分享:
分享到微信朋友圈
X
临床指南·专家共识
多发性骨髓瘤全身磁共振成像检查专家共识
中国医学装备协会磁共振应用专业委员会
中华医学会放射学分会骨关节学组
《磁共振成像》编委会

Cite this article as: Magnetic Resonance Application Professional Committee of China Association of Medical Equipment, Osteoarthrography Group of Chinese Society of Radiology of Chinese Medical Association, Editorial Board of Chinese Journal of Magnetic Resonance Imaging. Expert consensus on whole-body magnetic resonance imaging in multiple myeloma[J]. Chin J Magn Reson Imaging, 2024, 15(7): 1-6.本文引用格式:中国医学装备协会磁共振应用专业委员会,中华医学会放射学分会骨关节学组,《磁共振成像》编委会. 多发性骨髓瘤全身磁共振成像检查专家共识[J]. 磁共振成像, 2024, 15(7): 1-6. DOI:10.12015/issn.1674-8034.2024.07.001.


[摘要] 多发性骨髓瘤(multiple myeloma, MM)是一种克隆浆细胞异常增殖的血液系统恶性疾病。近年来,随着全身磁共振成像(whole-body MRI, WB-MRI)技术的进步及推广,其在MM的诊断、肿瘤负荷评估、疗效评价、预后预测等方面发挥了日益重要的作用。为了规范和指导我国WB-MRI检查在MM中的临床应用,我国相关领域专家在参考国内外相关文献基础上,结合我国临床实际需求,起草了本专家共识,以促进WB-MRI检查在MM中的普及和规范化使用。
[Abstract] Multiple myeloma (MM) is a hematological malignancy characterized by abnormal proliferation of clonal plasma cells. With the recent development and improved accessibility of whole-body MRI (WB-MRI), this imaging technique has contributed significantly to the diagnosis, tumor burden evaluation, therapy response assessment and prognosis prediction in patients with MM. To standardize and guide the clinical application of WB-MRI in MM in China, Chinese experts in the relevant fields drafted this expert consensus on the basis of comprehensive review of the literature and careful consideration for the clinical needs in China, so as to promote the popularization and standardized use of WB-MRI in MM.
[关键词] 多发性骨髓瘤;磁共振成像;专家共识
[Keywords] multiple myeloma;magnetic resonance imaging;expert consensus

中国医学装备协会磁共振应用专业委员会   中华医学会放射学分会骨关节学组   《磁共振成像》编委会  

通信作者:袁慧书(北京大学第三医院放射科,北京 100083),E-mail:huishuy@sina.com 陈敏(北京医院放射科,北京 100730),E-mail:cjr.chenmin@vip.163.com 金征宇(中国医学科学院 北京协和医学院 北京协和医院放射科,北京 100730),E-mail:jin_zhengyu@163.com


基金项目: 北京市自然科学基金 L222099 北京市科技计划首都临床诊疗技术研究及转化应用项目 Z211100002921067 北京协和医院中央高水平医院临床科研专项 2022-PUMCH-B-069 北京协和医学院“中央高校基本科研业务费”项目 3332021014
收稿日期:2024-01-15
接受日期:2024-03-28
中图分类号:R445.2  R733.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.07.001
本文引用格式:中国医学装备协会磁共振应用专业委员会,中华医学会放射学分会骨关节学组,《磁共振成像》编委会. 多发性骨髓瘤全身磁共振成像检查专家共识[J]. 磁共振成像, 2024, 15(7): 1-6. DOI:10.12015/issn.1674-8034.2024.07.001.

0 引言

       多发性骨髓瘤(multiple myeloma, MM)是一种克隆浆细胞异常增殖的血液系统恶性疾病[1]。影像学检查在MM的早期诊断、风险分级、疗效评估、预后预测等方面发挥着重要作用。MM主要的全身影像学检查方法包括全身X线平片、全身低剂量CT、全身磁共振成像(whole-body MRI, WB-MRI)及PET-CT。全身X线平片及全身低剂量CT多用于溶骨性病变的检测,低剂量CT较X线平片成像敏感性显著提高,但二者均难以检出无骨破坏的病灶。WB-MRI是国际骨髓瘤工作组(International Myeloma Working Group, IMWG)推荐用于检测MM骨髓浸润最敏感的成像技术[2]。相关领域国际多学科专家组于2019年发布了基于WB-MRI的骨髓瘤疗效评估与诊断系统(myeloma response assessment and diagnosis system, MY-RADS)[3]。为了规范和指导我国MM的WB-MRI检查和诊断,我国相关领域专家在参考国内外文献基础上,结合我国临床实际需求,经多次讨论后制订了本共识。

