分享:
分享到微信朋友圈
X
综述
MRI在三阴性乳腺癌新辅助化疗疗效评价中的研究进展
李书念 谭红娜

Cite this article as: LI S N, TAN H N. Research progress of MRI in the evaluation of neoadjuvant chemotherapy efficacy for triple-negative breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(7): 191-195.本文引用格式:李书念, 谭红娜. MRI在三阴性乳腺癌新辅助化疗疗效评价中的研究进展[J]. 磁共振成像, 2024, 15(7): 191-195. DOI:10.12015/issn.1674-8034.2024.07.032.


[摘要] 三阴性乳腺癌(triple-negative breast cancer, TNBC)是一种具有高度异质性及侵袭性的乳腺癌亚型,并且由于缺乏有效的治疗靶点,对内分泌治疗及靶向治疗均不敏感,预后较差。目前新辅助化疗(neoadjuvant chemotherapy, NAC)是其标准治疗策略之一,但个体差异及肿瘤异质性使得不同患者的疗效差别较大,故早期准确客观评估NAC疗效对TNBC患者后续治疗的方案制订及预后判断尤为重要。磁共振成像(magnetic resonance imaging, MRI)因具有较高的软组织分辨率及定量成像技术,可准确反映肿瘤实质以及其微环境的变化,是目前监测肿瘤治疗疗效最常用的影像学检查方法之一。基于MRI的影像组学能够深度挖掘NAC前后TNBC的影像特征,获取更全面的肿瘤信息并应用于NAC疗效的评价。近年来,国内外研究人员就影像组学在TNBC NAC疗效评价方面进行了大量探索。本文就MRI及影像组学在TNBC患者NAC疗效评价的临床应用及研究进展做一综述,旨在为TNBC精准化和个体化治疗策略的制订提供参考。
[Abstract] Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by high heterogeneity and aggressiveness. Because of the absence of effective therapeutic targets, TNBC is insensitive to endocrine therapy and targeted therapy, resulting in a poor prognosis. Currently, neoadjuvant chemotherapy (NAC) is one of the standard treatment strategies for TNBC. Given the individual variances and tumor heterogeneity, TNBC patients' response to NAC varies significantly, leading to diverse treatment outcomes. Therefore, early and accurate assessment of NAC efficacy is crucial for formulating subsequent treatment plans and predicting prognosis for TNBC patients. Magnetic resonance imaging (MRI) is widely utilized for monitoring the effectiveness of tumor treatment due to its high resolution for soft tissue and quantitative imaging technology, enabling accurate depiction of changes in tumor parenchyma and its microenvironment. MRI-based radiomics can deeply explore the imaging characteristics of TNBC before and after NAC, providing more comprehensive tumor information for evaluating NAC efficacy. In recent years, researchers both domestically and internationally have conducted extensive studies on the evaluation of NAC efficacy in TNBC using radiomics. This article aims to review the clinical applications and research advancements of MRI in assessing the efficacy of NAC in TNBC patients, with the goal of providing insights for developing precise and personalized treatment approaches for these patients.
[关键词] 乳腺肿瘤;三阴性乳腺癌;磁共振成像;新辅助化疗;疗效预测
[Keywords] breast cancer;triple-negative breast cancer;magnetic resonance imaging;neoadjuvant chemotherapy;efficacy prediction

李书念    谭红娜 *  

郑州大学人民医院 河南省人民医院医学影像科,郑州 450003

通信作者:谭红娜,E-mail:natan2000@126.com

作者贡献声明:谭红娜设计本研究的方案,对稿件的重要内容进行了修改,李书念检索并查阅相关文献,起草和撰写稿件,分析和解释本研究的内容;谭红娜获得河南省医学科技攻关计划项目的资金资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河南省医学科技攻关计划项目 LHGJ20220055
收稿日期:2024-03-07
接受日期:2024-06-25
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.07.032
本文引用格式:李书念, 谭红娜. MRI在三阴性乳腺癌新辅助化疗疗效评价中的研究进展[J]. 磁共振成像, 2024, 15(7): 191-195. DOI:10.12015/issn.1674-8034.2024.07.032.

