Diffusion tensor imaging (DTI) can reflect the pathological changes of the brain microstructure, especially the white matter tracts. Many scholars have studied the diagnostic value of DTI for glioma grading and genotyping. This article mainly reviews the research progress of quantitative metrics and radiomics model based on DTI which has been used to predict glioma grade and genotype, in order to provide imaging help for individualized diagnosis and treatment plans and prognosis prediction of glioma patients.
[关键词] 胶质瘤;磁共振成像;扩散张量成像;影像组学;病理;基因分型
[Keywords] glioma;magnetic resonance imaging;diffusion tensor imaging;imaging omics;pathology;genotyping

吴晓怡    吴元魁 *  

南方医科大学南方医院影像中心,广州 510515

通信作者:吴元魁,E-mail:ripleyor@126.com

作者贡献声明::吴元魁提出研究方向,设计研究方案,对稿件的结构及重要内容进行了修改,获得了广东省自然科学基金项目的资助;吴晓怡查阅文献,起草并撰写稿件,对本文相关引用文献进行解释及总结;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 广东省自然科学基金项目 2023A1515011453 广州市科技计划项目 202103000037
收稿日期:2023-12-13
接受日期:2024-06-05
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.06.030
本文引用格式:吴晓怡, 吴元魁. MR扩散张量成像预测脑胶质瘤级别及基因型的研究进展[J]. 磁共振成像, 2024, 15(6): 190-195. DOI:10.12015/issn.1674-8034.2024.06.030.

0 引言

       脑胶质瘤是最常见的原发性恶性脑肿瘤[1]。不同级别、不同基因型的胶质瘤治疗策略和预后存在明显差异。胶质母细胞瘤患者的中位生存时间只有约14个月,5年存活率约为5%[1, 2]。低级别胶质瘤患者的预后较好,5年存活率为42%~92%[3];其中IDH突变型患者中位生存期超过6年,而IDH野生型患者中位生存期不足2年[4]。胶质瘤的治疗方案为手术切除基础上辅以放化疗。研究表明肿瘤分级以及异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)基因等分子特征均是影响胶质瘤手术切除范围的重要因素[5]。此外,高级别胶质瘤患者还可进行靶向治疗、电场治疗、免疫治疗等[6]。目前胶质瘤的级别和基因分型主要依靠术后病理活检。MRI是术前诊断脑肿瘤和预后评估的重要手段,先进的MRI技术被不断地研发出来并用于临床。MR扩散张量成像(diffusion tensor imaging, DTI)技术是一种可监测水分子扩散运动并进行定量分析、显示肿瘤周围白质纤维束的走行及破坏情况的新技术[7]。研究表明胶质瘤往往沿着神经纤维束生长浸润,从而侵袭或破坏脑白质纤维束[8]。既往研究表明,DTI定量参数对预测胶质瘤级别[9, 10]和基因型[11, 12]具有较高的应用价值。近年来,影像组学分析是研究的热点,基于DTI的影像组学可较全面地反映胶质瘤内部信息及异质性,有助于预测脑胶质瘤级别及基因型[13, 14]。因此,本文就DTI定量参数和影像组学在预测胶质瘤级别及基因型中的作用予以综述,以期为后续的相关研究提供借鉴并有助于制订个体化诊疗方案及预测预后。

1 胶质瘤的WHO分级及基因分型

       2016年及以前的世界卫生组织(World Health Organization, WHO)脑肿瘤分类体系中,根据光镜下特征将胶质瘤分为Ⅰ~Ⅳ级,其中Ⅰ、Ⅱ级为低级别胶质瘤(low grade glioma, LGG),Ⅲ、Ⅳ级为高级别胶质瘤(high grade glioma, HGG)[15]。2021年WHO发布了第五版脑肿瘤分类体系,基因亚型成为胶质瘤分级诊断的重要依据,新体系实行组织病理学和基因型的综合诊断标准[16]

1.1 IDH突变

       在第五版脑肿瘤分类体系中,异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)突变是最重要的分子标志物。这是因为IDH基因分型对胶质瘤患者分层和治疗选择具有重大意义。IDH突变型胶质瘤患者病情进展相对迟缓,而IDH野生型则进展迅速,预后较差[17]。在新分类体系中,所有IDH突变型的成人型弥漫性星形胶质细胞瘤均归为星形细胞瘤,再根据光镜特征分为WHO 2~4级;而IDH野生型且光镜下见到血管增生或坏死的弥漫性胶质瘤则诊断为胶质母细胞瘤(glioblastoma, GBM),WHO 4级。对于原有光镜下特征符合2级和3级的IDH野生型胶质瘤,如伴有端粒逆转录酶(telomerase reverse transcriptase, TERT)启动子突变、表皮生长因子受体基因扩增、7号染色体扩增/10号染色体缺失三者之一,则升级诊断为GBM,WHO 4级[18]