1 共识方法

       本专家共识已在国际实践指南注册与透明化平台(Practice Guideline Registration for Transparency, PREPARE)注册,注册号为PREPARE-2024CN849。共识执笔者与专家组成员商讨、制订了共识撰写工作计划安排,明确了共识总体框架、具体任务分工、共识初稿撰写计划、共识修改意见收集与汇总安排、共识会议安排等。

       共识执笔者在PubMed、Web of Science、中国知网、万方数据知识服务平台进行了相关领域文献检索,外文数据库检索通过“MRI”“magnetic resonance imaging”“multiple myeloma”等关键词进行检索,中文数据库检索方式与外文数据库类似。检索时间为建库至2022年8月,纳入文献标准:(1)指南、荟萃分析、系统评价、原始论著;(2)研究对象符合多发性骨髓瘤临床诊断。排除标准:评述、会议纪要、病例报告、非中英文文献。采用牛津循证医学中心(Oxford Centre Evidence-Based Medicine, OCEBM)证据分级和推荐标准,将纳入的研究证据分为5个等级(表1),并根据证据等级将推荐强度分为A、B、C、D(表2)。

       共识执笔者根据相关领域文献,同时结合我国患者偏好与价值观、WB-MRI检查的可及性、可接受性及临床应用实际需求,完成共识初稿撰写。共识初稿发送给所有专家组成员进行审阅、修改,执笔者与专家组成员逐一进行线上或线下沟通,收集、整理、汇总所有专家组成员对共识初稿的修改意见,完善共识并形成修改稿。共识修改稿通过共识会议进行共识,专家组对共识修改稿内容逐条充分讨论、交流后达成共识,并对推荐意见进行投票(赞成人数大于等于90%的推荐意见被认为达成共识),经执笔人整理、完善后形成共识终稿。

表1  共识证据等级的定义
Tab. 1  Definition of levels of evidence in this consensus
表2  共识推荐强度定义
Tab. 2  Definition of the strength of recommendations in this consensus

2 WB-MRI检查方案

2.1 患者体位

       仰卧位,身体正中线与扫描床面正中线一致,双上肢置于身体两侧,患者制动,平静呼吸。头先进或足先进视具体磁共振设备而定。扫描矢状位定位光标正对人体正中矢状线,轴位定位光标根据头先进或足先进而定。

2.2 场强和线圈

       为保证图像质量,WB-MRI需要场强至少达到1.5 T[4];采用3.0 T时可以获得更好的信噪比[5]。需使用表面线圈以保证图像的信噪比最大化,表面线圈至少需覆盖患者颅顶至膝盖,且线圈间没有空隙[6]

2.3 扫描方案

       WB-MRI检查方案包括必需方案和扩展的全面评估方案,一般应在45~50 min内完成。WB-MRI的扫描序列主要包括:

       (1)全脊柱矢状面T1WI:快速自旋回波(turbo spin echo, TSE)序列,层厚4~5 mm。

       (2)全脊柱脂肪抑制矢状面T2WI或短时反转恢复序列(short tau inversion recovery, STIR),层厚4~5 mm。

       (3)全身(至少包括颅顶至大腿中部)冠状面或横断面T1WI:梯度回波(gradient echo, GRE)序列Dixon技术[7, 8],层厚5 mm,获得同相位、反相位、脂相、水相四组图像。需利用水相和脂相来计算脂肪分数(fat fraction, FF)[9, 10],FF=脂相信号强度/(脂相信号强度+水相信号强度)×100%。

       (4)全身(至少包括颅顶至大腿中部)横断面扩散加权成像(diffusion weighted imaging, DWI)[11],层厚5~7 mm,无间距扫描,2个b值(50~100、800~1000 s/mm2),低b值不建议选择0 s/mm2,以排除组织灌注的影响,另需对高b值图像进行最大信号强度投影重建。

       (5)全身(至少包括颅骨至大腿中部)无脂肪抑制横断面T2WI,TSE序列,层厚5 mm。

       (6)区域评估:针对局部进行进一步评估,例如有症状的部位、超出标准成像视野的已知病变,怀疑存在脊髓受压、神经根受累的部位,以及髓外病变等。

       (7)WB-MRI必需方案包括(1)、(2)、(3)、(4),扩展的全面评估方案还包括(5)、(6)。

       (8)除此之外,部分序列尚处于科研阶段,如动态增强MRI能够提供骨髓微循环信息,通过勾画ROI并记录不同时间信号强度,可绘制时间-信号强度曲线,半定量描述MM病变灌注情况[12]