0 引言

       乳腺癌是目前威胁女性健康的最常见的恶性肿瘤。据统计,中国女性患乳腺癌的风险不断增加,其发病率及死亡率分别居女性癌症的第1位和第4位[1]。三阴性乳腺癌(triple-negative breast cancer, TNBC)是指雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)和人表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)均为阴性的乳腺癌亚型,约占乳腺癌的15%~20%[2, 3]。相比于其他亚型,TNBC侵袭性更强,局部复发和远处转移率更高,缺乏明确的内分泌治疗及分子靶向治疗药物,预后相对更差,因此,其诊疗已引起国内外学者的广泛关注。术前的新辅助化疗(neoadjuvant chemotherapy, NAC)常为TNBC标准治疗[4],旨在降低肿瘤分期、提高患者的保乳率、减少术后并发症及提前治疗潜在的转移病灶等[5, 6]。研究证实NAC后化疗反应好,尤其是达到病理完全缓解(pathological complete response, pCR)的患者,无病生存期(disease-free survival, DFS)和总生存期(overall survival, OS)均明显提高[7, 8]。因此,pCR目前被广泛地用作NAC疗效评估的替代终点[9]。然而,NAC治疗后TNBC仅35%~45%的患者实现了pCR[10, 11, 12];而部分患者在NAC期间甚至可能出现进展、错过最佳的手术时机以及产生不必要的毒副作用。因此,如何早期准确评估不同患者对化疗方案的敏感性并预测NAC疗效是TNBC治疗领域的重要挑战。

       磁共振成像(magnetic resonance imaging, MRI)具有较高的软组织分辨率及多种定量成像技术,可较好地从形态学、血流动力学及代谢等方面反映乳腺癌灶的变化,故成为乳腺癌NAC治疗后首选的疗效评估方法[13]。然而,目前的MRI模型大多是基于所有乳腺癌亚型开发的,针对TNBC NAC疗效预测的模型较少。此外,由于TNBC的更具侵袭性的生物学行为和较差的预后等特点,仅凭MRI图像上肿瘤化疗前后改变无法满足其早期精准评估的需求。影像组学能够从医学图像中提取并分析高通量特征量化肿瘤信息,对肿瘤NAC疗效进行全面、精准地分析与评价。近年来报道了诸多关于影像组学预测TNBC NAC疗效的相关研究,证实了影像组学能够明显改善MRI检查对NAC疗效评估和预测的准确性,有助于推动精准医疗的发展[14, 15, 16, 17]。因此本文就MRI及影像组学在TNBC患者NAC后疗效评价方面的临床应用及研究进展做一综述,并为精准预测TNBC NAC疗效模型的构建提供帮助。

1 基于传统MRI评价TNBC化疗疗效的现状及研究进展

       MRI作为一种非侵入性的检查方法,除可清楚显示病灶形态学特征外,还可以借助功能成像的定量参数反映病变血流动力学、水分子扩散及细胞代谢等信息,对于乳腺癌患者NAC疗效的评估和治疗效果的预测至关重要。目前用于TNBC NAC疗效评价的MRI核心序列为动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI),以及功能成像序列如扩散加权成像(diffusion weighted imaging, DWI)[18, 19]

1.1 DCE-MRI

1.1.1 基于DCE-MRI形态学特征评价TNBC化疗疗效

       MRI对TNBC 化疗反应的评估通常基于化疗前后的肿瘤最长径、体积和肿瘤退缩模式等。目前对于TNBC患者NAC疗效的评估主要以实体肿瘤评价标准(response evaluation criteria in solid tumors, RECIST)[20]为主,该标准以肿瘤的最长径作为判断指标。LOO等[21]通过监测NAC期间肿瘤最长径变化,发现TNBC患者化疗结束后能否达到pCR与最长径的变化显著相关(P<0.001),其原因可能是TNBC通常表现为肿块型强化,边缘较其他亚型清晰,直径容易测量。PANTHI等[22]评估了化疗中期(第4个化疗周期)肿瘤最长径的变化率预测TNBC患者pCR的性能,曲线下面积(area under the curve, AUC)值为0.770。然而,一些研究人员[23]发现肿瘤灶范围的缩减与否并不能完全代表病理学缓解,不能仅以肿瘤最长径变化来判断肿块的病理反应,需要结合反应肿瘤细胞的密度、血流之类的参数。