1.2 1p/19q联合缺失

       1号染色体短臂及19号染色体长臂(1p19q)联合缺失是少突胶质瘤(oligodendroglioma, ODG)的重要分子标志物,IDH突变伴1p19q联合缺失者,诊断为少突胶质瘤[19]。IDH突变型胶质瘤中,1p/19q联合缺失者对化疗、放疗更敏感,预后明显优于同级别的星形细胞瘤[20, 21]

1.3 MGMT启动子甲基化

       O6-甲基鸟嘌呤-DNA甲基转移酶(O6- methylguanine-DNA methyltransferase, MGMT)是一种DNA修复酶。GBM中约50%发生MGMT启动子甲基化[22]。MGMT基因启动子甲基化导致MGMT基因表达缺失,MGMT蛋白合成减少,使得肿瘤修复受损DNA的能力下降。因此,MGMT启动子甲基化的胶质瘤对替莫唑胺化疗(损伤肿瘤DNA链)更加敏感,预后相对更好[23, 24]。相反,MGMT启动子未甲基化的胶质瘤则富含MGMT蛋白,导致替莫唑胺耐药。

1.4 TERT基因启动子突变

       TERT基因启动子突变广泛存在于少突胶质瘤和IDH野生型的GBM[25, 26]。TERT启动子突变提高TERT基因转录活性,导致TERT基因的过度表达,使肿瘤细胞端粒延长、细胞分裂增殖不受限。这可能是TERT启动子突变影响胶质瘤患者预后的主要机制。研究发现,IDH野生型胶质瘤合并TERT突变时预后较差[25, 27]

2 DTI主要参数

       DTI作为扩散加权成像(diffusion weighted imaging, DWI)的发展和深化,同样是以水分子运动的高斯分布为基础。但是,DTI在至少6个不同方向施加扩散加权梯度磁场,获得不同方向上水分子的扩散信息并对其进行定量分析。常用的DTI参数有各向异性分数(fractional anisotropy, FA)、平均扩散系数(mean diffusivity, MD)、轴向扩散系数(axial diffusivity, AD)及径向扩散系数(radial diffusivity, RD)。

       FA值是指水分子各向异性成分占整个扩散张量的比例,其值介于0~1之间[28]。在脑白质中,水分子沿平行于白质纤维束方向扩散时所受的阻力远小于其沿垂直于白质纤维束方向扩散时所受的阻力[20],因此正常白质纤维束的水分子扩散有明显方向性,FA值较高。白质纤维束被浸润破坏,FA值降低[8]。所以,FA值可用于表征白质纤维束完整性。MD值是各个方向上扩散张量的平均值,只与水分子扩散的大小相关,与扩散的方向无关。MD的意义与DWI的表观扩散系数(apparent diffusion coefficient, ADC)类似,MD值与细胞密度呈负相关。AD值反映平行于轴突的水分子运动,与轴突损伤相关,RD值反映垂直于轴突的水分子运动,与轴突、髓鞘损伤密切相关[29, 30]

3 DTI预测胶质瘤病理级别

3.1 FA值的预测价值

       大多数研究发现HGG的肿瘤实质区FA值大于LGG[31, 32, 33, 34]。LIN等[35]和XIONG等[36]研究发现,胶质瘤FA值与肿瘤细胞增殖指数Ki-67表达呈正相关。BEPPU等[37]认为GBM瘤体的FA值主要取决于细胞密度,细胞密度高导致细胞膜数量增加、细胞内黏度增高及细胞外容积相对降低,最终引起单个体素内水分子扩散方向性增加,FA值升高。然而,其他学者如ZOU等[38]发现HGG实质区FA值低于LGG。其原因可能是高级别胶质瘤更易侵袭、破坏白质纤维束,导致某一特定的方向限制水分子运动的细胞膜及髓鞘减少,造成水分子扩散方向性减少。关于肿瘤实质区FA值与胶质瘤级别的关系,目前尚有分歧。WHITE等[31]认为,FA值可作为胶质瘤生物学异质性的一个指标,胶质瘤的级别越高,其异质性也就越高。

       上述研究表明,胶质瘤破坏脑白质纤维束结构导致FA值降低,同时,肿瘤细胞密度和FA值存在正相关的关系,这使得基于FA值预测胶质瘤级别的不同研究之间,结果有较大的分歧。因此,仅用FA值诊断胶质瘤级别存在一定限度。今后需要进一步探索各影响因素和FA值之间的关系以明确其诊断价值。

3.2 MD值的预测价值

       LIN等[35]、ZHAO等[39]及FUDABA等[40]研究发现,胶质瘤实质区MD值与Ki-67呈负相关。大多数研究表明HGG的肿瘤实质区MD值低于LGG,并且MD值与病理级别呈明显负相关[38, 41]。SERVER等[41]研究发现,在AD、RD和MD几个参数中,MD值对HGG与LGG的鉴别诊断具有最高预测效能,受试者工作特征曲线下面积(area under the curve, AUC)为0.985。而且,FUDABA等[40]和ZOU等[38]研究发现,MD值结合磁共振波谱Cho/Cr比值或NAA/Cho比值能进一步提高脑胶质瘤分级诊断的准确性。