2.4 临床病史采集

       放射科医生应尽可能获得以下信息:

       (1)待评估疾病状态:为首次诊断MM或MM随诊。

       (2)血清学检查:血清M蛋白和游离轻链水平。

       (3)骨髓细胞学检查情况:如果完成,同时记录部位。

       (4)MM相关临床症状:有无骨受累表现及其具体部位(包括有无脊髓或神经根受压的临床表现)、是否贫血等。

       (5)非初诊MM患者应同时记录当前治疗情况,临床治疗反应评估类型(包括微小残留病情况)及既往放疗或手术干预史(包括椎体成形术、粒细胞集落刺激因子或类固醇治疗时间)。

       推荐意见1:WB-MRI检查方案除了包括常规T1WI、T2WI的形态学序列,还应包括全身DWI功能序列,以提高对MM病变的诊断效能(证据等级:2a,推荐强度:B)。

3 MM的WB-MRI影像分型

       依照MM的WB-MRI影像表现,可分为6种影像类型[2]

       (1)正常型(图1):骨髓MRI信号表现正常。

       (2)局灶型(图2):骨髓中直径≥5 mm的局灶性病变,表现为T1WI上局灶信号减低,脂肪抑制T2WI上局灶信号增高,DWI上局灶信号增高。MRI局灶性病变数目>1个是MM诊断标准之一(IMWG2014)。

       (3)弥漫型(图3):骨髓信号弥漫异常,表现为T1WI上信号弥漫减低,脂肪抑制T2WI上信号弥漫增高,DWI上信号弥漫增高。判断骨髓DWI信号弥漫增高时,可选择邻近肌肉DWI信号作为参考。当骨髓DWI信号高于邻近肌肉DWI信号时,可认为骨髓DWI信号异常增高。

       (4)弥漫加局灶型(图4):表现为在MM弥漫型骨髓的背景中存在MM局灶性病变。

       (5)“椒盐”型(图5):表现为T1WI序列上骨髓内多发细小斑点状低信号。脂肪抑制T2WI及DWI信号可略增高或无明显异常表现。

       (6)髓外病变(extramedullary disease, EMD):EMD包括骨旁髓外病变或非骨旁髓外病变,骨旁髓外病变指与髓内病变直接相连的MM软组织肿块病变,即髓内病变突破骨皮质到达骨髓外;非骨旁髓外病变指与髓内病变不相连的MM软组织肿块病变。有研究显示,在MM初诊患者中,EMD的发生率约为3%~5%,而在复发难治性MM患者中,EMD的发生率高达20%[13, 14, 15]。EMD在T1WI上主要表现为低信号或等信号,在T2WI上大部分表现为等信号或高信号,部分表现为低信号,DWI上主要呈高信号[15]

       需要注意的是,图像的解读时应结合常规T1WI及T2WI形态学序列、全身DWI序列(高、低b值图像及ADC图)以及FF,利用工作站的图像联动及配准工具实现分段综合评价。MM患者骨髓中浆细胞瘤异常增殖,导致黄骨髓含量下降,故骨髓FF能够反映MM疾病严重程度[16, 17, 18]。全身DWI高b值图像的最大信号强度投影可以大致显示全身肿瘤负荷及进行局部肿瘤定位[19],但由于可能存在明显的假阳性和假阴性(例如T2透射效应、呼吸运动伪影等),该图像不应单独用于评估[3, 20]。此外,由于受多种因素影响,目前并没有规定可明确区分正常骨髓和MM受累骨髓的ADC值截断值。有研究显示ADC值具有良好的可重复性[21, 22],在MM受累骨髓中的变异系数低至2.8%[23]。在未经治疗或初诊MM患者中,骨髓ADC 值高于600~700 μm2/s可增加诊断弥漫型骨髓受累的可靠性[3]