       基于DCE-MRI计算的功能性肿瘤体积(functional tumor volume, FTV)被认为是评估化疗反应的重要生物标志物[24]。PARTRIDGE等[25]对比分析了不同亚型的乳腺癌患者在不同化疗阶段的FTV变化率(ΔFTV)对NAC疗效的预测效能,结果发现只有化疗结束后的ΔFTV能够较准确地预测TNBC化疗疗效(AUC=0.740),化疗早期和中期的ΔFTV预测性能较差。这与LI等[26]的研究结果不一致,他们发现基于化疗中期ΔFTV对TNBC化疗后pCR具有较高的预测效能,AUC值为0.850。其原因可能与两项研究设定的乳腺癌灶的增强百分比(percent enhancement, PE)和信号增强比(signal enhancement ratio, SER)的阈值不同有关[22, 27]。LI等[26]研究发现PE为140%,且SER为0,相较于使用默认水平的PE和SER测得的ΔFTV可以更好地区分TNBC的pCR与non-pCR患者,AUC值分别为0.850和0.780。综上所述,肿瘤最大径或FTV的测量受到肿瘤化疗前后形态和扫描参数等的影响,因此仅通过肿瘤最大径或FTV的变化来评估TNBC NAC疗效具有一定的局限性,寻找能更早期并且准确地预测化疗反应的生物标志物是十分必要的。

       化疗后肿瘤细胞整体减少并不总是通过肿瘤直径或体积的缩小来反映,因为虽然肿瘤细胞被破坏,但癌灶的反应性炎症和纤维基质仍然存在,并且肿瘤床内的这些炎症和纤维基质也可以表现为持续强化。一些研究探索了TNBC化疗后的退缩模式在NAC疗效预测中的价值。EOM等[28]发现TNBC化疗早期的向心性退缩模式是pCR的早期预测指标。其向心性退缩的原因可能是肿瘤细胞对化疗药物敏感,以及TNBC肿瘤血管丰富有助于化疗药物的输送与吸收。随着退缩模式在化疗疗效评估和预测中的应用,有望进一步提高TNBC的疗效评估效能,为临床治疗方案的制订和调整提供重要的参考依据。

1.1.2 基于DEC-MRI定量参数评价TNBC化疗疗效

       DCE-MRI定量分析通过选用适当的药代动力学模型,量化感兴趣区病灶血管内与细胞间隙之间的对比剂交换,无创地反映组织局部血流灌注和微血管通透性[29]。NAC早期的容量转移常数(volume transfer constant, Ktrans)、血管外细胞外间隙容积比(extravascular extracellular volume fraction, Ve)的变化能够较准确地预测乳腺癌化疗反应(AUC值分别为0.825和0.805),并且这些定量参数的变化早于肿瘤体积变化及其他半定量参数[30]。但针对TNBC这一亚型进行特定分析的研究较少。DRISIS等[31]对化疗前和化疗期间的DCE-MRI进行定量分析以预测TNBC患者NAC后pCR,NAC前的Ktrans值在pCR与non-pCR的患者之间差异具有统计学意义(P=0.030),并且Ktrans较高的肿瘤化疗效果较好,而在其他乳腺癌分组中并未观察到此现象。其原因可能与NAC结束后达到pCR的TNBC的肿瘤血管密度高,毛细血管发育不成熟、通透性高,更利于化疗药物进入肿瘤,同时肿瘤内乏氧的可能性小有关[19]。此外,化疗早期的Ktrans大幅度下降和Ve增高也可对TNBC患者NAC疗效进行有效预测,AUC值分别为0.900和0.830,Ktrans大幅度下降可能与肿瘤组织坏死及纤维组织所代替有关,而Ve增高可能代表肿瘤细胞崩解、细胞外间隙增大。这些研究证实了定量参数在预测TNBC pCR 中的作用,但未来还需要进一步的研究来验证其在TNBC中的应用价值。