       上述研究结果表明,MD值与胶质瘤的肿瘤细胞密度呈负相关,基于MD值可以准确预测胶质瘤的WHO级别。未来可进一步探究联合MD值与其他功能MRI序列或MRI波谱技术预测胶质瘤病理级别的潜在价值。

3.3 AD值和RD值的预测价值

       SERVER等[41]发现肿瘤实质区AD、RD值与星形细胞瘤的病理级别均呈负相关,基于AD值和RD值鉴别HGG与LGG的AUC分别为0.98和0.97。YUAN等[42]也发现LGG的RD、AD值高于HGG。GAO等[43]发现,基于RD、AD值的直方图特征参数值可鉴别HGG与LGG。

       上述研究结果提示,AD、RD值对于胶质瘤级别可能具有一定的预测价值,但是目前相关文献较少,其确切的价值有待在今后的研究中进一步探索。

3.4 瘤周DTI参数与胶质瘤级别

       不少学者研究瘤周区域DTI参数对胶质瘤级别的诊断价值。研究发现,瘤周FA值对胶质瘤级别具有预测价值[8, 9, 44, 45]。这可能是因为HGG向瘤周区域侵袭并破坏纤维束,导致瘤周FA值减低,而LGG瘤周纤维束较为完整,瘤周FA值没有显著变化[46]。EL-SEROUGY等[44]和MILOUSHEV等[45]研究发现,HGG瘤周的MD值高于LGG,而且具有预测价值。但是,DUY等[9]认为,瘤周MD值的预测价值尚不明确。

       上述研究结果表明,瘤周区域FA、MD值和胶质瘤级别的关系与肿瘤实质区的结果相反。实际上,胶质瘤向周围脑组织浸润性生长,并没有明确的肿瘤边界,关于肿瘤的边界目前尚未形成共识。在达成共识的前提下再对瘤周DTI参数的预测价值进行研究,有助于进一步理解胶质瘤的生物学行为特征。

3.5 基于DTI影像组学模型预测胶质瘤级别

       研究发现,基于FA、MD的影像组学模型对胶质瘤级别的预测效能(AUC=0.87/0.75)均高于常规的定量参数分析(AUC=0.66/0.53)[47]。WANG等[48]从FA和MD图中提取特征,构建预测胶质瘤级别的影像组学模型,AUC为0.832,加入临床特征及影像学特征的融合组学模型的AUC提升到0.924。ZHANG等[49]不仅从FA和MD图中提取了常规的影像组学特征,还提取了基于卷积神经网络的深度学习特征,运用支持向量机建立胶质瘤分级预测模型,结果显示,深度特征的预测价值高于常规纹理和形态特征。LIN等[13]研究发现,融合常规MRI序列和DTI的多模态影像组学模型诊断效能高于仅基于常规序列或DTI序列的影像组学模型。

       这些研究表明,影像组学分析可更加充分量化肿瘤异质性,基于DTI影像组学特征的预测模型可准确预测胶质瘤的级别。此外,加入临床和影像特征及常规序列组学特征有助于进一步提升模型的效能。目前,深度学习模型的相关研究尚比较缺乏,有待进一步探索。

4 DTI预测胶质瘤基因型

4.1 IDH突变

       研究[50, 51, 52]发现,IDH突变型胶质瘤瘤体的MD值高于IDH野生型,FA值低于IDH野生型。研究表明,IDH突变导致2-羟基戊二酸(2-hydroxyglutarate, 2-HG)水平增高,引起乏氧诱导因子(hypoxia-inducible factors, HIF)表达降低,而HIF表达与肿瘤增殖、肿瘤血管生成密切相关[53]。因此,与IDH野生型相比,IDH突变型胶质瘤的肿瘤增殖速率相对较低,细胞密度和微血管密度较低,导致FA值较低、MD值较高。然而,有学者发现FA值与胶质瘤IDH基因亚型无显著性关联,并且基于MD值不能预测低级别星形细胞瘤的IDH基因亚型[54, 55]。多项研究发现,RD值可用于预测各级别胶质瘤IDH基因亚型,而AD值的预测价值还存在争议[35, 43, 54, 56]。FIGINI等[57]和GAO等[43]比较了扩散峰度成像(diffusion kurtosis imaging, DKI)定量参数与DTI的定量参数对胶质瘤IDH基因亚型的预测价值,结果显示DTI定量参数的预测性能与DKI参数相近。