       推荐意见2:在WB-MRI阅片时,全身DWI序列所怀疑的MM病变需要在对应的T1WI、T2WI序列上加以验证,以减少假阳性结果(证据等级:2b,推荐强度:B)。

图1  正常型MM影像表现。1A:正常型MM示意图;1B~1E:全脊柱矢状面T1WI序列(1B)、冠状位全身T2WI STIR序列(1C)、轴位DWI序列(1D)及ADC图(1E)均未见明显异常信号。MM:多发性骨髓瘤;STIR:短时反转恢复序列;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 1  Imaging features of normal pattern of MM. 1A: Diagram of normal pattern of MM; 1B-1E: No significant abnormal bone marrow signals are observed in the sagittal T1WI sequence (1B), coronal T2WI STIR sequence (1C), axial DWI sequence (1D), and ADC image (1E). MM: multiple myeloma; STIR: short tau inversion recovery; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient.
图2  局灶型MM影像表现。2A:局灶型MM的示意图;2B:全脊柱矢状面T1WI序列示椎体多发局灶性低信号病变(箭);2C:冠状位全身T2WI STIR序列示骨盆及双侧股骨多发局灶性高信号病变(箭);2D:轴位DWI序列示多发局灶性高信号病变(箭);2E:ADC图。MM:多发性骨髓瘤;STIR:短时反转恢复序列;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 2  Imaging features of focal pattern of MM. 2A: Diagram of focal pattern of MM; 2B: The sagittal T1WI sequence of the entire spine shows multiple focal hypointense signal intensity lesions in the vertebral bone marrow (arrow); 2C: Coronal T2WI STIR sequence shows multiple focal hyperintense signal intensity lesions in the pelvis and bilateral femurs (arrow); 2D: Axial DWI sequence shows multiple focal hyperintense signal intensity lesions (arrow); 2E: ADC image. MM: multiple myeloma; STIR: short tau inversion recovery; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient.
图3  弥漫型MM影像表现。3A:弥漫型MM的示意图;3B:全脊柱矢状面T1WI序列示椎体信号弥漫减低;3C:冠状位全身T2WI STIR序列示骨髓信号弥漫增高;3D:轴位DWI序列示骨髓信号弥漫增高;3E:ADC图。MM:多发性骨髓瘤;STIR:短时反转恢复序列;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 3  Imaging features of diffuse infiltration pattern of MM. 3A: Diagram of diffuse infiltration pattern of MM; 3B: Sagittal T1WI sequence of the entire spine shows diffuse bone marrow signal intensity reduction; 3C: Coronal T2WI STIR sequence of the whole body shows diffuse increase in bone marrow signal intensity; 3D: Axial DWI sequence shows diffuse increase in bone marrow signal intensity; 3E: ADC image. MM: multiple myeloma; STIR: short tau inversion recovery; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient.
图4  弥漫加局灶型MM影像表现。4A:弥漫加局灶型MM的示意图;4B:全脊柱矢状面T1WI序列示椎体信号弥漫减低,局部可见局灶性更低信号灶(箭);4C:冠状位全身T2WI STIR序列示骨髓信号弥漫增高,局部可见局灶性更高信号灶(箭);4D:轴位DWI序列示骨髓信号弥漫增高,局部可见局灶性更高信号灶(箭);4E:ADC图。MM:多发性骨髓瘤;STIR:短时反转恢复序列;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 4  Imaging features of combined diffuse and focal pattern of MM. 4A: Diagram of combined diffuse and focal pattern of MM; 4B: The sagittal T1WI sequence of the entire spine shows focal hypointense signal intensity lesions(arrow) on the background bone marrow with diffuse signal intensity reduction; 4C: Coronal T2WI STIR sequence of the whole body shows focal hyperintense signal intensity lesions(arrow) on the background bone marrow with diffuse signal intensity increase; 4D: Axial DWI sequence shows focal hyperintense signal intensity lesions(arrow) on the background bone marrow with diffuse signal intensity increase; 4E: ADC image. MM: multiple myeloma; STIR: short tau inversion recovery; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient.
图5  “椒盐”型MM影像表现。5A:“椒盐”型MM的示意图;5B:全脊柱矢状面T1WI序列示椎体多发细小斑点状低信号;5C~5E:冠状位全身T2WI STIR序列(5C)、轴位DWI序列(5D)及ADC图(5E)未见明显异常信号。MM:多发性骨髓瘤;STIR:短时反转恢复序列;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 5  Imaging features of "salt and pepper" pattern of MM. 5A: Diagram of "salt and pepper" pattern of MM; 5B: The sagittal T1WI sequence of the entire spine shows multiple tiny nodular hypointensities in the vertebral bone marrow; 5C-5E: No obvious abnormal signals are observed in the coronal T2WI STIR sequence (5C), axial DWI sequence (5D), and ADC image (5E). MM: multiple myeloma; STIR: short tau inversion recovery; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient.