1.2 DWI和ADC值

       DWI是一种无创性检测活体组织内水分子运动的MRI方法,通过测量水分子扩散情况以反映感兴趣区组织内微观结构变化,具有敏感度高、无须对比剂、检查时间短等优点。表观扩散系数(apparent diffusion coefficient, ADC)是基于DWI计算出的反映水分子运动的定量指标。LIU等[32]对不同亚型乳腺癌的NAC前和NAC后的ADC值进行分析,并对达到pCR和non-pCR的TNBC进行研究,结果发现化疗前ADC值更低的TNBC更易达到pCR。王晓等[33]使用全容积ADC直方图分析,以化疗前肿瘤ADC值平均值及50%分位数预测TNBC患者NAC后pCR具有较高价值,AUC值分别为0.800和0.842。化疗药物的细胞毒作用会导致细胞裂解、细胞膜通透性改变和细胞外空间增加,从而减少水扩散的限制环境,使得ADC值升高。因此,观察ADC值的变化(ΔADC)可为肿瘤化疗疗效的早期判断提供依据。 HE等[34]研究了62例TNBC患者NAC前后的ADC值及其变化与pCR之间的联系。pCR患者化疗后ADC及ΔADC水平明显高于non-pCR的患者,其中以ΔADC预测TNBC的NAC疗效的AUC值、敏感度和特异度分别0.673、71.9%、55.0%。以上研究证实TNBC患者化疗期间不同时间点的ADC值及ΔADC均可有效预测其NAC后的化疗疗效。未来随着DWI空间分辨率的进一步提高、扩散敏感系数b值以及区分化疗是否有效的ADC阈值的标准化,DWI和ADC值有望在乳腺癌诊疗中得到更广泛的应用。

2 基于MRI的影像组学评价TNBC新辅助化疗疗效的现状及研究进展

       荷兰学者LAMBIN等[35]于2012年首次提出影像组学这一概念,其定义为从单个或多个医学图像中提取人眼无法识别的高通量定量特征,并将这些特征与临床信息结合起来,提高疾病的诊断和预后评价。近年来,随着机器学习(machine learning, ML)和深度学习(deep learning, DL)等人工智能(artificial intelligence, AI)技术在医学影像领域的快速发展,影像组学可利用ML或DL算法从各种成像方式中提取图像特征,挖掘更深层次的信息,从而更好地指导临床决策[36]。目前,基于MRI的影像组学在乳腺肿瘤诊断、良恶性鉴别、分子亚型分析、NAC疗效预测和预后评估等方面的应用研究越来越多[37, 38, 39]

2.1 基于单/多参数MRI影像组学评价TNBC化疗疗效

       基于MRI的影像组学已广泛应用于乳腺癌化疗疗效评估的研究中。DCE-MRI是现阶段MRI影像组学评估乳腺癌患者NAC反应的最常用的序列,从DCE-MRI图像提取特征构建的影像组学模型在预测TNBC pCR方面具有良好的表现[40]。CABALLO等[14]基于化疗前DCE-MRI图像开发了一个4D ML模型用于预测乳腺癌患者NAC反应,其中针对TNBC亚型的ML模型在预测pCR方面取得了较高的性能,AUC值为0.803。诸多研究表明多参数MRI影像组学模型较单序列MRI影像组学模型可以显著提高TNBC NAC疗效的预测性能[41]。LIU等[41]开发了一种联合多参数MRI(T1+C、T2WI、DWI)以及临床信息的联合预测模型用于乳腺癌NAC后pCR预测,结果显示该模型在训练集和外部验证集中均具有较好的预测性能,其中验证集中预测TNBC患者pCR的AUC值达到0.960。NEMETH等[15]同样基于多参数MRI(T1WI、T2WI、DWI和DCE-MRI)的影像组学特征,构建随机森林、多层感知器、具有线性核的支持向量机(support vector machine, SVM)以及具有二次核的SVM四个ML模型预测TNBC患者NAC后的反应,结果显示具有二次核的SVM预测性能最佳,AUC值、敏感度和特异度分别为0.830、85%和75%。由此可见,相较于单参数MRI影像组学模型,联合多序列、多参数MRI的影像组学特征对TNBC患者化疗疗效的预测效果更好。然而,无论是MRI单参数模型还是多参数联合模型,部分参数的获取存在一定的主观性以及局限性,未来还需要对其进行标准化以进行更全面、准确的分析。并且目前此类研究样本通常为单中心小样本量的回顾性研究,模型的稳定性和可靠性有待进一步提高。此外,未来还可以继续探索联合不同序列、不同检查方法在TNBC NAC后pCR预测中的应用。