       PARK等[58]提取了常规序列和DTI序列图像的影像组学特征,运用机器学习建立模型预测IDH基因亚型,结果发现,与仅基于常规序列的影像组学模型相比,多模态MRI影像组学模型的预测效能更高。TAN等[14]基于DTI和DKI序列构建影像组学模型预测IDH突变状态,加入临床及影像学特征构成的融合组学模型,进一步提高了预测效能。

       尽管存在较多分歧,但是多数学者认为DTI定量参数对胶质瘤IDH基因亚型有一定的预测价值。联合DTI和其他序列的影像组学研究还不多,值得进一步探索。

4.2 1p19q联合缺失

       有学者研究发现胶质瘤的1p19q联合缺失与Ki-67无明确相关性,并且FA、MD值与1p/19q联合缺失亦无明确相关性[36, 57]。ALIOTTA等[59]发现,结合FA与MD直方图特征的模型预测1p19q联合缺失的效能高于仅有MD直方图特征的模型。但是HUANG等[60]对MD、FA图采用全瘤直方图分析,发现MD直方图特征参数值可预测1p19q联合缺失,但是FA的各直方图特征参数值仍无预测价值。LIN等[35]的研究结果是,FA、MD、AD及RD图的直方图特征均不能预测1p19q联合缺失。PARK等[61]研究发现,基于FA图的纹理特征可以较准确预测2级胶质瘤的1p19q联合缺失。

       综上,DTI定量参数对较低级别胶质瘤1p19q联合缺失状态的预测价值较低,提取参数的直方图特征亦不能得到明显改善,但是纹理特征可能具有较高的预测价值,这可成为后续研究的方向之一。

4.3 MGMT启动子甲基化

       MOON等[62]发现,在HGG中,MGMT甲基化组的FA值低于未甲基化组,但是MD值差异没有统计学意义。AHN等[63]对43名GBM患者研究发现,FA、MD值不能预测MGMT启动子甲基化状态。LATYSHEVA等[64]在IDH野生型GBM患者中的研究也得到了上述结果。HUANG等[60]也发现,基于FA和MD的直方图特征不能预测2、3级胶质瘤的MGMT启动子甲基化状态。TAN等[14]研究发现,基于DKI的平均峰度图和DTI的MD图构建的影像组学模型,可以准确预测MGMT甲基化状态。

       综上可知,仅用FA、MD值难以预测胶质瘤的MGMT启动子状态,而基于DTI的影像组学模型有望准确预测MGMT甲基化状态。

4.4 TERT突变

       目前这方面的研究很少。PARK等[65]研究发现,49例IDH野生型的LGG中,平均MD及FA值在不同TERT状态间差异没有统计学意义。而HUANG等[60]研究发现,在40例颞叶低级别胶质瘤(IDH突变32例,IDH野生型8例)中,TERT启动子突变型的MD值低于TERT野生型,FA值高于TERT野生型,基于MD值和FA值均可预测TERT突变。这两个研究的结果不一致,可能与IDH突变型胶质瘤所占比例有关。

5 局限性

       虽然上述研究表明DTI在预测胶质瘤级别和基因型方面的潜在价值,但相关研究存在一定的局限性。(1)缺乏DTI定量参数的统一阈值,尤其是FA值在不同研究中差异较大,未来应建设更大的数据共享平台以确定最佳的阈值。(2)瘤周区域的DTI参数对肿瘤浸润表征敏感,可间接提供胶质瘤分级的证据,但探索瘤周区域DTI参数与基因型关系的研究较少。(3)实际上人体组织内水分子扩散呈非高斯分布,因此DTI仍不足以描述脑组织微结构变化。以非高斯分布为基础的DKI在反映胶质瘤微结构变化和异质性方面比DTI更具优势,未来可探究DKI对胶质瘤级别和基因型的诊断价值。

6 总结与展望

       综上可知:(1)基于DTI定量参数预测胶质瘤病理级别的价值可能优于对基因亚型的预测;(2)基于DTI影像组学模型在预测胶质瘤基因亚型方面具有很高的价值。这表明,影像组学分析可以充分地提取DTI图像信息,反映了不同基因亚型胶质瘤的生物学异质性的差异。未来可进一步探究基于DTI的深度学习特征的诊断价值,可以更全面地反映肿瘤的微观结构变化,有望进一步提高DTI对胶质瘤级别及基因型的预测效能,有助于胶质瘤患者的临床精准诊疗。