4 初次诊断MM患者的WB-MRI报告书写

       综合参考IMWG及英国国家临床优化研究院(NICE)的共识建议[3, 24],对于初诊的MM患者,WB-MRI报告主要内容应包括:

       (1)MM的影像学分型:包括正常型、局灶型、弥漫型、弥漫加局灶型或者“椒盐”型。

       (2)局灶性病变的个数和部位:无,1个,2~7个,或>7个。也可根据MY-RADS使用全身肿瘤负荷评分进行评估。

       (3)长骨肿瘤浸润情况。

       (4)骨折情况:有无骨折,骨折数目,骨折部位,新发/陈旧骨折,骨折的良恶性可能。

       (5)髓外病变情况:有无髓外病变,病灶个数,每个病灶部位及大小。

       (6)骨骼系统的外科手术证据。

       (7)提示临床基于单部位的骨髓穿刺活检瘤负荷评估是否具有代表性。

       (8)其他偶然发现。

5 MM的WB-MRI疗效评估及随访监测

       目前,MM的临床疗效评估主要通过血、尿M蛋白和游离轻链等实验室检查及影像学检查来综合评估[25]。包含全身DWI序列的WB-MRI检查是MM临床疗效评估的有用工具[26]。2019年,MY-RADS指南提出了基于WB-MRI的MM疗效评估分类(response assessment categories, RAC)标准[3],以记录MM患者疗效。RAC使用5分制来表示可能的疗效类别:1分为极有可能缓解;2分为有可能缓解;3分为稳定;4分为有可能有进展;5分为极有可能有进展。详见表3

       对于MM患者的随访监测,建议每6个月进行一次影像学评估,或根据临床症状进行[28]。每次评估可使用RAC标准记录MM患者疗效。在治疗后影像学表现仍怀疑骨髓弥漫性浸润时,必须排除粒细胞集落刺激因子的使用,并通过血清生化检查和/或骨髓活检来协助确认。

       推荐意见3:可参考MY-RADS定义的RAC进行MM的WB-MRI疗效评估(证据等级:5,推荐强度:D)。

表3  MY-RADS疗效评估分类
Tab. 3  MY-RADS response assessment categories

6 WB-MRI在MM预后预测中的价值

       MM是一组生物学行为和临床预后具有显著异质性的疾病,精确的预后预测与危险分层对MM的精准诊疗至关重要。目前临床采用的传统Durie-Salmon(DS)分期系统[29]、国际分期体系(International Staging System, ISS)分期和修订的ISS(R-ISS)[30]均未纳入WB-MRI的评价手段。目前,研究者对WB-MRI的MM预后预测价值主要从基线图像及治疗后图像两个方面进行讨论。基线WB-MRI上观察到的MM病灶数目、大小及浸润模式与预后密切相关[31, 32, 33]。研究报道当中轴骨>7个局灶病灶时[32, 34],或呈现弥漫型的浸润模式时[32, 33, 35],患者预后较差。此外,有文献报道MM患者骨髓ADC值相关定量参数也与预后相关[22, 36, 37, 38]。而基于同反相位梯度回波序列计算的相对脂肪分数直方图在评估MM治疗效果方面,要优于常规ADC的方法[39]。对于治疗达到临床缓解的MM患者,可通过检测微小残留病灶(minimal residual disease, MRD)进一步预测其无进展生存(progress free survive, PFS)[25]。但由于MRD的检测依赖骨髓细胞学样本,其全身代表性较差,且无法评估髓外病变,近期已有文献推荐将传统MRD分子技术和全身功能影像学评估(如全身DWI)相结合,认为双阴性结果可作为预后良好的标志[40]

       推荐意见4:MRI影像分型有助于临床医师对MM进行预后预测,MRI所示的局灶型或弥漫型病变与MM预后不良相关(证据等级:2a,推荐强度:B)。

       执笔者:薛华丹(北京协和医院放射科)、高雨菡(北京协和医院血液科)、王勤(北京协和医院放射科)