2.2 基于瘤内、瘤周MRI影像组学评价TNBC化疗疗效

       既往研究基于影像组学方法开发的乳腺癌NAC疗效预测模型主要聚焦于肿瘤区域的组学特征。然而,瘤周微环境也能反映肿瘤的异质性,进而能预测肿瘤耐药性、疗效及预后等[42, 43, 44]。BRAMAN等[45]探索了基于NAC前DCE-MRI中瘤内和瘤周区域的影像组学纹理特征预测不同亚型的乳腺癌化疗后pCR的能力,由于样本量有限,TNBC和HER-2阳性乳腺癌被合并为一个组。研究结果显示预测TNBC/HER-2阳性乳腺癌患者pCR的朴素贝叶斯分类器的AUC值可达0.930,并且在对瘤内和瘤周区域的纹理特征分析中他们还发现,在TNBC/HER-2阳性乳腺癌组中,瘤周区域内的Laws 特征对预测pCR很有价值。因此,瘤周影像组学特征对TNBC疗效预测方面具有较大价值。MOHAMED等[16]前瞻性纳入并分析182名TNBC患者的DCE-MRI和DWI图像上的瘤内和瘤周区域影像组学特征,结果发现基于多参数MRI瘤内和瘤周区域的影像组学模型作为TNBC患者NAC反应的潜在早期预测因子具有很高的准确性,AUC值为0.831。因此,瘤周区域影像组学特征在预测TNBC患者化疗疗效方面具有较高的附加价值,瘤内联合瘤周区域特征的影像组学模型的NAC疗效预测性能可以得到进一步提升。但对TNBC瘤周最佳疗效预测范围的确定,还需更进一步地研究分析。

2.3 基于DL的MRI影像组学评价TNBC化疗疗效

       DL是ML的分支和发展,与传统的影像组学比较,可以自动学习提取和选择图像特征并进行预测,从而更全面、深入地挖掘图像中的信息,极大地提高了数据分析效率[46]。DL主要通过卷积神经网络(convolutional neural network, CNN)这种用于处理图像数据的神经网络架构,自动学习提取影像潜在细微特征以完成预测任务。ZHOU等[17]的一项前瞻性研究纳入了282名TNBC患者,基于多参数MRI图像特征构建了3D DL模型用于预测NAC后的pCR,训练集、验证集、回顾性独立测试集和前瞻性盲法测试集的AUC值分别为0.970、0.820、0.860和0.830。HUANG等[47]基于MRI影像组学和DL特征进行了集成学习,并结合乳腺癌的特定分子亚型开发了更精确的集成学习模型,结果显示SVM集成模型可较为准确地预测TNBC患者的pCR,训练集和三个外部验证集的AUC值分别为0.958、0.873、0.901和0.837。因此,基于DL的影像组学方法可早期且准确地预测TNBC患者的NAC疗效,但目前使用DL方法预测TNBC患者pCR的多为回顾性研究,未来需要在足够大的前瞻性数据集上进一步训练和验证。

3 总结与展望

       MRI具有多参数多方位成像、软组织分辨率高、无电离辐射等优点,可重复、无创地对肿瘤细胞结构、肿瘤微环境变化进行早期量化评估。TNBC具有侵袭性强、远处转移早、总体预后差的特点,因此其化疗疗效的早期评估极其重要。既往研究证实MRI在TNBC患者NAC疗效评估中具有重要价值,但其总体预测效能目前尚无法满足临床精准治疗的要求。如何早期准确识别对化疗不敏感或化疗结束不能达到pCR的患者,从而及时选择更优的治疗方案,改善临床结局和预后,是目前TNBC亟待解决的问题。影像组学通过深入挖掘并分析医学图像中高通量定量的特征,全面反映肿瘤对NAC的反应,能够改善MRI检查对NAC疗效评估和预测的准确性。已有大量的研究证实其在TNBC NAC疗效评估以及个性化临床决策中具有较大发展潜力。但仍存在一定的局限性:第一,目前基于MRI特征预测TNBC的疗效的研究大多为小样本的回顾性研究,未来还需进行更大样本量的前瞻性多中心研究来解决这一问题;其次,MRI图像易受扫描标准和设备条件影响,导致各个研究的结果存在偏差,因此各指标的稳定性和可重复性易受到影响。此外,一些关键步骤如感兴趣区勾画、特征提取和参数选择等还未实现标准化,故缺乏一定的临床适用性及可重复性,在临床实践中的应用仍存在一定困难。希望未来能够开展高质量的研究,推动影像组学和DL等AI技术在乳腺MRI中的应用,并为未来TNBC的诊断和治疗决策提供精准指导。