[1]
OSTROM Q T, CIOFFI G, WAITE K, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018[J]. Neuro Oncol, 2021, 23(12Suppl 2): iii1-ii105. DOI: 10.1093/neuonc/noab200.
[2]
GITTLEMAN H, LIM D, KATTAN M W, et al. An independently validated nomogram for individualized estimation of survival among patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825[J]. Neuro Oncol, 2017, 19(5): 669-677. DOI: 10.1093/neuonc/now208.
[3]
SANA, N, BERGER M S. Glioma extent of resection and its impact on patient outcome[J]. Neurosurgery, 2008, 62(4): 753-764; discussion 264-266. DOI: 10.1227/01.neu.0000318159.21731.cf.
[4]
BRAT D J, VERHAAK R G, ALDAPE K D, et al. Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas[J]. N Engl J Med, 2015, 372: 2481-2498. DOI: 10.1056/NEJMoa1402121.
[5]
冯哲斌, 孔东生, 冯世宇, 等. 异柠檬酸脱氢酶基因状态对弥漫性胶质瘤手术策略的影响研究进展[J]. 解放军医学院学报, 2023, 44(8): 928-932. DOI: 10.12435/j.issn.2095-5227.2023.007.
FENG Z B, KONG D S, FENG S Y, et al. Research advances in effect of isocitrate dehydrogenase gene status on surgical strategies in diffuse gliomas[J]. Acad J Chin PLA Med Sch, 2023, 44(8): 928-932. DOI: 10.12435/j.issn.2095-5227.2023.007.
[6]
郑林林, 罗成, 郎锦义, 等. 高级别胶质瘤靶向及免疫治疗的现状与新进展[J]. 肿瘤预防与治疗, 2023, 36(9): 806-814. DOI: 10.3969/j.issn.1674-0904.2023.09.014.
ZHENG L L, LUO C, LANG J Y, et al. Current status and new progress of targeted therapy and immunotherapy for high-grade glioma[J]. J Cancer Control Treat, 2023, 36(9): 806-814. DOI: 10.3969/j.issn.1674-0904.2023.09.014.
[7]
LI Y, ZHANG W. Quantitative evaluation of diffusion tensor imaging for clinical management of glioma[J]. Neurosurg Rev, 2020, 43(3): 881-891. DOI: 10.1007/s10143-018-1050-1.
[8]
PRICE S J, PEñA A, BURNET N G, et al. Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas[J]. Eur Radiol, 2004, 14(10): 1909-1917. DOI: 10.1007/s00330-004-2381-6.
[9]
HUNG N DUY, MINH DUC N, VAN ANH N T, et al. Diagnostic performance of diffusion tensor imaging for preo-perative glioma grading[J]. Clin Ter, 2021, 172(4): 315-321. DOI: 10.7417/CT.2021.2335.
[10]
VIDYADHARAN S, PRABHAKAR RAO B, PERUMAL Y, et al. Deep learning classifies low- and high-grade glioma patients with high accuracy, sensitivity, and specificity based on their brain white matter networks derived from diffusion tensor imaging[J/OL]. Diagnostics (Basel), 202212(12): 3216 [2023-12-10]. https://pubmed.ncbi.nlm.nih.gov/36553224/. DOI: 10.3390/diagnostics12123216.
[11]
李欣益, 张新宇, 高珏妮, 等. DTI直方图在预测较低级别胶质瘤ATRX基因突变中的价值[J]. 中国临床医学影像杂志, 2023, 34(3): 153-158. DOI: 10.12117/jccmi.2023.03.001.
LI X Y, ZHANG X Y, GAO Y N, et al. The value of histogram analysis of diffusion tensor imaging in predicting ATRX gene status in lower-grade gliomas[J]. J Chin Clin Med Imaging, 2023, 34(3): 153-158. DOI: 10.12117/jccmi.2023.03.001.
[12]
JÜTTEN K, MAINZ V, GAUGGEL S, et al. Diffusion tensor imaging reveals microstructural heterogeneity of normal-appearing white matter and related cognitive dysfunction in glioma patients[J/OL]. Front Oncol, 2019, 9: 536 [2023-12-10]. https://pubmed.ncbi.nlm.nih.gov/31293974/. DOI: 10.3389/fonc.2019.00536.
[13]
LIN K, CIDAN W, QI Y, et al. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging[J]. Med Phys, 2022, 49(7): 4419-4429. DOI: 10.1002/mp.15648.
[14]
TAN Y, MU W, WANG X C, et al. Whole-tumor radiomics analysis of DKI and DTI may improve the prediction of genotypes for astrocytomas: A preliminary study[J/OL]. Eur J Radiol, 2020, 124: 108785 [2023-12-10]. https://pubmed.ncbi.nlm.nih.gov/32004731/. DOI: 10.1016/j.ejrad.2019.108785.
[15]
赵焕, 白岩, 王梅云. 多模态磁共振成像技术在脑胶质瘤基因分型及预后评估中的研究进展[J]. 磁共振成像, 2021, 12(9): 98-102. DOI: 10.12015/issn.1674-8034.2021.09.025.