       专家组成员(按姓名拼音排序):陈敏(北京医院放射科)、程晓光(北京积水潭医院放射科)、高雨菡(北京协和医院血液科)、何波(昆明医科大学第一附属医院放射科)、贺光军(《磁共振成像》杂志社)、洪楠(北京大学人民医院放射科)、胡春洪(苏州大学附属第一医院放射科)、黄文阳(中国医学科学院血液病医院)、金征宇(中国医学科学院 北京协和医学院 北京协和医院放射科)、郎宁(北京大学第三医院放射科)、李剑(北京协和医院血液科)、王勤(北京协和医院放射科)、夏爽(天津市第一中心医院放射科)、谢晟(中日友好医院放射科)、徐文坚(青岛大学医学院附属医院放射科)、薛华丹(北京协和医院放射科)、严福华(上海交通大学医学院附属瑞金医院放射科)、袁慧书(北京大学第三医院放射科)、查云飞(武汉大学人民医院放射科)、张路(北京协和医院血液科)

[1]
LIU J M, LIU W P, MI L, et al. Incidence and mortality of multiple myeloma in China, 2006-2016: an analysis of the Global Burden of Disease Study 2016[J/OL]. J Hematol Oncol, 2019, 12(1): 136 [2024-01-14]. https://pubmed.ncbi.nlm.nih.gov/31823802/. DOI: 10.1186/s13045-019-0807-5.
[2]
DIMOPOULOS M A, HILLENGASS J, USMANI S, et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement[J]. J Clin Oncol, 2015, 33(6): 657-664. DOI: 10.1200/JCO.2014.57.9961.
[3]
MESSIOU C, HILLENGASS J, DELORME S, et al. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: myeloma response assessment and diagnosis system (MY-RADS)[J]. Radiology, 2019, 291(1): 5-13. DOI: 10.1148/radiol.2019181949.
[4]
KOH D M, BLACKLEDGE M, PADHANI A R, et al. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls[J]. AJR Am J Roentgenol, 2012, 199(2): 252-262. DOI: 10.2214/AJR.11.7866.
[5]
SCHMIDT G P, WINTERSPERGER B, GRASER A, et al. High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study[J]. Invest Radiol, 2007, 42(6): 449-459. DOI: 10.1097/01.rli.0000262089.55618.18.
[6]
BARNES A, ALONZI R, BLACKLEDGE M, et al. UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer[J/OL]. Br J Radiol, 2018, 91(1081): 20170577 [2024-01-14]. https://pubmed.ncbi.nlm.nih.gov/29076749/. DOI: 10.1259/bjr.20170577.
[7]
COSTELLOE C M, MADEWELL J E, KUNDRA V, et al. Conspicuity of bone metastases on fast Dixon-based multisequence whole-body MRI: clinical utility per sequence[J]. Magn Reson Imaging, 2013, 31(5): 669-675. DOI: 10.1016/j.mri.2012.10.017.
[8]
COSTELLOE C M, KUNDRA V, MA J F, et al. Fast Dixon whole-body MRI for detecting distant cancer metastasis: a preliminary clinical study[J]. J Magn Reson Imaging, 2012, 35(2): 399-408. DOI: 10.1002/jmri.22815.
[9]
REEDER S B, HU H H, SIRLIN C B. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration[J]. J Magn Reson Imaging, 2012, 36(5): 1011-1014. DOI: 10.1002/jmri.23741.
[10]
BALLON D, WATTS R, DYKE J P, et al. Imaging therapeutic response in human bone marrow using rapid whole-body MRI[J]. Magn Reson Med, 2004, 52(6): 1234-1238. DOI: 10.1002/mrm.20291.
[11]
TORKIAN P, MANSOORI B, HILLENGASS J, et al. Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: a systematic review and meta-analysis[J]. Skeletal Radiol, 2023, 52(3): 565-583. DOI: 10.1007/s00256-022-04119-0.
[12]
DUTOIT J C, VERSTRAETE K L. MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings[J]. Insights Imaging, 2016, 7(4): 553-569. DOI: 10.1007/s13244-016-0492-7.
[13]
USMANI S Z, HEUCK C, MITCHELL A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents[J]. Haematologica, 2012, 97(11): 1761-1767. DOI: 10.3324/haematol.2012.065698.
[14]
GAGELMANN N, EIKEMA D J, IACOBELLI S, et al. Impact of extramedullary disease in patients with newly diagnosed multiple myeloma undergoing autologous stem cell transplantation: a study from the Chronic Malignancies Working Party of the EBMT[J]. Haematologica, 2018, 103(5): 890-897. DOI: 10.3324/haematol.2017.178434.
[15]