[1]
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J, 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[2]
YIN L, DUAN J J, BIAN X W, et al. Triple-negative breast cancer molecular subtyping and treatment progress[J/OL]. Breast Cancer Res, 2020, 22(1): 61 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/32517735/. DOI: 10.1186/s13058-020-01296-5.
[3]
TONG L, YU X L, WANG S, et al. Research progress on molecular subtyping and modern treatment of triple-negative breast cancer[J/OL]. Breast Cancer, 2023, 15: 647-658 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37644916/. DOI: 10.2147/BCTT.S426121.
[4]
邵志敏, 吴炅, 江泽飞, 等. 中国乳腺癌新辅助治疗专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(1): 80-89. DOI: 10.19401/j.cnki.1007-3639.2022.01.011.
SHAO Z M, WU J, JIANG Z F, et al. Expert consensus on neoadjuvant treatment of breast cancer in China(2021 edition)[J]. China Oncol, 2022, 32(1): 80-89. DOI: 10.19401/j.cnki.1007-3639.2022.01.011.
[5]
PANICO C, FERRARA F, WOITEK R, et al. Staging breast cancer with MRI, theT. A key role in the neoadjuvant setting[J/OL]. Cancers, 2022, 14(23): 5786 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36497265/. DOI: 10.3390/cancers14235786.
[6]
KODALI A, GADI V K. Preoperative systemic therapy for breast cancer[J]. Surg Clin North Am, 2023, 103(1): 201-217. DOI: 10.1016/j.suc.2022.08.017.
[7]
HUANG M, O'SHAUGHNESSY J, ZHAO J, et al. Association of pathologic complete response with long-term survival outcomes in triple-negative breast cancer: a meta-analysis[J]. Cancer Res, 2020, 80(24): 5427-5434. DOI: 10.1158/0008-5472.CAN-20-1792.
[8]
TOSS A, VENTURELLI M, CIVALLERO M, et al. Predictive factors for relapse in triple-negative breast cancer patients without pathological complete response after neoadjuvant chemotherapy[J/OL]. Front Oncol, 2022, 12: 1016295 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36531080/. DOI: 10.3389/fonc.2022.1016295.
[9]
CORTAZAR P, ZHANG L J, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. DOI: 10.1016/S0140-6736(13)62422-8.
[10]
HOUVENAEGHEL G, NONNEVILLE A D, COHEN M, et al. Neoadjuvant chemotherapy for breast cancer: evolution of clinical practice in a French cancer center over 16 years and pathologic response rates according to tumor subtypes and clinical tumor size: retrospective cohort study[J]. J Surg Res, 2022, 5(3): 511-525. DOI: 10.26502/jsr.10020251.
[11]
ORTMANN O, BLOHMER J U, SIBERT N T, et al. Current clinical practice and outcome of neoadjuvant chemotherapy for early breast cancer: analysis of individual data from 94, 638 patients treated in 55 breast cancer centers[J]. J Cancer Res Clin Oncol, 2023, 149(3): 1195-1209. DOI: 10.1007/s00432-022-03938-x.
[12]
HOUVENAEGHEL G, DE NONNEVILLE A, COHEN M, et al. Neoadjuvant chemotherapy for breast cancer: Pathologic response rates but not tumor size, has an independent prognostic impact on survival[J/OL]. Cancer Med, 2024, 13(3): e6930 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/38327130/. DOI: 10.1002/cam4.6930.
[13]
REIG B, HEACOCK L, LEWIN A, et al. Role of MRI to assess response to neoadjuvant therapy for breast cancer[J/OL]. J Magn Reson Imaging, 2020, 52(6) [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/32227407/. DOI: 10.1002/jmri.27145.
[14]
CABALLO M, SANDERINK W B G, HAN L Y, et al. Four-dimensional machine learning radiomics for the pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(1): 97-110. DOI: 10.1002/jmri.28273.
[15]
NEMETH A, CHAUDET P, LEPORQ B, et al. Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer[J]. MAGMA, 2021, 34(6): 833-844. DOI: 10.1007/s10334-021-00941-0.
[16]