ZHAO H, BAI Y, WANG M Y. Advances in multimodal magnetic resonance imaging in genotyping and prognostic evaluation of glioma[J]. Chin J Magn Reson Imaging, 2021, 12(9): 98-102. DOI: 10.12015/issn.1674-8034.2021.09.025.
[16]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[17]
HARTMANN C, HENTSCHEL B, WICK W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas[J]. Acta Neuropathol, 2010 120(6): 707-718. DOI: 10.1007/s00401-010-0781-z.
[18]
陈瑞宏, 谭艳. 较低级别脑胶质瘤分子分型的磁共振影像组学研究进展[J]. 磁共振成像, 2023, 14(3): 159-164. DOI: 10.12015/issn.1674-8034.2023.03.029.
CHEN R H, TAN Y. Research advances of radiomics in prognosis prediction of lower-grade gliomas[J]. Chin J Magn Reson Imaging, 2023, 14(3): 159-164. DOI: 10.12015/issn.1674-8034.2023.03.029.
[19]
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[20]
JENKINS R B, BLAIR H, BALLMAN K V, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma[J]. Cancer Res, 2006, 66(20): 9852-9861. DOI: 10.1158/0008-5472.CAN-06-1796.
[21]
ECKEL-PASSOW J E, LACHANCE D H, MOLINARO A M, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors[J]. N Engl J Med, 2015 372(26): 2499-2508. DOI: 10.1056/NEJMoa1407279.
[22]
Kishida Y, Natsume A, Toda H, et al. Correlation between quantified promoter methylation and enzymatic activity of O6-methylguanine-DNA methyltransferase in glioblastomas[J]. Tumour Biol, 2012, 33(2): 373-381. DOI: 10.1007/s13277-012-0319-1.
[23]
HEGI M E, DISERENS A C, GORLIA T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. N Engl J Med, 2005, 352(10): 997-1003. DOI: 10.1056/NEJMoa043331.
[24]
OSTROM Q T, SHOAF M L, CIOFFI G, et al. National-level overall survival patterns for molecularly-defined diffuse glioma types in the United States[J]. Neuro Oncol, 2023 25(4): 799-807. DOI: 10.1093/neuonc/noac198.
[25]
TERZI N K, YILMAZ I, OZ A B. The place and prognostic value of TERT promoter mutation in molecular classification in grade Ⅱ-Ⅲ Glial tumors and primary glioblastomas[J]. Turk Patoloji Derg, 2022, 38(2): 90-98. DOI: 10.5146/tjpath.2021.01555.
[26]
樊小龙, 杨子辰. 成人型弥漫性胶质瘤的分子分型研究进展[J]. 北京师范大学学报: 自然科学版, 2023, 59(1): 38-42. DOI: 10.12202/j.0476-0301.2022153.
FAN X L, YANG Z C. The molecular classification of adult diffuse glioma: a review[J]. Journal of Beijing Normal University (Natural Science), 2023 59(1): 38-42. DOI: 10.12202/j.0476-0301.2022153.
[27]
ARITA H, ICHIMURA K. Prognostic significance of TERT promoter mutations in adult-type diffuse gliomas[J]. Brain Tumor Pathol, 2022 39: 121-129. DOI: 10.1007/s10014-021-00424-z.
[28]
王洁, 朱宝林, 林志艳. MRI弥散张量成像在脑胶质瘤诊断分级中的研究进展[J]. 中国实用神经疾病杂志, 2023, 26(5): 641-645. DOI: 10.12083/SYSJ.221853.
WANG J, ZHU B L, LIN Z Y. Research progress of MRI diffusion tensor imaging in the diagnosis and grading of glioma[J]. Chinese Journal of Practical Nervous Diseases, 2023, 26(5): 641-645. DOI: 10.12083/SYSJ.221853.
[29]
张驰, 高阳. 磁共振扩散成像在脑胶质瘤分级及IDH基因型预测的研究进展[J]. 磁共振成像, 2023, 14(7): 149-154. DOI: 10.12015/issn.1674-8034.2023.07.027.
ZHANG C, GAO Y. Research progress of magnetic resonance diffusion imaging in glioma grading and IDH genotype prediction[J]. Chin J Magn Reson Imaging, 2023, 14(7): 149-154. DOI: 10.12015/issn.1674-8034.2023.07.027.
[30]
KLAWITER E C, SCHMIDT R E, TRINKAUS K, et al. Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords[J]. Neuroimage, 2011, 55(4): 1454-1460. DOI: 10.1016/j.neuroimage.2011.01.007.
[31]
WHITE M L, ZHANG Y, YU F, et al. Diffusion tensor MR imaging of cerebral gliomas: evaluating fractional anisotropy characteristics[J]. AJNR Am J Neuroradiol, 2011, 32(2): 374-381. DOI: 10.3174/ajnr.A2267.
[32]
LIU X, TIAN W, KOLAR B, et al. MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas[J]. Neuro Oncol, 2011, 13(4): 447-455. DOI: 10.1093/neuonc/noq197.
[33]
NOUE T, OGASAWARA K, BEPPU T, et al. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas[J]. Clin Neurol Neurosurg, 2005, 107(3): 174-180. DOI: 10.1016/j.clineuro.2004.06.011.