TIRUMANI S H, SHINAGARE A B, JAGANNATHAN J P, et al. MRI features of extramedullary myeloma[J]. AJR Am J Roentgenol, 2014, 202(4): 803-810. DOI: 10.2214/AJR.13.10856.
[16]
古雅雯, 吴颖, 颜瑞馨, 等. 磁共振成像水脂分离技术在多发性骨髓瘤患者中的应用研究[J]. 中国实验血液学杂志, 2022, 30(1): 183-188. DOI: 10.19746/j.cnki.issn1009-2137.2022.01.030.
GU Y W, WU Y, YAN R X, et al. Application of MRI water-fat separation technology in patients with multiple myeloma[J]. J Exp Hematol, 2022, 30(1): 183-188. DOI: 10.19746/j.cnki.issn1009-2137.2022.01.030.
[17]
裴晓姣, 潘振宇, 炼宇飞, 等. 椎体骨髓脂肪含量比在新诊断多发性骨髓瘤中的诊断价值[J]. 中国全科医学, 2021, 24(20): 2601-2606. DOI: 10.12114/j.issn.1007-9572.2021.00.557.
PEI X J, PAN Z Y, LIAN Y F, et al. Predictive value of fat fraction quantification of lumbar spine for newly diagnosed multiple myeloma[J]. Chin Gen Pract, 2021, 24(20): 2601-2606. DOI: 10.12114/j.issn.1007-9572.2021.00.557.
[18]
DONG H Z, HUANG W Y, JI X D, et al. Prediction of early treatment response in multiple myeloma using MY-RADS total burden score, ADC, and fat fraction from whole-body MRI: impact of Anemia on predictive performance[J]. AJR Am J Roentgenol, 2022, 218(2): 310-319. DOI: 10.2214/AJR.21.26534.
[19]
ZHANG H B, XUE H D, ALTO S, et al. Integrated shimming improves lesion detection in whole-body diffusion-weighted examinations of patients with plasma disorder at 3 T[J]. Invest Radiol, 2016, 51(5): 297-305. DOI: 10.1097/RLI.0000000000000238.
[20]
LARBI A, OMOUMI P, PASOGLOU V, et al. Whole-body MRI to assess bone involvement in prostate cancer and multiple myeloma: comparison of the diagnostic accuracies of the T1, short tau inversion recovery (STIR), and high b-values diffusion-weighted imaging (DWI) sequences[J]. Eur Radiol, 2019, 29(8): 4503-4513. DOI: 10.1007/s00330-018-5796-1.
[21]
JI X D, HUANG W Y, DONG H Z, et al. Evaluation of bone marrow infiltration in multiple myeloma using whole-body diffusion-weighted imaging and T1-weighted water-fat separation Dixon[J]. Quant Imaging Med Surg, 2021, 11(2): 641-651. DOI: 10.21037/qims-20-289.
[22]
WANG Q, ZHANG L, LI S, et al. Histogram analysis based on apparent diffusion coefficient maps of bone marrow in multiple myeloma: an independent predictor for high-risk patients classified by the revised international staging system[J/OL]. Acad Radiol, 2022, 29(6): e98-e107 [2024-01-14]. https://pubmed.ncbi.nlm.nih.gov/34452820/. DOI: 10.1016/j.acra.2021.07.010.
[23]
GILES S L, MESSIOU C, COLLINS D J, et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma[J]. Radiology, 2014, 271(3): 785-794. DOI: 10.1148/radiol.13131529.
[24]
HILLENGASS J, USMANI S, RAJKUMAR S V, et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders[J/OL]. Lancet Oncol, 2019, 20(6): e302-e312 [2024-01-14]. https://pubmed.ncbi.nlm.nih.gov/31162104/. DOI: 10.1016/S1470-2045(19)30309-2.
[25]
KUMAR S, PAIVA B, ANDERSON K C, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma[J/OL]. Lancet Oncol, 2016, 17(8): e328-e346 [2024-01-14]. https://pubmed.ncbi.nlm.nih.gov/27511158/. DOI: 10.1016/S1470-2045(16)30206-6.
[26]
WANG K W, LEE E, KENIS S, et al. Application of diffusion-weighted whole-body MRI for response monitoring in multiple myeloma after chemotherapy: a systematic review and meta-analysis[J]. Eur Radiol, 2022, 32(4): 2135-2148. DOI: 10.1007/s00330-021-08311-z.
[27]
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.1016/j.ejca.2008.10.026.
[28]
中国医师协会血液科医师分会, 中华医学会血液学分会, 中国多发性骨髓瘤工作组. 中国多发性骨髓瘤诊治指南(2011年修订)[J]. 中华内科杂志, 2011, 50(10): 892-896. DOI: 10.3760/cma.j.issn.0578-1426.2011.10.028.