MOHAMED R M, PANTHI B, ADRADA B, et al. Abstract P6-01-06: multi-parametric MRI-based radiomics models from tumor and peritumoral regions as potential predictors of treatment response to neoadjuvant systemic therapy in triple negative breast cancer patients[J/OL]. Cancer Res, 2023 [2024-03-06]. https://www.researchgate.net/publication/368980286_Abstract_P6-01-06_Multi-Parametric_MRI-Based_Radiomics_Models_from_Tumor_and_Peritumoral_Regions_as_Potential_Predictors_of_Treatment_Response_to_Neoadjuvant_Systemic_Therapy_in_Triple_Negative_Breast. DOI: 10.1158/1538-7445.sabcs22-p6-01-06.
[17]
ZHOU Z J, ADRADA B E, CANDELARIA R P, et al. Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI[J/OL]. Sci Rep, 2023, 13(1): 1171 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36670144/. DOI: 10.1038/s41598-023-27518-2.
[18]
KATAOKA M, IIMA M, MIYAKE K K, et al. Multiparametric approach to breast cancer with emphasis on magnetic resonance imaging in the era of personalized breast cancer treatment[J]. Invest Radiol, 2024, 59(1): 26-37. DOI: 10.1097/RLI.0000000000001044.
[19]
MARINOVICH M L, SARDANELLI F, CIATTO S, et al. Early prediction of pathologic response to neoadjuvant therapy in breast cancer: systematic review of the accuracy of MRI[J]. Breast, 2012, 21(5): 669-677. DOI: 10.1016/j.breast.2012.07.006.
[20]
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.1016/j.ejca.2008.10.026.
[21]
LOO C E, STRAVER M E, RODENHUIS S, et al. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype[J]. J Clin Oncol, 2011, 29(6): 660-666. DOI: 10.1200/JCO.2010.31.1258.
[22]
PANTHI B, ADRADA B E, CANDELARIA R P, et al. Assessment of response to neoadjuvant systemic treatment in triple-negative breast cancer using functional tumor volumes from longitudinal dynamic contrast-enhanced MRI[J/OL]. Cancers, 2023, 15(4): 1025 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36831368/. DOI: 10.3390/cancers15041025.
[23]
PARK J Y, KIM Y S, LEE S E. Breast MRI for evaluating residual tumor size following neoadjuvant chemotherapy: clinicopathologic factors and MRI imaging features affecting its accuracy[J]. Curr Med Imaging, 2022, 18(8): 876-882. DOI: 10.2174/1573405617666211117141057.
[24]
HYLTON N M, BLUME J D, BERNREUTER W K, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy: results from ACRIN 6657/I-SPY TRIAL[J]. Radiology, 2012, 263(3): 663-672. DOI: 10.1148/radiol.12110748.
[25]
PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): 618-627. DOI: 10.1148/radiol.2018180273.
[26]
LI W, ARASU V, NEWITT D C, et al. Effect of MR imaging contrast thresholds on prediction of neoadjuvant chemotherapy response in breast cancer subtypes: a subgroup analysis of the ACRIN 6657/I-SPY 1 TRIAL[J]. Tomography, 2016, 2(4): 378-387. DOI: 10.18383/j.tom.2016.00247.
[27]
MUSALL B C, ABDELHAFEZ A H, ADRADA B E, et al. Functional tumor volume by fast dynamic contrast-enhanced MRI for predicting neoadjuvant systemic therapy response in triple-negative breast cancer[J]. J Magn Reson Imaging, 2021, 54(1): 251-260. DOI: 10.1002/jmri.27557.
[28]
EOM H J, CHA J H, CHOI W J, et al. Predictive clinicopathologic and dynamic contrast-enhanced MRI findings for tumor response to neoadjuvant chemotherapy in triple-negative breast cancer[J/OL]. AJR Am J Roentgenol, 2017, 208(6): W225-W230 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/28350486/. DOI: 10.2214/AJR.16.17125.
[29]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imag Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[30]
LIANG X H, CHEN X F, YANG Z Q, et al. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer[J/OL]. BMC Cancer, 2022, 22(1): 1250 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36460972/. DOI: 10.1186/s12885-022-10315-x.
[31]
DRISIS S, METENS T, IGNATIADIS M, et al. Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy[J]. Eur Radiol, 2016, 26(5): 1474-1484. DOI: 10.1007/s00330-015-3948-0.
[32]
LIU S G, REN R M, CHEN Z Q, et al. Diffusion-weighted imaging in assessing pathological response of tumor in breast cancer subtype to neoadjuvant chemotherapy[J]. J Magn Reson Imaging, 2015, 42(3): 779-787. DOI: 10.1002/jmri.24843.
[33]