[34]
曾盛熊, 王成伟, 彭少华. DTI在Ⅱ、Ⅲ级胶质瘤鉴别诊断中的应用价值[J]. 临床放射学杂志, 2020, 39(7): 1253-1257. DOI: 10.13437/j.cnki.jcr.2020.07.004.
ZENG S X, WANG C W, PENG S H. The application value of DTI in the differential diagnosis of grade Ⅱ and Ⅲ glioma[J]. J Clin Radiol, 2020, 39(7): 1253-1257. DOI: 10.13437/j.cnki.jcr.2020.07.004.
[35]
LIN H, XU Y, CHEN L, et al. Multiparametric and multiregional diffusion features help predict molecule information, grade and survival in lower-grade gliomas: a feasibility study[J/OL]. Br J Radiol, 2019, 92(1103): 20190324 [2023-12-10]. https://pubmed.ncbi.nlm.nih.gov/31386559/. DOI: 10.1259/bjr.20190324.
[36]
XIONG J, TAN W, WEN J, et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours[J]. Eur Radiol, 2016, 26(6): 1705-1715. DOI: 10.1007/s00330-015-4025-4.
[37]
BEPPU T, INOUE T, SHIBATA Y, et al. Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas[J]. Surg Neurol, 2005, 63(1): 56-61; discussion 61. DOI: 10.1016/j.surneu.2004.02.034.
[38]
ZOU Q G, XU H B, LIU F, et al. In the assessment of supratentorial glioma grade: the combined role of multivoxel proton MR spectroscopy and diffusion tensor imaging[J]. Clin Radiol, 2011, 66(10): 953-960. DOI: 10.1016/j.crad.2011.05.001.
[39]
ZHAO J, WANG Y L, LI X B, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status[J]. J Neurooncol, 2019, 141(1): 195-203. DOI: 10.1007/s11060-018-03025-7.
[40]
FUDABA H, SHIMOMURA T, ABE T, et al. Comparison of multiple parameters obtained on 3T pulsed arterial spin-labeling, diffusion tensor imaging, and MRS and the Ki-67 labeling index in evaluating glioma grading[J]. AJNR Am J Neuroradiol, 2014, 35(11): 2091-2098. DOI: 10.3174/ajnr.A4018.
[41]
SERVER A, GRAFF B A , JOSEFSEN R, et al. Analysis of diffusion tensor imaging metrics for gliomas grading at 3 T[J/OL]. Eur J Radiol, 2014, 83(3): e156-e165 [2023-12-10]. https://pubmed.ncbi.nlm.nih.gov/24457139/. DOI: 10.1016/j.ejrad.2013.12.023.
[42]
YUAN W, HOLLAND S K, JONES B V, et al. Characterization of abnormal diffusion properties of supratentorial brain tumors: a preliminary diffusion tensor imaging study[J]. J Neurosurg Pediatr, 2008, 1(4): 263-269. DOI: 10.3171/PED/2008/1/4/263.
[43]
GAO A, ZHANG H, YAN X, et al. Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping[J]. Radiology, 2022, 302(3): 652-661. DOI: 10.1148/radiol.210820.
[44]
El-SEROUGY L, ABDEL RAZEK A A, EZZATZZAT A, et al. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas[J]. Neuroradiol J, 2016, 29(5): 400-407. DOI: 10.1177/1971400916665382.
[45]
MILOUSHEV V Z, CHOW D S, FILIPPI C G. Meta-analysis of diffusion metrics for the prediction of tumor grade in gliomas[J]. AJNR Am J Neuroradiol, 2015, 36(2): 302-308. DOI: 10.3174/ajnr.A4097.
[46]
GOEBELL E, PAUSTENBACH S, VAETERLEIN O, et al. Low-grade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging[J]. Radiology, 2006, 239(1): 217-222. DOI: 10.1148/radiol.2383050059.
[47]
LIN K, CIDAN W, QI Y, et al. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging[J]. Med Phys, 2022, 49(7): 4419-4429. DOI: 10.1002/mp.15648.
[48]
WANG P, XIE S, WU Q, et al. Model incorporating multiple diffusion MRI features: development and validation of a radiomics-based model to predict adult-type diffuse gliomas grade[J]. Eur Radiol, 2023, 33(12): 8809-8820. DOI: 10.1007/s00330-023-09861-0.
[49]
ZHANG Z, XIAO J, WU S, et al. Deep convolutional radiomic features on diffusion tensor images for classification of glioma grades[J]. J Digit Imaging, 2020, 33(4): 826-837. DOI: 10.1007/s10278-020-00322-4.
[50]
TAN W L, HUANG W Y, YIN B, et al. Can diffusion tensor imaging noninvasively detect IDH1 gene mutations in astrogliomas? A retrospective study of 112 cases[J]. AJNR Am J Neuroradiol, 2014, 35(5): 920-927. DOI: 10.3174/ajnr.A3803.