Hematology Branch of the Chinese Medical Doctor Association, Hematology Branch of the Chinese Medical Association, Chinese Multiple Myeloma Working Group. Chinese Guidelines for the Diagnosis and Treatment of Multiple Myeloma (Revised in 2022)[J]. Chin J Intern Med, 2011, 50(10): 892-896. DOI: 10.3760/cma.j.issn.0578-1426.2011.10.028.
[29]
DURIE B G, SALMON S E. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival[J]. Cancer, 1975, 36(3): 842-854. DOI: 10.1002/1097-0142(197509)36:3<842:aid-cncr2820360303>3.0.co;2-u.
[30]
PALUMBO A, AVET-LOISEAU H, OLIVA S, et al. Revised international staging system for multiple myeloma: a report from international myeloma working group[J]. J Clin Oncol, 2015, 33(26): 2863-2869. DOI: 10.1200/JCO.2015.61.2267.
[31]
RASCHE L, ANGTUACO E J, ALPE T L, et al. The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma[J]. Blood, 2018, 132(1): 59-66. DOI: 10.1182/blood-2018-04-842880.
[32]
MAI E K, HIELSCHER T, KLOTH J K, et al. A magnetic resonance imaging-based prognostic scoring system to predict outcome in transplant-eligible patients with multiple myeloma[J]. Haematologica, 2015, 100(6): 818-825. DOI: 10.3324/haematol.2015.124115.
[33]
LEE S Y, KIM H J, SHIN Y R, et al. Prognostic significance of focal lesions and diffuse infiltration on MRI for multiple myeloma: a meta-analysis[J]. Eur Radiol, 2017, 27(6): 2333-2347. DOI: 10.1007/s00330-016-4543-8.
[34]
WALKER R, BARLOGIE B, HAESSLER J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications[J]. J Clin Oncol, 2007, 25(9): 1121-1128. DOI: 10.1200/JCO.2006.08.5803.
[35]
MOULOPOULOS L A, DIMOPOULOS M A, KASTRITIS E, et al. Diffuse pattern of bone marrow involvement on magnetic resonance imaging is associated with high risk cytogenetics and poor outcome in newly diagnosed, symptomatic patients with multiple myeloma: a single center experience on 228 patients[J]. Am J Hematol, 2012, 87(9): 861-864. DOI: 10.1002/ajh.23258.
[36]
ZHANG L, WANG Q, WU X, et al. Baseline bone marrow ADC value of diffusion-weighted MRI: a potential independent predictor for progression and death in patients with newly diagnosed multiple myeloma[J]. Eur Radiol, 2021, 31(4): 1843-1852. DOI: 10.1007/s00330-020-07295-6.
[37]
WU C, HUANG J, XU W B, et al. Discriminating depth of response to therapy in multiple myeloma using whole-body diffusion-weighted MRI with apparent diffusion coefficient: preliminary results from a single-center study[J]. Acad Radiol, 2018, 25(7): 904-914. DOI: 10.1016/j.acra.2017.12.008.
[38]
ZHANG Y, XIONG X, FU Z Z, et al. Whole-body diffusion-weighted MRI for evaluation of response in multiple myeloma patients following bortezomib-based therapy: a large single-center cohort study[J/OL]. Eur J Radiol, 2019, 120: 108695 [2024-01-14]. https://pubmed.ncbi.nlm.nih.gov/31589995/. DOI: 10.1016/j.ejrad.2019.108695.
[39]
KOUTOULIDIS V, TERPOS E, PAPANIKOLAOU N, et al. Comparison of MRI features of fat fraction and ADC for early treatment response assessment in participants with multiple myeloma[J]. Radiology, 2022, 304(1): 137-144. DOI: 10.1148/radiol.211388.
[40]
RASCHE L, ALAPAT D, KUMAR M, et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma[J]. Leukemia, 2019, 33(7): 1713-1722. DOI: 10.1038/s41375-018-0329-0.

上一篇 磁共振自旋锁定成像技术及其临床应用进展
下一篇 PET/MR成像的临床应用述评
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2