王晓, 朱丽钰, 查小明, 等. 全容积表观扩散系数直方图定量分析术前预测不同亚型乳腺癌新辅助化疗后病理完全缓解的价值[J]. 中华放射学杂志, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-20190522-00439.
WANG X, ZHU L Y, ZHA X M, et al. Whole-lesion histogram analysis of apparent diffusion coefficient for the prediction of pathological complete response to neoadjuvant chemotherapy in different subtypes of breast cancer[J]. Chin J Radiol, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-20190522-00439.
[34]
HE X P, WANG Z S, ZHOU Y, et al. The value, diagnostic efficacy and clinical significance of functional magnetic resonance imaging in evaluating the efficacy of neoadjuvant chemotherapy in patients with triple negative breast cancer[J/OL]. Front Oncol, 2023, 13: 1132186 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37064088/. DOI: 10.3389/fonc.2023.1132186.
[35]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[36]
ABDEL RAZEK A A K, ALKSAS A, SHEHATA M, et al. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging[J/OL]. Insights Imaging, 2021, 12(1): 152 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/34676470/. DOI: 10.1186/s13244-021-01102-6.
[37]
TAGLIAFICO A S, PIANA M, SCHENONE D, et al. Overview of radiomics in breast cancer diagnosis and prognostication[J/OL]. Breast, 2020, 49: 74-80 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/31739125/. DOI: 10.1016/j.breast.2019.10.018.
[38]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[39]
CORREDOR G, BHARADWAJ S, PATHAK T, et al. A review of AI-based radiomics and computational pathology approaches in triple-negative breast cancer: current applications and perspectives[J]. Clin Breast Cancer, 2023, 23(8): 800-812. DOI: 10.1016/j.clbc.2023.06.004.
[40]
PENG S Y, CHEN L Q, TAO J, et al. Radiomics analysis of multi-phase DCE-MRI in predicting tumor response to neoadjuvant therapy in breast cancer[J/OL]. Diagnostics, 2021, 11(11): 2086 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/34829433/. DOI: 10.3390/diagnostics11112086.
[41]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[42]
ADRADA B E, ABDELHAFEZ A H, MUSALL B C, et al. Abstract P6-02-03: quantitative apparent diffusion coefficient (ADC) radiomics of tumor and peritumoral regions as potential predictors of treatment response to neoadjuvant chemotherapy (NACT) in triple negative breast cancer (TNBC) patients[J/OL]. Cancer Res, 2020, 80(4_Supplement): P6-2-03-P6-0203 [2024-03-06]. https://www.researchgate.net/publication/340217846_Abstract_P6-02-03_Quantitative_apparent_diffusion_coefficient_ADC_radiomics_of_tumor_and_peritumoral_regions_as_potential_predictors_of_treatment_response_to_neoadjuvant_chemotherapy_NACT_in_triple_ne. DOI: 10.1158/1538-7445.sabcs19-p6-02-03.
[43]
HUSSAIN L, HUANG P, NGUYEN T, et al. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response[J/OL]. Biomed Eng Online, 2021, 20(1): 63 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/34183038/. DOI: 10.1186/s12938-021-00899-z.
[44]
HACKING S M, WINDSOR G, COOPER R, et al. A novel approach correlating pathologic complete response with digital pathology and radiomics in triple-negative breast cancer[J]. Breast Cancer, 2024, 31(3): 529-535. DOI: 10.1007/s12282-024-01544-y.
[45]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 57 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/28521821/. DOI: 10.1186/s13058-017-0846-1.
[46]
KHAN N, ADAM R, HUANG P, et al. Deep learning prediction of pathologic complete response in breast cancer using MRI and other clinical data: a systematic review[J]. Tomography, 2022, 8(6): 2784-2795. DOI: 10.3390/tomography8060232.
[47]
HUANG Y H, ZHU T, ZHANG X L, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J/OL]. EClinicalMedicine, 2023, 58: 101899 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37007742/. DOI: 10.1016/j.eclinm.2023.101899.

上一篇 从医学影像到临床诊疗:2023年心血管磁共振进展
下一篇 MRI影像组学在乳腺肿瘤诊疗中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2