[51]
XIONG J, TAN W L, PAN J W, et al. Detecting isocitrate dehydrogenase gene mutations in oligodendroglial tumors using diffusion tensor imaging metrics and their correlations with proliferation and microvascular density[J]. J Magn Reson Imaging, 2016, 43(1): 45-54. DOI: 10.1002/jmri.24958.
[52]
骆仲强, 刘宵雪, 李建瑞, 等. 基于DTI的直方图分析预测WHOⅡ/Ⅲ级弥漫性胶质瘤IDH基因分型[J]. 临床放射学杂志, 2021, 40(5): 870-874. DOI: 10.13437/j.cnki.jcr.2021.05.008.
LUO Z Q, LIU X X, LI J R, et al. Prediction of world health organization grade Ⅱ/Ⅲ diffuse gliomas IDH status by histogram analysis of diffusion tensor imaging[J]. J Clin Radiol, 2021, 40(5): 870-874. DOI: 10.13437/j.cnki.jcr.2021.05.008.
[53]
KOIVUNEN P, LEE S, DUNCAN C G, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation[J]. Nature, 2012, 483(7390): 484-488. DOI: 10.1038/nature10898.
[54]
AUGELLI R, CICERI E, GHIMENTON C, et al. Magnetic resonance diffusion-tensor imaging metrics in High Grade Gliomas: Correlation with IDH1 gene status in WHO 2016 era[J]. Eur J Radiol, 2019, 116: 174-179. DOI: 10.1016/j.ejrad.2019.04.020.
[55]
TAN Y, ZHANG H, WANG X, et al. Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of astrocytomas[J]. Clin Radiol, 2019, 74(4): 314-320. DOI: 10.1016/j.crad.2018.12.004.
[56]
YUZKAN S, MUTLU S, HAN M, et al. Predicting isocitrate dehydrogenase mutation status of Grade 2-4 gliomas with diffusion tensor imaging (DTI) parameters derived from model-based DTI and model-free Q-sampling imaging reconstructions[J/OL]. World Neurosurg, 2023, 28: S1878-8750(23)00882-3 [2023-12-10]. https://pubmed.ncbi.nlm.nih.gov/37390902/. DOI: 10.1016/j.wneu.2023.06.099.
[57]
FIGINI M, RIVA M, GRAHAM M, et al. Prediction of isocitrate dehydrogenase genotype in brain gliomas with MRI: Single-shell versus multishell diffusion models[J]. Radiology, 2018, 289(3): 788-796. DOI: 10.1148/radiol.2018180054.
[58]
PARK C J, CHOI Y S, PARK Y W, et al. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status[J]. Neuroradiology, 2020, 62(3): 319-326. DOI: 10.1007/s00234-019-02312-y.
[59]
ALIOTTA E, NOURZADEH H, BATCHALA P P, et al. Molecular subtype classification in lower-grade glioma with accelerated DTI[J]. AJNR Am J Neuroradiol, 2019, 40(9): 1458-1463. DOI: 10.3174/ajnr.A6162.
[60]
HUANG Z, LU C, LI G, et al. Prediction of lower grade insular glioma molecular pathology using diffusion tensor imaging metric-based histogram parameters[J/OL]. Front Oncol, 2021, 11: 627202 [2023-12-10]. https://pubmed.ncbi.nlm.nih.gov/33777772/. DOI: 10.3389/fonc.2021.627202.
[61]
PARK Y W, HAN K, AHN S S, et al. Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization Grade II Gliomas[J]. AJNR Am J Neuroradiol, 2018, 39(4): 693-698. DOI: 10.3174/ajnr.A5569.
[62]
MOON W J, CHOI J W, ROH H G, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging[J]. Neuroradiology, 2012, 54(6): 555-563. DOI: 10.1007/s00234-011-0947-y.
[63]
AHN S S, SHIN N Y, CHANG J H, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging[J]. J Neurosurg, 2014, 121(2): 367-373. DOI: 10.3171/2014.5.JNS132279.
[64]
LATYSHEVA A, GEIER O M, HOPE T R, et al. Diagnostic utility of Restriction Spectrum Imaging in the characterization of the peritumoral brain zone in glioblastoma: Analysis of overall and progression-free survival[J/OL]. Eur J Radiol, 2020, 132: 109289 [2023-12-10]. https://pubmed.ncbi.nlm.nih.gov/33002815/. DOI: 10.1016/j.ejrad.2020.109289.
[65]
PARK Y W, AHN S S, PARK C J, et al. Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas[J]. Eur Radiol, 2020, 30(12): 6475-6484. DOI: 10.1007/s00330-020-07090-3.

上一篇 扩散磁共振成像振荡梯度自旋回波原理及其在脑胶质瘤中的应用进展
下一篇 磁共振成像技术在耳鸣中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2